The limiting behaviour of a patch occupancy model

Phil Pollett

Department of Mathematics
The University of Queensland
http://www.maths.uq.edu.au/~pkp

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Collaborator

Ross McVinish
 Department of Mathematics University of Queensland

McVinish, R. and Pollett, P.K. (2010) Limits of large metapopulations with patch dependent extinction probabilities. Adv. Appl. Probab. 42, 1172-1186.

McVinish, R. and Pollett, P.K. (2011) The limiting behaviour of a mainland-island metapopulation. J. Math. Biol. To appear.

McVinish, R. and Pollett, P.K. (2013) Interaction between habitat quality and an Allee-like effect in metapopulations. Ecological Modelling. To appear.

McVinish, R. and Pollett, P.K. (2013) The limiting behaviour of a stochastic patch occupancy model. J. Math. Biol. Under revision.

McVinish, R. and Pollett, P.K. The limiting behaviour of Hanski's incidence function metapopulation model. Submitted.

Metapopulations

Metapopulations

Metapopulations

$$
\because \because
$$

Mainland-island configuration

SPOM

A Stochastic Patch Occupancy Model (SPOM)

SPOM

A Stochastic Patch Occupancy Model (SPOM)
Suppose that there are n patches.
Let $X_{t}^{(n)}=\left(X_{1, t}^{(n)}, \ldots, X_{n, t}^{(n)}\right)$, where $X_{i, t}^{(n)}$ is a binary variable indicating whether or not patch i is occupied.

SPOM

A Stochastic Patch Occupancy Model (SPOM)
Suppose that there are n patches.
Let $X_{t}^{(n)}=\left(X_{1, t}^{(n)}, \ldots, X_{n, t}^{(n)}\right)$, where $X_{i, t}^{(n)}$ is a binary variable indicating whether or not patch i is occupied.

For each $n,\left(X_{t}^{(n)}, t=0,1, \ldots\right)$ is assumed to be a Markov chain.

SPOM

A Stochastic Patch Occupancy Model (SPOM)
Suppose that there are n patches.
Let $X_{t}^{(n)}=\left(X_{1, t}^{(n)}, \ldots, X_{n, t}^{(n)}\right)$, where $X_{i, t}^{(n)}$ is a binary variable indicating whether or not patch i is occupied.

For each $n,\left(X_{t}^{(n)}, t=0,1, \ldots\right)$ is assumed to be a Markov chain.

Colonization and extinction happen in distinct, successive phases.

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases.

We will we assume that the population is observed after successive extinction phases (CE Model).

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases, as independent trials.

Colonization: unoccupied patches become occupied independently with probability $c\left(n^{-1} \sum_{i=1}^{n} X_{i, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ is continuous, non-decreasing and concave.

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases, as independent trials.

Colonization: unoccupied patches become occupied independently with probability $c\left(n^{-1} \sum_{i=1}^{n} X_{i, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ is continuous, non-decreasing and concave.

Extinction: occupied patch i remains occupied independently with probability s_{i} (fixed or random).

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases, as independent trials.

Colonization: unoccupied patches become occupied independently with probability $c\left(n^{-1} \sum_{i=1}^{n} X_{i, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ is continuous, non-decreasing and concave.

Extinction: occupied patch i remains occupied independently with probability s_{i} (fixed or random).
[In our most recent work, we allow the patch colonization probability $c(\cdot)$ to depend on the positions of all patches and their areas.]

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases, as independent trials.

Colonization: unoccupied patches become occupied independently with probability $c\left(n^{-1} \sum_{i=1}^{n} X_{i, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ is continuous, non-decreasing and concave.

Extinction: occupied patch i remains occupied independently with probability s_{i} (fixed or random).

SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right)
$$

SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right)
$$

SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right)
$$

SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right)
$$

SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right)
$$

SPOM

$$
\begin{aligned}
& n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x \\
& 000010110101000011101010001000
\end{aligned}
$$

$$
c(x)=c\left(\frac{11}{30}\right)=0.7 \times 0.3 \dot{6}=0.25 \dot{6}
$$

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

000010110101000011101010001000
C 100011110101000011111110001010

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

$$
\begin{aligned}
& 000010110001000011101010001000 \\
& \text { C } 100011110101000011111110001010
\end{aligned}
$$

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

\section*{000010110001000011101010001000
 C 100011110101000011111110001010
 | 0.6 | |
| :---: | :---: |
| | |

