# Limits of large metapopulations with patch dependent extinction probabilities 

Phil Pollett

Department of Mathematics
The University of Queensland
http://www.maths.uq.edu.au/~pkp


AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

## Collaborator

## Ross McVinish MASCOS <br> University of Queensland

*McVinish, R. and Pollett, P.K. (2010) Limits of large metapopulations with patch dependent extinction probabilities. Advances in Applied Probability 42 (in press, accepted 02/09/10).

$$
\begin{gathered}
0^{\circ} \oplus \\
0 \\
0
\end{gathered}
$$

## Metapopulations



$$
\begin{gathered}
0^{\circ} \\
0 \\
(\&)
\end{gathered}
$$

## Metapopulations



## Metapopulations



$$
\therefore 0_{0}
$$

## SPOM

A Stochastic Patch Occupancy Model (SPOM)

## SPOM

A Stochastic Patch Occupancy Model (SPOM)
Suppose that there are $n$ patches.

## SPOM

A Stochastic Patch Occupancy Model (SPOM)
Suppose that there are $n$ patches.
Let $X_{t}^{(n)}=\left(X_{1, t}^{(n)}, \ldots, X_{n, t}^{(n)}\right)$, where $X_{i, t}^{(n)}$ is a binary
variable indicating whether or not patch $i$ is occupied.

## SPOM

## A Stochastic Patch Occupancy Model (SPOM)

Suppose that there are $n$ patches.
Let $X_{t}^{(n)}=\left(X_{1, t}^{(n)}, \ldots, X_{n, t}^{(n)}\right)$, where $X_{i, t}^{(n)}$ is a binary variable indicating whether or not patch $i$ is occupied.

For each $n,\left(X_{t}^{(n)}, t=0,1, \ldots, T\right)$ is assumed to be Markov chain.

## SPOM

## A Stochastic Patch Occupancy Model (SPOM)

Suppose that there are $n$ patches.
Let $X_{t}^{(n)}=\left(X_{1, t}^{(n)}, \ldots, X_{n, t}^{(n)}\right)$, where $X_{i, t}^{(n)}$ is a binary variable indicating whether or not patch $i$ is occupied.

For each $n,\left(X_{t}^{(n)}, t=0,1, \ldots, T\right)$ is assumed to be Markov chain.

Colonization and extinction happen in distinct, successive phases.

## SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases.


## SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases.


We will we assume that the population is observed after successive extinction phases (CE Model).

## SPOM

Colonization and extinction happen in distinct, successive phases.

Colonization: unoccupied patches become occupied independently with probability $c\left(n^{-1} \sum_{i=1}^{n} X_{i, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ is continuous, increasing and concave, and $c^{\prime}(0)>0$.

## SPOM

Colonization and extinction happen in distinct, successive phases.

Colonization: unoccupied patches become occupied independently with probability $c\left(n^{-1} \sum_{i=1}^{n} X_{i, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ is continuous, increasing and concave, and $c^{\prime}(0)>0$.

Extinction: occupied patch $i$ remains occupied independently with probability $S_{i}$ (random).

## SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), S_{i}\right)
$$

## SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), S_{i}\right)
$$

Notation: $\operatorname{Bin}(m, p)$ is a binomial random variable with $m$ trials and success probability $p$.

## SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), S_{i}\right)
$$

## SPOM

Thus, we have a Chain Bernoulli structure:


## SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), S_{i}\right)
$$

## SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), S_{i}\right)
$$

## SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), S_{i}\right)
$$

## SPOM

Compare this with the homogenous case, where $S_{i}=s$ (non-random) is the same for each $i$, and we merely count the number $N_{t}^{(n)}$ of occupied patches at time $t$.

We have the following Chain Binomial structure:

$$
N_{t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(N_{t}^{(n)}+\operatorname{Bin}\left(n-N_{t}^{(n)}, c\left(\frac{1}{n} N_{t}^{(n)}\right)\right), s\right)
$$

## SPOM

Compare this with the homogenous case, where $S_{i}=s$ (non-random) is the same for each $i$, and we merely count the number $N_{t}^{(n)}$ of occupied patches at time $t$.

