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SPOM - Phase structure

Colonization and extinction happen in distinct,
successive phases.

t − 1 t t + 1 t + 2

We will we assume that the population is observed
after successive extinction phases (CE Model).
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SPOM

Colonization and extinction happen in distinct,
successive phases.

Colonization: unoccupied patches become occupied
independently with probability c(n−1

∑n
i=1X

(n)
i,t ), where

c : [0, 1] → [0, 1] is continuous, increasing and concave,
and c ′(0) > 0.
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SPOM

Colonization and extinction happen in distinct,
successive phases.

Colonization: unoccupied patches become occupied
independently with probability c(n−1

∑n
i=1X

(n)
i,t ), where

c : [0, 1] → [0, 1] is continuous, increasing and concave,
and c ′(0) > 0.

Extinction: occupied patch i remains occupied
independently with probability Si (random).
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SPOM

Thus, we have a Chain Bernoulli structure:
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Notation: Bin(m, p) is a binomial random variable with
m trials and success probability p.
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SPOM

Compare this with the homogenous case, where Si = s

(non-random) is the same for each i, and we merely
count the number N (n)
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A deterministic limit

Theorem∗ If N (n)
0 /n

p
→ x0 (a constant), then

N
(n)
t /n

p
→ xt, for all t ≥ 1,

with (xt) determined by xt+1 = f(xt), where

f(x) = s(x+ (1 − x)c(x)).

∗Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-
time metapopulation models. Probability Surveys 7, 53-83.
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Stability

xt+1 = f(xt), where f(x) = s(x+ (1 − x)c(x)).

Stationarity : c(0) > 0. There is a unique fixed point
x∗ ∈ [0, 1]. It satisfies x∗ ∈ (0, 1) and is stable.

Evanescence: c(0) = 0 and 1 + c ′(0) ≤ 1/s. Now 0 is
the unique fixed point in [0, 1]. It is stable.

Quasi stationarity : c(0) = 0 and 1 + c ′(0) > 1/s.
There are two fixed points in [0, 1]: 0 (unstable) and
x∗ ∈ (0, 1) (stable).
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CE Model - Evanescence
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CE Model - Quasi stationarity
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A deterministic limit

Returning to the general case, where patch survival
probabilities are random and patch dependent , and
we keep track of which patches are occupied . . .
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(
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(n)
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First, . . .

Notation: If σ is a probability measure on [0, 1) and let
s̄k denote its k-th moment, that is,

s̄k =
∫ 1
0 λ

kσ(dλ).
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A deterministic limit

Theorem Suppose there is a probability measure σ

and deterministic sequence {d(0, k)} such that

1
n

∑n
i=1 S

k
i

p
→ s̄k and 1

n

∑n
i=1 S

k
i X

(n)
i,0

p
→ d(0, k)

for all k = 0, 1, . . . , T . Then, there is a (deterministic)
triangular array {d(t, k)} such that, for all t = 0, 1, . . . , T

and k = 0, 1, . . . , T − t,

1
n

∑n
i=1 S

k
i X

(n)
i,t

p
→ d(t, k),

where

d(t+ 1, k) = d(t, k + 1) + c (d(t, 0)) (s̄k+1 − d(t, k + 1)) .
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Remarks

Typically, we are only interested in d(t, 0), being the
asymptotic proportion of occupied patches.

However, we may still interpret the ratio
d(t, k)/d(t, 0) (k ≥ 1) as the k-th moment of the
conditional distribution of the patch survival
probability given that the patch is occupied. (From
these moments, the conditional distribution could
then be reconstructed.)
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Remarks

When s̄k = s̄k1 for all k, that is the patch survival
probabilities are the same, then it is possible to
simplify

d(t+ 1, k) = d(t, k + 1) + c (d(t, 0)) (s̄k+1 − d(t, k + 1)) .

We can show by induction that d(t, k) = s̄k1xt, where

xt+1 = s̄1 (xt + (1 − xt) c(xt)) .

(Compare this with the earlier result.)
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Stability

Theorem The fixed points are given by

d(k) =
∫ 1
0

c(ψ)λk+1

1−λ+c(ψ)λσ(dλ),

where ψ solves

R(ψ) =
∫ 1
0

c(ψ)λ
1−λ+c(ψ)λσ(dλ) = ψ. (1)

If c(0) > 0, there is a unique ψ > 0. If c(0) = 0 and

c ′(0)
∫ 1
0

λ
1−λσ(dλ) ≤ 1,

then ψ = 0 is the unique solution to (1). Otherwise, (1)
has two solutions, one of which is ψ = 0.
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Stability

Theorem If c(0) = 0 and

c ′(0)
∫ 1
0

λ
1−λσ(dλ) ≤ 1,

then d(k) ≡ 0 is a stable fixed point. Otherwise, the
non-zero solution to

R(ψ) =
∫ 1
0

c(ψ)λ
1−λ+c(ψ)λσ(dλ) = ψ

provides the stable fixed point through

d(k) =
∫ 1
0

c(ψ)λk+1

1−λ+c(ψ)λσ(dλ).
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