[Survival probabilities listed for occupied patches only]

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

$$
000010110101000011101010001000
$$

$$
\text { C } 100011110101000011111110001010
$$

$$
\text { E } 000010010101000010111100000010
$$

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

000010110101000011101010001000
C 100011110101000011111110001010 E 000010010101000010111100000010
$c(x)=c\left(\frac{10}{30}\right)=0.7 \times 0 . \dot{3}=0.2 \dot{3}$

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

$$
000010110101000011101010001000
$$

C 100011110101000011111110001010
E 000010010101000010111100000010
C 001010011101001011111100000010

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

$$
000010110101000011101010001000
$$

C 100011110101000011111110001010
E 000010010101000010111100000010
C 001010011101001011111100000010

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

000010110101000011101010001000

C 100011110101000011111110001010
E 000010010101000010111100000010
C 001010011101001011111100000010
E 000010010101000001000100000010

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

000010110101000011101010001000

C 100011110101000011111110001010
E 000010010101000010111100000010
C 001010011101001011111100000010
E 000010010101000001000100000010

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

000010110101000011101010001000
C 100011110101000011111110001010
E000010010101000010111100000010
C001010011101001011111100000010
E000010010101000001000100000010

C000010000000000010000000000000
E000000000000000000000000000000

SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right)
$$

SPOM - Homogeneous case

In the homogeneous case, where $s_{i}=s$ (non-random) is the same for each i, the number $N_{t}^{(n)}$ of occupied patches at time t is Markovian.

It has the following Chain Binomial structure:

$$
N_{t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(N_{t}^{(n)}+\operatorname{Bin}\left(n-N_{t}^{(n)}, c\left(\frac{1}{n} N_{t}^{(n)}\right)\right), s\right)
$$

A deterministic limit

Letting the initial number $N_{0}^{(n)}$ of occupied patches grow at the same rate as $n \ldots$
Theorem [BP] If $N_{0}^{(n)} / n \xrightarrow{p} x_{0}$ (a constant), then

$$
N_{t}^{(n)} / n \xrightarrow{p} x_{t}, \quad \text { for all } t \geq 1,
$$

with $\left(x_{t}\right)$ determined by $x_{t+1}=f\left(x_{t}\right)$, where

$$
f(x)=s(x+(1-x) c(x)) .
$$

[BP] Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time metapopulation models. Probability Surveys 7, 53-83.

Stability

$x_{t+1}=f\left(x_{t}\right)$, where $f(x)=s(x+(1-x) c(x))$.
Stationarity: $c(0)>0$. There is a unique fixed point $x^{*} \in[0,1]$. It satisfies $x^{*} \in(0,1)$ and is stable.
Evanescence: $c(0)=0$ and $1+c^{\prime}(0) \leq 1 / s$. Now 0 is the unique fixed point in $[0,1]$. It is stable.

Quasi stationarity: $c(0)=0$ and $1+c^{\prime}(0)>1 / s$. There are two fixed points in $[0,1]: 0$ (unstable) and $x^{*} \in(0,1)$ (stable).
[Notice that $c(0)=0$ implies that $c^{\prime}(0)>0$.]

Stability

$x_{t+1}=f\left(x_{t}\right)$, where $f(x)=s(x+(1-x) c(x))$.
Stationarity: $c(0)>0$. There is a unique fixed point $x^{*} \in[0,1]$. It satisfies $x^{*} \in(0,1)$ and is stable.
Evanescence: $c(0)=0$ and $1+c^{\prime}(0) \leq 1 / s$. Now 0 is the unique fixed point in $[0,1]$. It is stable.

Quasi stationarity: $c(0)=0$ and $1+c^{\prime}(0)>1 / s$. There are two fixed points in $[0,1]: 0$ (unstable) and $x^{*} \in(0,1)$ (stable).
[Notice that $c(0)=0$ implies that $\left.c^{\prime}(0)>0.\right]$

CE Model - Evanescence

CE Model - Quasi stationarity

CE Model simulation $(n=100, s=0.8, c(x)=c x$ with $c=0.7)$

SPOM - general case

Returning to the general case, where patch survival probabilities $\left(s_{i}\right)$ are random and patch dependent, and we keep track of which patches are occupied ...

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right) .
$$

SPOM - general case

Returning to the general case, where patch survival probabilities $\left(s_{i}\right)$ are random and patch dependent, and we keep track of which patches are occupied ...

