The limiting behaviour of a patch occupancy model

Phil Pollett

Department of Mathematics The University of Queensland http://www.maths.uq.edu.au/~pkp

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Ross McVinish Department of Mathematics University of Queensland

McVinish, R. and Pollett, P.K. (2010) Limits of large metapopulations with patch dependent extinction probabilities. Adv. Appl. Probab. 42, 1172-1186.

McVinish, R. and Pollett, P.K. (2011) The limiting behaviour of a mainland-island metapopulation. J. Math. Biol. To appear.

McVinish, R. and Pollett, P.K. (2013) Interaction between habitat quality and an Allee-like effect in metapopulations. Ecological Modelling. To appear.

McVinish, R. and Pollett, P.K. (2013) The limiting behaviour of a stochastic patch occupancy model. J. Math. Biol. Under revision.

McVinish, R. and Pollett, P.K. The limiting behaviour of Hanski's incidence function metapopulation model. Submitted.

Suppose that there are n patches.

Let $X_t^{(n)} = (X_{1,t}^{(n)}, \dots, X_{n,t}^{(n)})$, where $X_{i,t}^{(n)}$ is a binary variable indicating whether or not patch *i* is occupied.

Suppose that there are n patches.

Let $X_t^{(n)} = (X_{1,t}^{(n)}, \dots, X_{n,t}^{(n)})$, where $X_{i,t}^{(n)}$ is a binary variable indicating whether or not patch *i* is occupied.

For each n, $(X_t^{(n)}, t = 0, 1, ...)$ is assumed to be a Markov chain.

Suppose that there are n patches.

Let $X_t^{(n)} = (X_{1,t}^{(n)}, \dots, X_{n,t}^{(n)})$, where $X_{i,t}^{(n)}$ is a binary variable indicating whether or not patch *i* is occupied.

For each n, $(X_t^{(n)}, t = 0, 1, ...)$ is assumed to be a Markov chain.

Colonization and extinction happen in distinct, successive phases.

Colonization and extinction happen in distinct, successive phases.

We will we assume that the population is *observed after successive extinction phases* (CE Model).

Colonization: unoccupied patches become occupied independently with probability $c(n^{-1}\sum_{i=1}^{n} X_{i,t}^{(n)})$, where $c: [0,1] \rightarrow [0,1]$ is continuous, non-decreasing and concave.

Colonization: unoccupied patches become occupied independently with probability $c(n^{-1}\sum_{i=1}^{n} X_{i,t}^{(n)})$, where $c: [0,1] \rightarrow [0,1]$ is continuous, non-decreasing and concave.

Extinction: occupied patch *i* remains occupied independently with probability s_i (fixed or random).

Colonization: unoccupied patches become occupied independently with probability $c(n^{-1}\sum_{i=1}^{n} X_{i,t}^{(n)})$, where $c: [0,1] \rightarrow [0,1]$ is continuous, non-decreasing and concave.

Extinction: occupied patch *i* remains occupied independently with probability s_i (fixed or random).

[In our most recent work, we allow the patch colonization probability $c(\cdot)$ to depend on the *positions* of all patches and their *areas*.]

Colonization: unoccupied patches become occupied independently with probability $c(n^{-1}\sum_{i=1}^{n} X_{i,t}^{(n)})$, where $c: [0,1] \rightarrow [0,1]$ is continuous, non-decreasing and concave.

Extinction: occupied patch *i* remains occupied independently with probability s_i (fixed or random).

