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t− 1 t t+ 1 t+ 2

We will we assume that the population is observed after
successive extinction phases (CE Model).
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0.60 0.56 0.63 0.62 0.52 0.61 0.68 0.49 0.49 0.49 0.50
0.41 0.59 0.63 0.60 0.61

[Survival probabilities listed for occupied patches only]
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SPOM - Homogeneous case

In the homogeneous case, where si = s (non-random) is
the same for each i, the number N (n)

t of occupied patches
at time t is Markovian.

It has the following Chain Binomial structure:
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A deterministic limit

Letting the initial number N (n)

0 of occupied patches grow at
the same rate as n . . .

Theorem [BP] If N (n)

0 /n
p
→ x0 (a constant), then

N
(n)

t /n
p
→ xt, for all t ≥ 1,

with (xt) determined by xt+1 = f(xt), where

f(x) = s(x+ (1− x)c(x)).

[BP] Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time
metapopulation models. Probability Surveys 7, 53-83.
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Evanescence: c(0) = 0 and 1 + c ′(0) ≤ 1/s. Now 0 is the
unique fixed point in [0, 1]. It is stable.
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two fixed points in [0, 1]: 0 (unstable) and x∗ ∈ (0, 1) (stable).

[Notice that c(0) = 0 implies that c ′(0) > 0.]
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CE Model - Quasi stationarity
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probabilities (si) are random and patch dependent , and we
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X
(n)

i,t+1
d
= Bin

(

X
(n)

i,t + Bin
(

1−X
(n)

i,t , c
(

1
n

∑n

j=1X
(n)

j,t

)

)

, si

)

.



SPOM - general case

Returning to the general case, where patch survival
probabilities (si) are random and patch dependent , and we
keep track of which patches are occupied . . .

X
(n)

i,t+1
d
= Bin

(

X
(n)

i,t + Bin
(

1−X
(n)

i,t , c
(

1
n

∑n

j=1X
(n)

j,t

)

)

, si

)

.

Notice that

X
(n)

i,t+1
d
= Bin

(

X
(n)

i,t , si
)

+ Bin
(

1−X
(n)

i,t , sic
(

1
n

∑n

j=1X
(n)

j,t

)

)

.



Our approach - Point Processes!

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].



Our approach - Point Processes!

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].

Define sequences (σn) and (µn,t) of random measures by

σn(B) = #{si ∈ B}/n, B ∈ B([0, 1]),

µn,t(B) = #{si ∈ B : X
(n)

i,t = 1}/n, B ∈ B([0, 1]).



Our approach - Point Processes!

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].

Define sequences (σn) and (µn,t) of random measures by

σn(B) = #{si ∈ B}/n, B ∈ B([0, 1]),

µn,t(B) = #{si ∈ B : X
(n)

i,t = 1}/n, B ∈ B([0, 1]).

We are going to suppose that σn
d
→ σ for some non-random

(probability) measure σ.



Our approach - Point Processes!

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].

Define sequences (σn) and (µn,t) of random measures by

σn(B) = #{si ∈ B}/n, B ∈ B([0, 1]),

µn,t(B) = #{si ∈ B : X
(n)

i,t = 1}/n, B ∈ B([0, 1]).

We are going to suppose that σn
d
→ σ for some non-random

(probability) measure σ.

Think of σ as being the distribution of survival probabilities.
In the earlier simulation σ was a Beta(25.2, 19.8) distribution.



Our approach - Point Processes!

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].

Define sequences (σn) and (µn,t) of random measures by

σn(B) = #{si ∈ B}/n, B ∈ B([0, 1]),

µn,t(B) = #{si ∈ B : X
(n)

i,t = 1}/n, B ∈ B([0, 1]).

We are going to suppose that σn
d
→ σ for some non-random

(probability) measure σ.

Think of σ as being the distribution of survival probabilities.
In the earlier simulation σ was a Beta(25.2, 19.8) distribution.



Our approach - Point Processes!

Equivalently, we may define (σn) and (µn,t) by

∫

h(s)σn(ds) =
1

n

n
∑

i=1

h(si)

∫

h(s)µn,t(ds) =
1

n

n
∑

i=1

X
(n)

i,t h(si),

for h in C+([0, 1]), the class of continuous functions that map
[0, 1] to [0,∞).
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Equivalently, we may define (σn) and (µn,t) by

∫

h(s)σn(ds) =
1

n

n
∑

i=1

h(si)

∫

h(s)µn,t(ds) =
1

n

n
∑

i=1

X
(n)

i,t h(si),

for h in C+([0, 1]), the class of continuous functions that map
[0, 1] to [0,∞). For example (h ≡ 1),

∫

µn,t(ds) =
1

n

n
∑

i=1

X
(n)

i,t (proportion occupied).