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right) .
$$

Notice that

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}, s_{i}\right)+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, s_{i} c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right) .
$$

Our approach - Point Processes!

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.

Our approach - Point Processes!

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.
Define sequences $\left(\sigma_{n}\right)$ and ($\mu_{n, t}$) of random measures by

$$
\begin{gathered}
\sigma_{n}(B)=\#\left\{s_{i} \in B\right\} / n, \quad B \in \mathcal{B}([0,1]), \\
\mu_{n, t}(B)=\#\left\{s_{i} \in B: X_{i, t}^{(n)}=1\right\} / n, \quad B \in \mathcal{B}([0,1]) .
\end{gathered}
$$

Our approach - Point Processes!

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.
Define sequences $\left(\sigma_{n}\right)$ and ($\mu_{n, t}$) of random measures by

$$
\begin{gathered}
\sigma_{n}(B)=\#\left\{s_{i} \in B\right\} / n, \quad B \in \mathcal{B}([0,1]), \\
\mu_{n, t}(B)=\#\left\{s_{i} \in B: X_{i, t}^{(n)}=1\right\} / n, \quad B \in \mathcal{B}([0,1]) .
\end{gathered}
$$

We are going to suppose that $\sigma_{n} \xrightarrow{d} \sigma$ for some non-random (probability) measure σ.

Our approach - Point Processes!

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.
Define sequences $\left(\sigma_{n}\right)$ and ($\mu_{n, t}$) of random measures by

$$
\begin{gathered}
\sigma_{n}(B)=\#\left\{s_{i} \in B\right\} / n, \quad B \in \mathcal{B}([0,1]), \\
\mu_{n, t}(B)=\#\left\{s_{i} \in B: X_{i, t}^{(n)}=1\right\} / n, \quad B \in \mathcal{B}([0,1]) .
\end{gathered}
$$

We are going to suppose that $\sigma_{n} \xrightarrow{d} \sigma$ for some non-random (probability) measure σ.
Think of σ as being the distribution of survival probabilities. In the earlier simulation σ was a $\operatorname{Beta}(25.2,19.8)$ distribution.

Our approach - Point Processes!

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.
Define sequences $\left(\sigma_{n}\right)$ and ($\mu_{n, t}$) of random measures by

$$
\begin{gathered}
\sigma_{n}(B)=\#\left\{s_{i} \in B\right\} / n, \quad B \in \mathcal{B}([0,1]), \\
\mu_{n, t}(B)=\#\left\{s_{i} \in B: X_{i, t}^{(n)}=1\right\} / n, \quad B \in \mathcal{B}([0,1]) .
\end{gathered}
$$

We are going to suppose that $\sigma_{n} \xrightarrow{d} \sigma$ for some non-random (probability) measure σ.
Think of σ as being the distribution of survival probabilities. In the earlier simulation σ was a $\operatorname{Beta}(25.2,19.8)$ distribution.

Our approach - Point Processes!

Equivalently, we may define $\left(\sigma_{n}\right)$ and $\left(\mu_{n, t}\right)$ by

$$
\begin{gathered}
\int h(s) \sigma_{n}(d s)=\frac{1}{n} \sum_{i=1}^{n} h\left(s_{i}\right) \\
\int h(s) \mu_{n, t}(d s)=\frac{1}{n} \sum_{i=1}^{n} X_{i, t}^{(n)} h\left(s_{i}\right),
\end{gathered}
$$

for h in $C^{+}([0,1])$, the class of continuous functions that map $[0,1]$ to $[0, \infty)$.

Our approach - Point Processes!

Equivalently, we may define $\left(\sigma_{n}\right)$ and $\left(\mu_{n, t}\right)$ by

$$
\begin{gathered}
\int h(s) \sigma_{n}(d s)=\frac{1}{n} \sum_{i=1}^{n} h\left(s_{i}\right) \\
\int h(s) \mu_{n, t}(d s)=\frac{1}{n} \sum_{i=1}^{n} X_{i, t}^{(n)} h\left(s_{i}\right),
\end{gathered}
$$

for h in $C^{+}([0,1])$, the class of continuous functions that map $[0,1]$ to $[0, \infty)$. For example ($h \equiv 1$),

$$
\int \mu_{n, t}(d s)=\frac{1}{n} \sum_{i=1}^{n} X_{i, t}^{(n)} \quad \text { (proportion occupied). }
$$