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, c\left(\frac{1}{n}\sum_{j=1}^{n} X_{j,t}^{(n)}\right)\right), s_i\right)$$

 $X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, c\left(\frac{1}{n}\sum_{j=1}^{n}X_{j,t}^{(n)}\right)\right), s_i\right)$

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, c\left(\frac{1}{n}\sum_{j=1}^{n} X_{j,t}^{(n)}\right)\right), s_i\right)$$

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, c\left(\frac{1}{n}\sum_{j=1}^{n} X_{j,t}^{(n)}\right)\right), s_i\right)$$

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, c\left(\frac{1}{n}\sum_{j=1}^{n} X_{j,t}^{(n)}\right)\right), s_i\right)$$

n = 30, $s_i \sim \text{Beta}(25.2, 19.8)$ ($\mathbb{E}s_i = 0.56$) and c(x) = 0.7x

000010110101000011101010001000

 $c(x) = c(\frac{11}{30}) = 0.7 \times 0.3\dot{6} = 0.25\dot{6}$

 $n = 30, s_i \sim \text{Beta}(25.2, 19.8) \ (\mathbb{E}s_i = 0.56) \text{ and } c(x) = 0.7x$

 $n = 30, s_i \sim \text{Beta}(25.2, 19.8) \ (\mathbb{E}s_i = 0.56) \text{ and } c(x) = 0.7x$

[Survival probabilities listed for occupied patches only]

 $c(x) = c(\frac{10}{30}) = 0.7 \times 0.\dot{3} = 0.2\dot{3}$

SPOM

Thus, we have a *Chain Bernoulli* structure:

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, c\left(\frac{1}{n}\sum_{j=1}^{n} X_{j,t}^{(n)}\right)\right), s_i\right)$$

In the *homogeneous case*, where $s_i = s$ (non-random) is the same for each *i*, the *number* $N_t^{(n)}$ of occupied patches at time *t* is Markovian.

It has the following *Chain Binomial* structure:

$$N_{t+1}^{(n)} \stackrel{d}{=} Bin\left(N_t^{(n)} + Bin\left(n - N_t^{(n)}, c\left(\frac{1}{n}N_t^{(n)}\right)\right), s\right)$$

Letting the initial number $N_0^{(n)}$ of occupied patches grow at the same rate as $n \dots$

Theorem [BP] If $N_0^{(n)}/n \xrightarrow{p} x_0$ (a constant), then

 $N_t^{(n)}/n \xrightarrow{p} x_t$, for all $t \ge 1$,

with (x_t) determined by $x_{t+1} = f(x_t)$, where

$$f(x) = s(x + (1 - x)c(x)).$$

[BP] Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time metapopulation models. Probability Surveys 7, 53-83.

 $x_{t+1} = f(x_t)$, where f(x) = s(x + (1 - x)c(x)).

Stationarity: c(0) > 0. There is a unique fixed point $x^* \in [0,1]$. It satisfies $x^* \in (0,1)$ and is stable.

Evanescence: c(0) = 0 and $1 + c'(0) \le 1/s$. Now 0 is the unique fixed point in [0, 1]. It is stable.

Quasi stationarity: c(0) = 0 and 1 + c'(0) > 1/s. There are two fixed points in [0, 1]: 0 (unstable) and $x^* \in (0, 1)$ (stable).

[Notice that c(0) = 0 implies that c'(0) > 0.]

 $x_{t+1} = f(x_t)$, where f(x) = s(x + (1 - x)c(x)).

Stationarity: c(0) > 0. There is a unique fixed point $x^* \in [0,1]$. It satisfies $x^* \in (0,1)$ and is stable.

Evanescence: c(0) = 0 and $1 + c'(0) \le 1/s$. Now 0 is the unique fixed point in [0, 1]. It is stable.

Quasi stationarity: c(0) = 0 and 1 + c'(0) > 1/s. There are two fixed points in [0, 1]: 0 (unstable) and $x^* \in (0, 1)$ (stable).

[Notice that c(0) = 0 implies that c'(0) > 0.]

CE Model - Evanescence

CE Model - Quasi stationarity

Returning to the general case, where patch survival probabilities (s_i) are *random* and *patch dependent*, and we keep track of which patches are occupied ...

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, c\left(\frac{1}{n}\sum_{j=1}^{n}X_{j,t}^{(n)}\right)\right), s_i\right).$$

Returning to the general case, where patch survival probabilities (s_i) are *random* and *patch dependent*, and we keep track of which patches are occupied ...