A measure-valued difference equation

Theorem Suppose that σn
d
→ σ and µn,0

d
→ µ0 for some

non-random measures σ and µ0. Then, µn,t
d
→ µt for all

t = 1, 2, . . ., where µt is defined by the following recursion:
for h ∈ C+([0, 1]),

∫

h(s)µt+1(ds) = (1− ct)

∫

sh(s)µt(ds) + ct

∫

sh(s)σ(ds),

where ct = c (µt([0, 1])) = c
(∫

µt(ds)
)

.
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Set h(s) = sk. Then, our recursion is
∫

skµt+1(ds) = (1− ct)
∫

sk+1µt(ds) + ct
∫

sk+1σ(ds),

where ct = c (µt([0, 1])) = c
(∫

µt(ds)
)

. So, with moments
defined by σ̄(k) :=

∫

skσ(ds) and µ̄
(k)

t :=
∫

skµt(ds),

µ̄
(k)

t+1 = (1− µ̄
(0)

t )µ̄
(k+1)

t + µ̄
(0)

t σ̄
(k+1) ,

and the theorem allows to conclude that

1
n

∑n

i=1 s
k
iX

(n)

i,t (=
∫

skµn,t(ds)) ) → µ̄
(k)

t ,

for example, 1
n

∑n

i=1X
(n)

i,t → µ̄
(0)

t .
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Equilibria?

Our recursion is
∫

h(s)µt+1(ds) = (1− ct)

∫

sh(s)µt(ds) + ct

∫

sh(s)σ(ds).

Let M be the set of measures that are absolutely
continuous with respect to σ and whose Radon-Nikodym
derivative is bounded by 1, σ − a.e.

We shall be interested in the behaviour of solutions to our
recursion starting with µ0 ∈ M.
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"Differentiating" with respect to σ, we see that our recursion
can be written

∂µt+1

∂σ
= s

∂µt
∂σ

+ sct

(

1−
∂µt
∂σ

)

.

It will be clear that µ0 ∈ M implies that µt ∈ M for all t.

Furthermore, a measure µ∞ ∈ M will be an equilibrium
point of our recursion if it satisfies

∂µ∞
∂σ

= s
∂µ∞
∂σ

+ sc∞

(

1−
∂µ∞
∂σ

)

,

where c∞ = c (µ∞([0, 1])).



Equilibria?

Theorem Suppose that c(0) = 0 and c ′(0) <∞. Let ψ∗ be a
solution to the equation

ψ = Rσ(ψ) :=
∫

sc(ψ)
1−s+sc(ψ)

σ(ds). (1)

The fixed points of our recursion are given by

µ∞(ds) =
sc(ψ∗)

1− s+ sc(ψ∗)
σ(ds).

Equation (1) has the unique solution ψ∗ = 0 if and only if

c ′(0)
∫

s
1−sσ(ds) ≤ 1.

Otherwise, there are two solutions, one of which is ψ∗ = 0.
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Recovery of a near-extinct population

Fix the initial configuration X
(n)

0 (= X0), and let n→ ∞.

The aim is to determine conditions under which a (large)
metapopulation that is close to extinction may recover with
positive probability.

First notice that if c has a continuous second derivative
near 0, then, for fixed m, Bin(n−m, c(m/n))

d
→ Poi(λm) as

n→ ∞, where λ = c ′(0). So, if every patch had the same
survival probability , then we might expect the number of
occupied patches (N

(n)

t , t = 0, 1, . . . ) to converge to a
Galton-Watson process (see [BP] for details).
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Recovery of a near-extinct population

As before, treat the collection of patch survival probabilities
of occupied patches at time t as a point process on [0, 1],
but now define (S

(n)

t , t ≥ 0) by S(n)

t = {si : X
(n)

i,t = 1}.

Extinction of the metapopulation by time t corresponds to
the event that S(n)

t is the empty set.

The aim is to show that there is a point process St such that
S

(n)

t ⇒ St as n→ ∞ and then to evaluate limt→∞ Pr (St = ∅).

We now work with the sequence (µn,t) of random measures
defined by µn,t(B) = #{si ∈ B : X

(n)

i,t = 1}, B ∈ B([0, 1]).



Tools∗

Define the probability generating functional (p.g.fl) of a
point process S by

G
S
[ξ] = E

(

∏

s∈S ξ(s)
)

,

where ξ : [0, 1] → [0, 1] is some Borel function. It determines
the point process uniquely. Convergence of G

S
(n)
t

to G
St

establishes that S(n)

t ⇒ St. Furthermore,

Pr (St = ∅) = limb↓0GSt
[1b(x)].