A measure-valued difference equation

Theorem Suppose that $\sigma_{n} \xrightarrow{d} \sigma$ and $\mu_{n, 0} \xrightarrow{d} \mu_{0}$ for some non-random measures σ and μ_{0}. Then, $\mu_{n, t} \xrightarrow{d} \mu_{t}$ for all $t=1,2, \ldots$, where μ_{t} is defined by the following recursion: for $h \in C^{+}([0,1])$,

$$
\int h(s) \mu_{t+1}(d s)=\left(1-c_{t}\right) \int s h(s) \mu_{t}(d s)+c_{t} \int \operatorname{sh}(s) \sigma(d s)
$$

where $c_{t}=c\left(\mu_{t}([0,1])\right)=c\left(\int \mu_{t}(d s)\right)$.

Moments

Set $h(s)=s^{k}$. Then, our recursion is

$$
\int s^{k} \mu_{t+1}(d s)=\left(1-c_{t}\right) \int s^{k+1} \mu_{t}(d s)+c_{t} \int s^{k+1} \sigma(d s),
$$

where $c_{t}=c\left(\mu_{t}([0,1])\right)=c\left(\int \mu_{t}(d s)\right)$.

Moments

Set $h(s)=s^{k}$. Then, our recursion is

$$
\int s^{k} \mu_{t+1}(d s)=\left(1-c_{t}\right) \int s^{k+1} \mu_{t}(d s)+c_{t} \int s^{k+1} \sigma(d s),
$$

where $c_{t}=c\left(\mu_{t}([0,1])\right)=c\left(\int \mu_{t}(d s)\right)$. So, with moments defined by $\bar{\sigma}^{(k)}:=\int s^{k} \sigma(d s)$ and $\bar{\mu}_{t}^{(k)}:=\int s^{k} \mu_{t}(d s)$,

$$
\bar{\mu}_{t+1}^{(k)}=\left(1-\bar{\mu}_{t}^{(0)}\right) \bar{\mu}_{t}^{(k+1)}+\bar{\mu}_{t}^{(0)} \bar{\sigma}^{(k+1)},
$$

and the theorem allows to conclude that

$$
\left.\frac{1}{n} \sum_{i=1}^{n} s_{i}^{k} X_{i, t}^{(n)}\left(=\int s^{k} \mu_{n, t}(d s)\right)\right) \rightarrow \bar{\mu}_{t}^{(k)},
$$

for example, $\frac{1}{n} \sum_{i=1}^{n} X_{i, t}^{(n)} \rightarrow \bar{\mu}_{t}^{(0)}$.

Equilibria?

Our recursion is

$$
\int h(s) \mu_{t+1}(d s)=\left(1-c_{t}\right) \int \operatorname{sh}(s) \mu_{t}(d s)+c_{t} \int \operatorname{sh}(s) \sigma(d s) .
$$

Equilibria?

Our recursion is

$$
\int h(s) \mu_{t+1}(d s)=\left(1-c_{t}\right) \int \operatorname{sh}(s) \mu_{t}(d s)+c_{t} \int \operatorname{sh}(s) \sigma(d s) .
$$

Let \mathcal{M} be the set of measures that are absolutely continuous with respect to σ and whose Radon-Nikodym derivative is bounded by $1, \sigma-$ a.e.

We shall be interested in the behaviour of solutions to our recursion starting with $\mu_{0} \in \mathcal{M}$.

Equilibria?

"Differentiating" with respect to σ, we see that our recursion can be written

$$
\frac{\partial \mu_{t+1}}{\partial \sigma}=s \frac{\partial \mu_{t}}{\partial \sigma}+s c_{t}\left(1-\frac{\partial \mu_{t}}{\partial \sigma}\right) .
$$

Equilibria?

"Differentiating" with respect to σ, we see that our recursion can be written

$$
\frac{\partial \mu_{t+1}}{\partial \sigma}=s \frac{\partial \mu_{t}}{\partial \sigma}+s c_{t}\left(1-\frac{\partial \mu_{t}}{\partial \sigma}\right) .
$$

It will be clear that $\mu_{0} \in \mathcal{M}$ implies that $\mu_{t} \in \mathcal{M}$ for all t.

Equilibria?