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\Big(X_{i,t}^{(n)} + Bin\Big(1 - X_{i,t}^{(n)}, c\Big(\frac{1}{n}\sum_{j=1}^{n}X_{j,t}^{(n)}\Big)\Big), s_i\Big).$$

Notice that

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin(X_{i,t}^{(n)}, s_i) + Bin(1 - X_{i,t}^{(n)}, s_i c(\frac{1}{n} \sum_{j=1}^n X_{j,t}^{(n)})).$$

Treat the collection of patch survival probabilities and those of *occupied patches* at time t as point processes on [0, 1].

Treat the collection of patch survival probabilities and those of *occupied patches* at time *t* as point processes on [0, 1]. Define sequences (σ_n) and $(\mu_{n,t})$ of random measures by

 $\sigma_n(B) = \#\{s_i \in B\}/n, \qquad B \in \mathcal{B}([0,1]),$

 $\mu_{n,t}(B) = \#\{s_i \in B : X_{i,t}^{(n)} = 1\}/n, \qquad B \in \mathcal{B}([0,1]).$

Treat the collection of patch survival probabilities and those of *occupied patches* at time t as point processes on [0, 1].

Define sequences (σ_n) and $(\mu_{n,t})$ of random measures by

 $\sigma_n(B) = \#\{s_i \in B\}/n, \qquad B \in \mathcal{B}([0,1]),$

$$\mu_{n,t}(B) = \#\{s_i \in B : X_{i,t}^{(n)} = 1\}/n, \qquad B \in \mathcal{B}([0,1]).$$

We are going to suppose that $\sigma_n \stackrel{d}{\rightarrow} \sigma$ for some non-random (probability) measure σ .

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on [0, 1].

Define sequences (σ_n) and $(\mu_{n,t})$ of random measures by

 $\sigma_n(B) = \#\{s_i \in B\}/n, \qquad B \in \mathcal{B}([0,1]),$

$$\mu_{n,t}(B) = \#\{s_i \in B : X_{i,t}^{(n)} = 1\}/n, \qquad B \in \mathcal{B}([0,1]).$$

We are going to suppose that $\sigma_n \stackrel{d}{\rightarrow} \sigma$ for some non-random (probability) measure σ .

Think of σ as being the distribution of survival probabilities. In the earlier simulation σ was a Beta(25.2, 19.8) distribution.

Treat the collection of patch survival probabilities and those of *occupied patches* at time t as point processes on [0, 1].

Define sequences (σ_n) and $(\mu_{n,t})$ of random measures by

 $\sigma_n(B) = \#\{s_i \in B\}/n, \qquad B \in \mathcal{B}([0,1]),$

 $\mu_{n,t}(B) = \#\{s_i \in B : X_{i,t}^{(n)} = 1\}/n, \qquad B \in \mathcal{B}([0,1]).$

We are going to suppose that $\sigma_n \stackrel{d}{\rightarrow} \sigma$ for some non-random (probability) measure σ .

Think of σ as being the distribution of survival probabilities. In the earlier simulation σ was a Beta(25.2, 19.8) distribution.

Equivalently, we may define (σ_n) and $(\mu_{n,t})$ by

$$\int h(s)\sigma_n(ds) = \frac{1}{n}\sum_{i=1}^n h(s_i)$$
$$\int h(s)\mu_{n,t}(ds) = \frac{1}{n}\sum_{i=1}^n X_{i,t}^{(n)} h(s_i),$$

for *h* in $C^+([0,1])$, the class of continuous functions that map [0,1] to $[0,\infty)$.

Equivalently, we may define (σ_n) and $(\mu_{n,t})$ by

$$\int h(s)\sigma_n(ds) = \frac{1}{n}\sum_{i=1}^n h(s_i)$$
$$\int h(s)\mu_{n,t}(ds) = \frac{1}{n}\sum_{i=1}^n X_{i,t}^{(n)} h(s_i),$$

for *h* in $C^+([0,1])$, the class of continuous functions that map [0,1] to $[0,\infty)$. For example $(h \equiv 1)$,

$$\int \mu_{n,t}(ds) = \frac{1}{n} \sum_{i=1}^{n} X_{i,t}^{(n)} \quad (\mathbf{I})$$

(proportion occupied).