We have the following Chain Binomial structure:


## SPOM

Compare this with the homogenous case, where $S_{i}=s$ (non-random) is the same for each $i$, and we merely count the number $N_{t}^{(n)}$ of occupied patches at time $t$.

We have the following Chain Binomial structure:

$$
N_{t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(N_{t}^{(n)}+\operatorname{Bin}\left(n-N_{t}^{(n)}, c\left(\frac{1}{n} N_{t}^{(n)}\right)\right), s\right)
$$

## SPOM

Compare this with the homogenous case, where $S_{i}=s$ (non-random) is the same for each $i$, and we merely count the number $N_{t}^{(n)}$ of occupied patches at time $t$.

We have the following Chain Binomial structure:

$$
N_{t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(N_{t}^{(n)}+\operatorname{Bin}\left(n-N_{t}^{(n)}, c\left(\frac{1}{n} N_{t}^{(n)}\right)\right), s\right)
$$

## SPOM

Compare this with the homogenous case, where $S_{i}=s$ (non-random) is the same for each $i$, and we merely count the number $N_{t}^{(n)}$ of occupied patches at time $t$.

We have the following Chain Binomial structure:

$$
N_{t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(N_{t}^{(n)}+\operatorname{Bin}\left(n-N_{t}^{(n)}, c\left(\frac{1}{n} N_{t}^{(n)}\right)\right), s\right)
$$

## SPOM

Compare this with the homogenous case, where $S_{i}=s$ (non-random) is the same for each $i$, and we merely count the number $N_{t}^{(n)}$ of occupied patches at time $t$.

We have the following Chain Binomial structure:

$$
N_{t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(N_{t}^{(n)}+\operatorname{Bin}\left(n-N_{t}^{(n)}, c\left(\frac{1}{n} N_{t}^{(n)}\right)\right), s\right)
$$

## SPOM

Compare this with the homogenous case, where $S_{i}=s$ (non-random) is the same for each $i$, and we merely count the number $N_{t}^{(n)}$ of occupied patches at time $t$.

We have the following Chain Binomial structure:

$$
N_{t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(N_{t}^{(n)}+\operatorname{Bin}\left(n-N_{t}^{(n)}, c\left(\frac{1}{n} N_{t}^{(n)}\right)\right), s\right)
$$

## A deterministic limit

Theorem* If $N_{0}^{(n)} / n \xrightarrow{p} x_{0}$ (a constant), then

$$
N_{t}^{(n)} / n \xrightarrow{p} x_{t}, \quad \text { for all } t \geq 1,
$$

with $\left(x_{t}\right)$ determined by $x_{t+1}=f\left(x_{t}\right)$, where

$$
f(x)=s(x+(1-x) c(x)) .
$$

*Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discretetime metapopulation models. Probability Surveys 7, 53-83.


## Stability

$$
x_{t+1}=f\left(x_{t}\right), \text { where } f(x)=s(x+(1-x) c(x))
$$

- Stationarity: $c(0)>0$. There is a unique fixed point $x^{*} \in[0,1]$. It satisfies $x^{*} \in(0,1)$ and is stable.
- Evanescence: $c(0)=0$ and $1+c^{\prime}(0) \leq 1 / s$. Now 0 is the unique fixed point in $[0,1]$. It is stable.
- Quasi stationarity: $c(0)=0$ and $1+c^{\prime}(0)>1 / s$. There are two fixed points in $[0,1]: 0$ (unstable) and $x^{*} \in(0,1)$ (stable).


## CE Model - Evanescence



## CE Model - Quasi stationarity



## A deterministic limit

Returning to the general case, where patch survival probabilities are random and patch dependent, and we keep track of which patches are occupied ...