"Differentiating" with respect to σ, we see that our recursion can be written

$$
\frac{\partial \mu_{t+1}}{\partial \sigma}=s \frac{\partial \mu_{t}}{\partial \sigma}+s c_{t}\left(1-\frac{\partial \mu_{t}}{\partial \sigma}\right) .
$$

It will be clear that $\mu_{0} \in \mathcal{M}$ implies that $\mu_{t} \in \mathcal{M}$ for all t.
Furthermore, a measure $\mu_{\infty} \in \mathcal{M}$ will be an equilibrium point of our recursion if it satisfies

$$
\frac{\partial \mu_{\infty}}{\partial \sigma}=s \frac{\partial \mu_{\infty}}{\partial \sigma}+s c_{\infty}\left(1-\frac{\partial \mu_{\infty}}{\partial \sigma}\right),
$$

where $c_{\infty}=c\left(\mu_{\infty}([0,1])\right)$.

Equilibria?

Theorem Suppose that $c(0)=0$ and $c^{\prime}(0)<\infty$. Let ψ^{*} be a solution to the equation

$$
\begin{equation*}
\psi=R_{\sigma}(\psi):=\int \frac{s c(\psi)}{1-s+s c(\psi)} \sigma(d s) . \tag{1}
\end{equation*}
$$

The fixed points of our recursion are given by

$$
\mu_{\infty}(d s)=\frac{s c\left(\psi^{*}\right)}{1-s+s c\left(\psi^{*}\right)} \sigma(d s) .
$$

Equation (1) has the unique solution $\psi^{*}=0$ if and only if

$$
c^{\prime}(0) \int \frac{s}{1-s} \sigma(d s) \leq 1 .
$$

Otherwise, there are two solutions, one of which is $\psi^{*}=0$.

Recovery of a near-extinct population

Return to our patch occupancy model ...

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}, s_{i}\right)+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, s_{i} c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right) .
$$

Recovery of a near-extinct population

Return to our patch occupancy model ...

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}, s_{i}\right)+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, s_{i} c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right) .
$$

Assume now that $c(0)=0$ (which implies $\left.c^{\prime}(0)>0\right)$.

Recovery of a near-extinct population

Return to our patch occupancy model ...

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}, s_{i}\right)+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, s_{i} c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right) .
$$

Assume now that $c(0)=0$ (which implies $\left.c^{\prime}(0)>0\right)$.
Fix the initial configuration $X_{0}^{(n)}\left(=X_{0}\right)$, and let $n \rightarrow \infty$.
The aim is to determine conditions under which a (large) metapopulation that is close to extinction may recover with positive probability.

Recovery of a near-extinct population

Fix the initial configuration $X_{0}^{(n)}\left(=X_{0}\right)$, and let $n \rightarrow \infty$.
The aim is to determine conditions under which a (large) metapopulation that is close to extinction may recover with positive probability.

Recovery of a near-extinct population

Fix the initial configuration $X_{0}^{(n)}\left(=X_{0}\right)$, and let $n \rightarrow \infty$.
The aim is to determine conditions under which a (large) metapopulation that is close to extinction may recover with positive probability.

First notice that if c has a continuous second derivative near 0, then, for fixed $m, \operatorname{Bin}(n-m, c(m / n)) \xrightarrow{d} \operatorname{Poi}(\lambda m)$ as $n \rightarrow \infty$, where $\lambda=c^{\prime}(0)$. So, if every patch had the same survival probability, then we might expect the number of occupied patches ($N_{t}^{(n)}, t=0,1, \ldots$) to converge to a Galton-Watson process (see [BP] for details).

Recovery of a near-extinct population

As before, treat the collection of patch survival probabilities of occupied patches at time t as a point process on $[0,1]$, but now define $\left(S_{t}^{(n)}, t \geq 0\right)$ by $S_{t}^{(n)}=\left\{s_{i}: X_{i, t}^{(n)}=1\right\}$.

Recovery of a near-extinct population

As before, treat the collection of patch survival probabilities of occupied patches at time t as a point process on $[0,1]$, but now define $\left(S_{t}^{(n)}, t \geq 0\right)$ by $S_{t}^{(n)}=\left\{s_{i}: X_{i, t}^{(n)}=1\right\}$.

Extinction of the metapopulation by time t corresponds to the event that $S_{t}^{(n)}$ is the empty set.

Recovery of a near-extinct population

As before, treat the collection of patch survival probabilities of occupied patches at time t as a point process on $[0,1]$, but now define $\left(S_{t}^{(n)}, t \geq 0\right)$ by $S_{t}^{(n)}=\left\{s_{i}: X_{i, t}^{(n)}=1\right\}$.