A measure-valued difference equation

Theorem Suppose that $\sigma_n \stackrel{d}{\rightarrow} \sigma$ and $\mu_{n,0} \stackrel{d}{\rightarrow} \mu_0$ for some non-random measures σ and μ_0 . Then, $\mu_{n,t} \stackrel{d}{\rightarrow} \mu_t$ for all $t = 1, 2, \ldots$, where μ_t is defined by the following recursion: for $h \in C^+([0,1])$,

$$\int h(s)\mu_{t+1}(ds) = (1 - c_t) \int sh(s)\mu_t(ds) + c_t \int sh(s)\sigma(ds),$$

where $c_t = c(\mu_t([0, 1])) = c(\int \mu_t(ds))$.

Moments

Set $h(s) = s^k$. Then, our recursion is

$$\int s^k \mu_{t+1}(ds) = (1 - c_t) \int s^{k+1} \mu_t(ds) + c_t \int s^{k+1} \sigma(ds),$$

where $c_t = c(\mu_t([0, 1])) = c(\int \mu_t(ds))$.

Moments

Set $h(s) = s^k$. Then, our recursion is

$$\int s^k \mu_{t+1}(ds) = (1 - c_t) \int s^{k+1} \mu_t(ds) + c_t \int s^{k+1} \sigma(ds),$$

where $c_t = c (\mu_t([0,1])) = c (\int \mu_t(ds))$. So, with moments defined by $\bar{\sigma}^{(k)} := \int s^k \sigma(ds)$ and $\bar{\mu}_t^{(k)} := \int s^k \mu_t(ds)$,

$$\bar{\mu}_{t+1}^{(k)} = (1 - \bar{\mu}_t^{(0)})\bar{\mu}_t^{(k+1)} + \bar{\mu}_t^{(0)}\bar{\sigma}^{(k+1)},$$

and the theorem allows to conclude that

$$\frac{1}{n} \sum_{i=1}^{n} s_i^k X_{i,t}^{(n)} \ \left(= \int s^k \mu_{n,t}(ds) \right) \ \to \bar{\mu}_t^{(k)},$$

for example, $\frac{1}{n} \sum_{i=1}^{n} X_{i,t}^{(n)} \rightarrow \overline{\mu}_{t}^{(0)}$.

Equilibria?

Our recursion is

$$\int h(s)\mu_{t+1}(ds) = (1-c_t)\int sh(s)\mu_t(ds) + c_t\int sh(s)\sigma(ds).$$

Our recursion is

$$\int h(s)\mu_{t+1}(ds) = (1 - c_t) \int sh(s)\mu_t(ds) + c_t \int sh(s)\sigma(ds).$$

Let \mathcal{M} be the set of measures that are absolutely continuous with respect to σ and whose Radon-Nikodym derivative is bounded by 1, σ – a.e.

We shall be interested in the behaviour of solutions to our recursion starting with $\mu_0 \in \mathcal{M}$.

Equilibria?

"Differentiating" with respect to σ , we see that our recursion can be written

$$\frac{\partial \mu_{t+1}}{\partial \sigma} = s \frac{\partial \mu_t}{\partial \sigma} + sc_t \left(1 - \frac{\partial \mu_t}{\partial \sigma} \right).$$

Equilibria?

"Differentiating" with respect to σ , we see that our recursion can be written

$$\frac{\partial \mu_{t+1}}{\partial \sigma} = s \frac{\partial \mu_t}{\partial \sigma} + sc_t \left(1 - \frac{\partial \mu_t}{\partial \sigma} \right).$$

It will be clear that $\mu_0 \in \mathcal{M}$ implies that $\mu_t \in \mathcal{M}$ for all t.