*Daley, D. J. and Vere-Jones, D. (2008) An Introduction to the Theory of Point Processes.
Volume II: General Theory and Structure, 2nd Edn., Springer, New York.



Convergence

Theorem Suppose that S(n)

0 converges weakly to a point
process S0 as n→ ∞ (its p.g.fl being G

S0
)*.

Then, S(n)

t converges weakly to a point process St whose
p.g.fl satisfies the recursion G

St+1
[ξ] = G

St
[h[ξ]] (t ≥ 0), where

h[ξ] is given by

h[ξ](s) = (1− s(1− ξ(s))) exp

(

−c ′(0)

∫

y(1− ξ(y)) σ(dy)

)

.

*More general than (as earlier) fixing the initial configuration and letting n → ∞.



Interpretation of limit

The limit point process (St, t = 0, 1, . . . ) is a multiplicative
population chain*, where each member of the population at
time t produces offpring independently of the other
members of the population. The offspring from the member
of the population "located" at s is generated according to an
inhomogeneous Poisson process with intensity measure
c ′(0)sσ( · ), and the original member of the population
survives to the next generation with probability s.

*Moyal, J.E. (1962). Multiplicative population chains. Proc. R. Soc. Lond. A, 266, 518-526.



Probability of total extinction

Theorem St eventually becomes empty with probability 1

(St = ∅ for some t > 0) if

c ′(0)
∫

s
1−sσ(ds) ≤ 1.

Otherwise, it eventually becomes empty with probability
G

S0
[g], where g(s) = ψ(1− s)/(1− ψs), with ψ (< 1) being the

unique solution to

ψ = exp
(

−c ′(0)
∫ (1−ψ)s

1−ψs σ(ds)
)

,

that is, with probability

E

(

∏

s∈S0

ψ(1−s)
1−ψs

)

.
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G
S
(n)
0

[ξ] = E

(

∏

s∈S
(n)

0

ξ(s)
)

= E

(

E

(

∏n

i=1 ξ(si)
∣

∣

∣
X

(n)

0

))

= E

(

∏n

i=1(X
(n)
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)
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Suppose that (si) are chosen independently according to σ

and patches are initially occupied independently with
probability pn, where npn → λ (> 0). Then,

G
S
(n)
0

[ξ] = E

(

∏

s∈S
(n)

0

ξ(s)
)

= E

(

E

(

∏n

i=1 ξ(si)
∣

∣

∣
X

(n)

0

))

= E

(

∏n

i=1(X
(n)

i,0 ξ(si) + 1−X
(n)

i,0 )
)

=
(

pn
∫

ξ(s)σ(ds) + 1− pn
)n

∼
(

1− λ
n

(

1−
∫

ξ(s)σ(ds)
))n

→ G
S0
[ξ], as n→ ∞,

where
G

S0
[ξ] = exp

(

−λ
(∫

1− ξ(s) σ(ds)
))

.
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Example

So, S(n)

0 ⇒ S0, where S0 contains a Poi(λ) number of points
distributed on [0, 1] independently according to σ.

That is, in the limiting initial patch configuration, there is a
Poi(λ) number of occupied patches, and the survival
probabilities are distributed independently according to σ.



Example - probability of total extinction

In the example, where the limiting (n large) initial patch
configuration had a Poi(λ) number of occupied patches,
and survival probabilities were distributed independently
according to σ, the “limiting metapopulation” will eventually
go extinct with probability 1 if

c ′(0)
∫

s
1−sσ(ds) ≤ 1.

Otherwise, it will go extinct with probability

exp
(

−λ
∫

1−s
1−ψs σ(ds)

)

.



Example - probability of total extinction

In the case where σ is the beta distribution with parameters
α and β (both > 0), that is

σ(ds) =
Γ(α + β)

Γ(α)Γ(β)
sα−1(1− s)β−1 ds, s ∈ [0, 1],

we have that

∫

s
1−sσ(ds) =

{

α
β−1 if β > 1

∞ if β ≤ 1.



Example - probability of total extinction

So, the “limiting metapopulation” (n large) will eventually go
extinct with probability 1 if β ≥ 1 + αc ′(0). Otherwise, it will
go extinct with probability

exp
(

−λ
∫

1−s
1−ψs σ(ds)

)

,

where ψ solves (uniquely)

ψ = exp
(

−c ′(0)
∫ (1−ψ)s

1−ψs σ(ds)
)

.
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