Extinction of the metapopulation by time t corresponds to the event that $S_{t}^{(n)}$ is the empty set.

The aim is to show that there is a point process S_{t} such that $S_{t}^{(n)} \Rightarrow S_{t}$ as $n \rightarrow \infty$ and then to evaluate $\lim _{t \rightarrow \infty} \operatorname{Pr}\left(S_{t}=\varnothing\right)$.

Recovery of a near-extinct population

As before, treat the collection of patch survival probabilities of occupied patches at time t as a point process on $[0,1]$, but now define $\left(S_{t}^{(n)}, t \geq 0\right)$ by $S_{t}^{(n)}=\left\{s_{i}: X_{i, t}^{(n)}=1\right\}$.

Extinction of the metapopulation by time t corresponds to the event that $S_{t}^{(n)}$ is the empty set.

The aim is to show that there is a point process S_{t} such that $S_{t}^{(n)} \Rightarrow S_{t}$ as $n \rightarrow \infty$ and then to evaluate $\lim _{t \rightarrow \infty} \operatorname{Pr}\left(S_{t}=\varnothing\right)$.

We now work with the sequence $\left(\mu_{n, t}\right)$ of random measures defined by $\mu_{n, t}(B)=\#\left\{s_{i} \in B: X_{i, t}^{(n)}=1\right\}, B \in \mathcal{B}([0,1])$.

Tools*

Define the probability generating functional (p.g.fl) of a point process S by

$$
G_{S}[\xi]=\mathbb{E}\left(\prod_{s \in S} \xi(s)\right),
$$

where $\xi:[0,1] \rightarrow[0,1]$ is some Borel function. It determines the point process uniquely. Convergence of $G_{s_{t}^{(n)}}$ to $G_{S_{t}}$ establishes that $S_{t}^{(n)} \Rightarrow S_{t}$. Furthermore,

$$
\operatorname{Pr}\left(S_{t}=\varnothing\right)=\lim _{b \downarrow 0} G_{s_{t}}\left[1_{b}(x)\right] .
$$

*Daley, D. J. and Vere-Jones, D. (2008) An Introduction to the Theory of Point Processes.
Volume II: General Theory and Structure, 2nd Edn., Springer, New York.

Convergence

Theorem Suppose that $S_{0}^{(n)}$ converges weakly to a point process S_{0} as $n \rightarrow \infty$ (its p.g.fl being $\left.G_{S_{0}}\right)^{*}$.

Then, $S_{t}^{(n)}$ converges weakly to a point process S_{t} whose p.g.fl satisfies the recursion $G_{S_{t+1}}[\xi]=G_{S_{t}}[h[\xi]](t \geq 0)$, where $h[\xi]$ is given by

$$
h[\xi](s)=(1-s(1-\xi(s))) \exp \left(-c^{\prime}(0) \int y(1-\xi(y)) \sigma(d y)\right) .
$$

*More general than (as earlier) fixing the initial configuration and letting $n \rightarrow \infty$.

Interpretation of limit

The limit point process $\left(S_{t}, t=0,1, \ldots\right)$ is a multiplicative population chain*, where each member of the population at time t produces offpring independently of the other members of the population. The offspring from the member of the population "located" at s is generated according to an inhomogeneous Poisson process with intensity measure $c^{\prime}(0) s \sigma(\cdot)$, and the original member of the population survives to the next generation with probability s.
*Moyal, J.E. (1962). Multiplicative population chains. Proc. R. Soc. Lond. A, 266, 518-526.

Probability of total extinction

Theorem S_{t} eventually becomes empty with probability 1 ($S_{t}=\varnothing$ for some $t>0$) if

$$
c^{\prime}(0) \int \frac{s}{1-s} \sigma(d s) \leq 1
$$

Otherwise, it eventually becomes empty with probability $G_{S_{0}}[g]$, where $g(s)=\psi(1-s) /(1-\psi s)$, with $\psi(<1)$ being the unique solution to

$$
\psi=\exp \left(-c^{\prime}(0) \int \frac{(1-\psi) s}{1-\psi s} \sigma(d s)\right),
$$

that is, with probability

$$
\mathbb{E}\left(\prod_{s \in S_{0}} \frac{\psi(1-s)}{1-\psi s}\right) .
$$

Example

Suppose that $\left(s_{i}\right)$ are chosen independently according to σ and patches are initially occupied independently with probability p_{n}, where $n p_{n} \rightarrow \lambda(>0)$.