"Differentiating" with respect to σ , we see that our recursion can be written

$$\frac{\partial \mu_{t+1}}{\partial \sigma} = s \frac{\partial \mu_t}{\partial \sigma} + sc_t \left(1 - \frac{\partial \mu_t}{\partial \sigma} \right).$$

It will be clear that $\mu_0 \in \mathcal{M}$ implies that $\mu_t \in \mathcal{M}$ for all t.

Furthermore, a measure $\mu_{\infty} \in \mathcal{M}$ will be an equilibrium point of our recursion if it satisfies

$$\frac{\partial \mu_{\infty}}{\partial \sigma} = s \frac{\partial \mu_{\infty}}{\partial \sigma} + sc_{\infty} \left(1 - \frac{\partial \mu_{\infty}}{\partial \sigma} \right),$$

where $c_{\infty} = c (\mu_{\infty}([0, 1])).$

Equilibria?

Theorem Suppose that c(0) = 0 and $c'(0) < \infty$. Let ψ^* be a solution to the equation

$$\psi = R_{\sigma}(\psi) := \int \frac{sc(\psi)}{1 - s + sc(\psi)} \sigma(ds).$$
(1)

The fixed points of our recursion are given by

$$\mu_{\infty}(ds) = \frac{sc(\psi^*)}{1 - s + sc(\psi^*)}\sigma(ds).$$

Equation (1) has the unique solution $\psi^* = 0$ if and only if

$$c'(0) \int \frac{s}{1-s} \sigma(ds) \le 1.$$

Otherwise, there are two solutions, one of which is $\psi^* = 0$.

Recovery of a near-extinct population

Return to our patch occupancy model

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin(X_{i,t}^{(n)}, s_i) + Bin(1 - X_{i,t}^{(n)}, s_i c(\frac{1}{n} \sum_{j=1}^n X_{j,t}^{(n)})).$$

Recovery of a near-extinct population

Return to our patch occupancy model ...

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin(X_{i,t}^{(n)}, s_i) + Bin(1 - X_{i,t}^{(n)}, s_i c(\frac{1}{n} \sum_{j=1}^n X_{j,t}^{(n)})).$$

Assume now that c(0) = 0 (which implies c'(0) > 0).

Recovery of a near-extinct population

Return to our patch occupancy model ...

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin(X_{i,t}^{(n)}, s_i) + Bin(1 - X_{i,t}^{(n)}, s_i c(\frac{1}{n} \sum_{j=1}^n X_{j,t}^{(n)})).$$

Assume now that c(0) = 0 (which implies c'(0) > 0).

Fix the initial configuration $X_0^{(n)}$ (= X_0), and let $n \to \infty$.

The aim is to determine conditions under which a (large) metapopulation that is close to extinction may recover with positive probability.

Fix the initial configuration $X_0^{(n)}$ (= X_0), and let $n \to \infty$.

The aim is to determine conditions under which a (large) metapopulation that is close to extinction may recover with positive probability.

Fix the initial configuration $X_0^{(n)}$ (= X_0), and let $n \to \infty$.

The aim is to determine conditions under which a (large) metapopulation that is close to extinction may recover with positive probability.

First notice that if c has a continuous second derivative near 0, then, for fixed m, $Bin(n - m, c(m/n)) \xrightarrow{d} Poi(\lambda m)$ as $n \to \infty$, where $\lambda = c'(0)$. So, if every patch had the same survival probability, then we might expect the number of occupied patches $(N_t^{(n)}, t = 0, 1, ...)$ to converge to a Galton-Watson process (see [BP] for details).

As before, treat the collection of patch survival probabilities of occupied patches at time *t* as a point process on [0, 1], but now define $(S_t^{(n)}, t \ge 0)$ by $S_t^{(n)} = \{s_i : X_{i,t}^{(n)} = 1\}$.

As before, treat the collection of patch survival probabilities of occupied patches at time t as a point process on [0, 1], but now define $(S_t^{(n)}, t \ge 0)$ by $S_t^{(n)} = \{s_i : X_{i,t}^{(n)} = 1\}$.

Extinction of the metapopulation by time t corresponds to the event that $S_t^{(n)}$ is the empty set.