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), S_{i}\right)
$$

## A deterministic limit

Returning to the general case, where patch survival probabilities are random and patch dependent, and we keep track of which patches are occupied ...

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), S_{i}\right)
$$

First, ...
Notation: If $\sigma$ is a probability measure on $[0,1)$ and let $\bar{s}_{k}$ denote its $k$-th moment, that is,

$$
\bar{s}_{k}=\int_{0}^{1} \lambda^{k} \sigma(d \lambda) .
$$

## A deterministic limit

Theorem Suppose there is a probability measure $\sigma$ and deterministic sequence $\{d(0, k)\}$ such that

$$
\frac{1}{n} \sum_{i=1}^{n} S_{i}^{k} \xrightarrow{p} \bar{s}_{k} \quad \text { and } \quad \frac{1}{n} \sum_{i=1}^{n} S_{i}^{k} X_{i, 0}^{(n)} \xrightarrow{p} d(0, k)
$$

for all $k=0,1, \ldots, T$. Then, there is a (deterministic) triangular array $\{d(t, k)\}$ such that, for all $t=0,1, \ldots, T$ and $k=0,1, \ldots, T-t$,

$$
\frac{1}{n} \sum_{i=1}^{n} S_{i}^{k} X_{i, t}^{(n)} \xrightarrow{p} d(t, k),
$$

where

$$
d(t+1, k)=d(t, k+1)+c(d(t, 0))\left(\bar{s}_{k+1}-d(t, k+1)\right) .
$$

## Remarks

- Typically, we are only interested in $d(t, 0)$, being the asymptotic proportion of occupied patches.
- However, we may still interpret the ratio $d(t, k) / d(t, 0)(k \geq 1)$ as the $k$-th moment of the conditional distribution of the patch survival probability given that the patch is occupied. (From these moments, the conditional distribution could then be reconstructed.)


## Remarks

- When $\bar{s}_{k}=\bar{s}_{1}^{k}$ for all $k$, that is the patch survival probabilities are the same, then it is possible to simplify

$$
d(t+1, k)=d(t, k+1)+c(d(t, 0))\left(\bar{s}_{k+1}-d(t, k+1)\right) .
$$

We can show by induction that $d(t, k)=\bar{s}_{1}^{k} x_{t}$, where

$$
x_{t+1}=\bar{s}_{1}\left(x_{t}+\left(1-x_{t}\right) c\left(x_{t}\right)\right) .
$$

(Compare this with the earlier result.)

## Stability

Theorem The fixed points are given by

$$
d(k)=\int_{0}^{1} \frac{c(\psi) \lambda^{k+1}}{1-\lambda+c(\psi) \lambda} \sigma(d \lambda)
$$

where $\psi$ solves

$$
\begin{equation*}
R(\psi)=\int_{0}^{1} \frac{c(\psi) \lambda}{1-\lambda+c(\psi) \lambda} \sigma(d \lambda)=\psi . \tag{1}
\end{equation*}
$$

If $c(0)>0$, there is a unique $\psi>0$. If $c(0)=0$ and

$$
c^{\prime}(0) \int_{0}^{1} \frac{\lambda}{1-\lambda} \sigma(d \lambda) \leq 1,
$$

then $\psi=0$ is the unique solution to (1). Otherwise, (1) has two solutions, one of which is $\psi=0$.

## Stability

Theorem If $c(0)=0$ and

$$
c^{\prime}(0) \int_{0}^{1} \frac{\lambda}{1-\lambda} \sigma(d \lambda) \leq 1,
$$

then $d(k) \equiv 0$ is a stable fixed point. Otherwise, the non-zero solution to

$$
R(\psi)=\int_{0}^{1} \frac{c(\psi) \lambda}{1-\lambda+c(\psi) \lambda} \sigma(d \lambda)=\psi
$$

provides the stable fixed point through

$$
d(k)=\int_{0}^{1} \frac{c(\psi) \lambda^{k+1}}{1-\lambda+c(\psi) \lambda} \sigma(d \lambda) .
$$

