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We will we assume that the population is observed
after successive extinction phases (CE Model).
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Colonization: unoccupied patches become occupied
independently with probability c(n=t > , Xz.(fz)), where
c¢:[0,1] — [0, 1] IS continuous, increasing and concave,
and ¢’(0) > 0.

Extinction: occupied patch i remains occupied
Independently with probabillity S; (random).




Thus, we have a Chain Bernoulli structure:

Xi(,?zrl d Bin(XZ-(,?) + Bin(l zt ) ( Z] 1 )) S)




Thus, we have a Chain Bernoulli structure:
n d . n .
Xz'(,t—)l—l — Bln(Xz'(,t) + Bm(l zt ) ( Z] 1 )) S)

Notation: Bin(m, p) Is a binomial random variable with
m trials and success probabillity p.
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Theorem* If Né’”’)/n 2 2 (a constant), then

N Log,, forallt> 1,
with (z;) determined by x;1 = f(x:), where

flz) = s(z + (1 = z)c(x)).

*Buckley, EM. and Pollett, P.K. (2010) Limit theorems for discrete-
time metapopulation models. Probability Surveys 7, 53-83.




ver1 = flxe), Where f(z) = s(z + (1 — z)c(x)).

s Stationarity: ¢(0) > 0. There is a unique fixed point
* € [0,1]. It satisfies z* € (0,1) and Is stable.

» Evanescence: ¢(0) =0and 1+ ¢'(0) <1/s. Now 0 Is
the unique fixed point in [0, 1]. It is stable.

» Quasi stationarity: ¢(0) =0and 1+ ¢’(0) > 1/s.
There are two fixed points in [0, 1]: 0 (unstable) and
z* € (0,1) (stable).




CE Model simulation (n =100, N\ =95, s =0.56, c(z) = cx with ¢ =0.7)
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CE Model simulation (n =100, Nén) =5,5=0.38, ¢(x) = cx with ¢=0.7)
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Returning to the general case, where patch survival
probabllities are random and patch dependent, and
we keep track of which patches are occupied ...
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Returning to the general case, where patch survival
probabllities are random and patch dependent, and
we keep track of which patches are occupied ...

Xz(t)H:Bm( Z(t)+Bin(1— Zt, (x>0 X )) S)
First, ...

Notation: If o Is a probability measure on [0,1) and let
5. denote Its k-th moment, that is,

sp = [y Aea(dN).




Theorem Suppose there is a probability measure o
and deterministic sequence {d(0, k)} such that

Zz 1 7, _>§k and 12@ 1 z )gd(()?k)

forall k =0,1,...,7. Then, there is a (deterministic)
triangular array {d(t, k)} such that, forallt =0,1,...,T
and £ =0,1,.... T —t,

12@ 1SkX ) - d(t,k),
where

d(t +1,k) = d(t, k +1) + ¢ (d(t,0)) Gpaq — d(t, k + 1)) .




» Typically, we are only interested in d(t,0), being the
asymptotic proportion of occupied patches.

» However, we may still interpret the ratio
d(t,k)/d(t,0) (k > 1) as the k-th moment of the
conditional distribution of the patch survival
probability given that the patch is occupied. (From
these moments, the conditional distribution could
then be reconstructed.)




» When 5, = &% for all k, that is the patch survival
probabilities are the same, then it is possible to

simplify
dit+1,k) =d(t,k+ 1)+ c(d(t,0)) (Sgr1 — d(t,k+1)).

We can show by induction that d(t, k) = 5}z,, where

Tey1 = 51 (v + (1 — o) e(xy))

(Compare this with the earlier result.)




Theorem The fixed points are given by

d(k) _ 1 C("vb))\k_H U(d)\),

0 I-A4c(y)A
where 1) solves
R(¥) = Jy m=xtammo(d) = . 1)

If ¢(0) > 0, there is a unique ¢ > 0. If ¢(0) = 0 and

flAU <17

then ¢ = 0 Is the unique solution to (1). Otherwise, (1)
has two solutions, one of which is ¢ = 0.

-
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Theorem If ¢(0) =0 and

fo1A‘7 ) <1,

then d(k) = 0 Is a stable fixed point. Otherwise, the
non-zero solution to

R(Y) = Jy m=xiequmo () = ¥

provides the stable fixed point through

c k+1
A(k) = Jy =5 ().
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