As before, treat the collection of patch survival probabilities of occupied patches at time t as a point process on [0, 1], but now define $(S_t^{(n)}, t \ge 0)$ by $S_t^{(n)} = \{s_i : X_{i,t}^{(n)} = 1\}$.

Extinction of the metapopulation by time t corresponds to the event that $S_t^{(n)}$ is the empty set.

The aim is to show that there is a point process S_t such that $S_t^{(n)} \Rightarrow S_t$ as $n \to \infty$ and then to evaluate $\lim_{t\to\infty} \Pr(S_t = \emptyset)$.

As before, treat the collection of patch survival probabilities of occupied patches at time t as a point process on [0, 1], but now define $(S_t^{(n)}, t \ge 0)$ by $S_t^{(n)} = \{s_i : X_{i,t}^{(n)} = 1\}$.

Extinction of the metapopulation by time t corresponds to the event that $S_t^{(n)}$ is the empty set.

The aim is to show that there is a point process S_t such that $S_t^{(n)} \Rightarrow S_t$ as $n \to \infty$ and then to evaluate $\lim_{t\to\infty} \Pr(S_t = \emptyset)$.

We now work with the sequence $(\mu_{n,t})$ of random measures defined by $\mu_{n,t}(B) = \#\{s_i \in B : X_{i,t}^{(n)} = 1\}, B \in \mathcal{B}([0,1]).$

Tools*

Define the *probability generating functional* (p.g.fl) of a point process *S* by

$$G_{S}[\xi] = \mathbb{E}\left(\prod_{s \in S} \xi(s)\right),$$

where $\xi : [0,1] \rightarrow [0,1]$ is some Borel function. It determines the point process uniquely. Convergence of $G_{S_t^{(n)}}$ to G_{S_t} establishes that $S_t^{(n)} \Rightarrow S_t$. Furthermore,

$$\Pr\left(S_t = \varnothing\right) = \lim_{b \downarrow 0} G_{S_t}[1_b(x)].$$

*Daley, D. J. and Vere-Jones, D. (2008) An Introduction to the Theory of Point Processes. Volume II: General Theory and Structure, 2nd Edn., Springer, New York. **Theorem** Suppose that $S_0^{(n)}$ converges weakly to a point process S_0 as $n \to \infty$ (its p.g.fl being G_{S_0})*.

Then, $S_t^{(n)}$ converges weakly to a point process S_t whose p.g.fl satisfies the recursion $G_{S_{t+1}}[\xi] = G_{S_t}[h[\xi]]$ $(t \ge 0)$, where $h[\xi]$ is given by

$$h[\xi](s) = (1 - s(1 - \xi(s))) \exp\left(-c'(0) \int y(1 - \xi(y)) \,\sigma(dy)\right).$$

*More general than (as earlier) fixing the initial configuration and letting $n \to \infty$.

The limit point process $(S_t, t = 0, 1, ...)$ is a *multiplicative population chain**, where each member of the population at time *t* produces offpring independently of the other members of the population. The offspring from the member of the population "located" at *s* is generated according to an inhomogeneous Poisson process with intensity measure $c'(0)s\sigma(\cdot)$, and the original member of the population survives to the next generation with probability *s*.

*Moyal, J.E. (1962). Multiplicative population chains. Proc. R. Soc. Lond. A, 266, 518-526.

Theorem S_t eventually becomes empty with probability 1 $(S_t = \emptyset$ for some t > 0) if

$$c'(0)\int \frac{s}{1-s}\sigma(ds) \le 1.$$

Otherwise, it eventually becomes empty with probability $G_{s_0}[g]$, where $g(s) = \psi(1-s)/(1-\psi s)$, with ψ (< 1) being the unique solution to

$$\psi = \exp\left(-c'(0)\int \frac{(1-\psi)s}{1-\psi s}\,\sigma(ds)\right),$$

that is, with probability

$$\mathbb{E}\left(\prod_{s\in S_0}\frac{\psi(1-s)}{1-\psi s}\right).$$

Suppose that (s_i) are chosen *independently* according to σ and patches are initially occupied independently with probability p_n , where $np_n \rightarrow \lambda$ (> 0).

Suppose that (s_i) are chosen *independently* according to σ and patches are initially occupied independently with probability p_n , where $np_n \rightarrow \lambda$ (> 0). Then,

$$G_{S_0^{(n)}}[\xi] = \mathbb{E}\left(\prod_{s \in S_0^{(n)}} \xi(s)\right) = \mathbb{E}\left(\mathbb{E}\left(\prod_{i=1}^n \xi(s_i) \middle| X_0^{(n)}\right)\right)$$
$$= \mathbb{E}\left(\prod_{i=1}^n (X_{i,0}^{(n)}\xi(s_i) + 1 - X_{i,0}^{(n)})\right) = \left(p_n \int \xi(s)\sigma(ds) + 1 - p_n\right)^n$$

Suppose that (s_i) are chosen *independently* according to σ and patches are initially occupied independently with probability p_n , where $np_n \rightarrow \lambda$ (> 0). Then,

$$\begin{split} G_{s_0^{(n)}}\left[\xi\right] &= \mathbb{E}\left(\prod_{s\in S_0^{(n)}}\xi(s)\right) = \mathbb{E}\left(\mathbb{E}\left(\prod_{i=1}^n \left|\xi(s_i)\right| X_0^{(n)}\right)\right) \\ &= \mathbb{E}\left(\prod_{i=1}^n (X_{i,0}^{(n)}\xi(s_i) + 1 - X_{i,0}^{(n)})\right) = \left(p_n \int \xi(s)\sigma(ds) + 1 - p_n\right)^n \\ &\sim \left(1 - \frac{\lambda}{n} \left(1 - \int \xi(s)\sigma(ds)\right)\right)^n \to G_{s_0}[\xi], \quad \text{as } n \to \infty, \end{split}$$

where

$$G_{s_0}[\xi] = \exp\left(-\lambda\left(\int 1 - \xi(s)\,\sigma(ds)\right)\right).$$

So, $S_0^{(n)} \Rightarrow S_0$, where S_0 contains a *Poi*(λ) number of points distributed on [0, 1] independently according to σ .

So, $S_0^{(n)} \Rightarrow S_0$, where S_0 contains a *Poi*(λ) number of points distributed on [0, 1] independently according to σ .

That is, in the limiting initial patch configuration, there is a $Poi(\lambda)$ number of occupied patches, and the survival probabilities are distributed independently according to σ .

Example - probability of total extinction

In the example, where the limiting (*n* large) initial patch configuration had a *Poi*(λ) number of occupied patches, and survival probabilities were distributed independently according to σ , the "limiting metapopulation" will eventually go extinct with probability 1 if

$$c'(0)\int \frac{s}{1-s}\sigma(ds) \le 1.$$

Otherwise, it will go extinct with probability

$$\exp\left(-\lambda\int \frac{1-s}{1-\psi s}\,\sigma(ds)\right).$$

Example - probability of total extinction

In the case where σ is the beta distribution with parameters α and β (both > 0), that is

$$\sigma(ds) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} s^{\alpha - 1} (1 - s)^{\beta - 1} ds, \qquad s \in [0, 1],$$

we have that

$$\int \frac{s}{1-s} \sigma(ds) = \begin{cases} \frac{\alpha}{\beta-1} & \text{if } \beta > 1\\ \infty & \text{if } \beta \le 1. \end{cases}$$

Example - probability of total extinction

So, the "limiting metapopulation" (*n* large) will eventually go extinct with probability 1 if $\beta \ge 1 + \alpha c'(0)$. Otherwise, it will go extinct with probability

$$\exp\left(-\lambda\int \frac{1-s}{1-\psi s}\,\sigma(ds)\right),$$

where ψ solves (uniquely)

$$\psi = \exp\left(-c'(0)\int \frac{(1-\psi)s}{1-\psi s}\,\sigma(ds)\right).$$