Example

Suppose that $\left(s_{i}\right)$ are chosen independently according to σ and patches are initially occupied independently with probability p_{n}, where $n p_{n} \rightarrow \lambda(>0)$. Then,

$$
\begin{gathered}
G_{s_{0}^{(n)}}[\xi]=\mathbb{E}\left(\prod_{s \in S_{0}^{(n)}} \xi(s)\right)=\mathbb{E}\left(\mathbb{E}\left(\prod_{i=1}^{n} \xi\left(s_{i}\right) \mid X_{0}^{(n)}\right)\right) \\
=\mathbb{E}\left(\prod_{i=1}^{n}\left(X_{i, 0}^{(n)} \xi\left(s_{i}\right)+1-X_{i, 0}^{(n)}\right)\right)=\left(p_{n} \int \xi(s) \sigma(d s)+1-p_{n}\right)^{n}
\end{gathered}
$$

Example

Suppose that $\left(s_{i}\right)$ are chosen independently according to σ and patches are initially occupied independently with probability p_{n}, where $n p_{n} \rightarrow \lambda(>0)$. Then,

$$
\begin{gathered}
G_{S_{0}^{(n)}}[\xi]=\mathbb{E}\left(\prod_{s \in S_{0}^{(n)}} \xi(s)\right)=\mathbb{E}\left(\mathbb{E}\left(\prod_{i=1}^{n} \xi\left(s_{i}\right) \mid X_{0}^{(n)}\right)\right) \\
=\mathbb{E}\left(\prod_{i=1}^{n}\left(X_{i, 0}^{(n)} \xi\left(s_{i}\right)+1-X_{i, 0}^{(n)}\right)\right)=\left(p_{n} \int \xi(s) \sigma(d s)+1-p_{n}\right)^{n} \\
\sim\left(1-\frac{\lambda}{n}\left(1-\int \xi(s) \sigma(d s)\right)\right)^{n} \rightarrow G_{S_{0}}[\xi], \quad \text { as } n \rightarrow \infty,
\end{gathered}
$$

where

$$
G_{s_{0}}[\xi]=\exp \left(-\lambda\left(\int 1-\xi(s) \sigma(d s)\right)\right) .
$$

Example

So, $S_{0}^{(n)} \Rightarrow S_{0}$, where S_{0} contains a Poi((λ) number of points distributed on $[0,1]$ independently according to σ.

Example

So, $S_{0}^{(n)} \Rightarrow S_{0}$, where S_{0} contains a Poi (λ) number of points distributed on $[0,1]$ independently according to σ.

That is, in the limiting initial patch configuration, there is a Poi(λ) number of occupied patches, and the survival probabilities are distributed independently according to σ.

Example - probability of total extinction

In the example, where the limiting (n large) initial patch configuration had a $\operatorname{Poi}(\lambda)$ number of occupied patches, and survival probabilities were distributed independently according to σ, the "limiting metapopulation" will eventually go extinct with probability 1 if

$$
c^{\prime}(0) \int \frac{s}{1-s} \sigma(d s) \leq 1 .
$$

Otherwise, it will go extinct with probability

$$
\exp \left(-\lambda \int \frac{1-s}{1-\psi s} \sigma(d s)\right) .
$$

Example - probability of total extinction

In the case where σ is the beta distribution with parameters α and β (both >0), that is

$$
\sigma(d s)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} s^{\alpha-1}(1-s)^{\beta-1} d s, \quad s \in[0,1],
$$

we have that

$$
\int \frac{s}{1-s} \sigma(d s)= \begin{cases}\frac{\alpha}{\beta-1} & \text { if } \beta>1 \\ \infty & \text { if } \beta \leq 1 .\end{cases}
$$

Example - probability of total extinction

So, the "limiting metapopulation" (n large) will eventually go extinct with probability 1 if $\beta \geq 1+\alpha c^{\prime}(0)$. Otherwise, it will go extinct with probability

$$
\exp \left(-\lambda \int \frac{1-s}{1-\psi s} \sigma(d s)\right),
$$

where ψ solves (uniquely)

$$
\psi=\exp \left(-c^{\prime}(0) \int \frac{(1-\psi) s}{1-\psi s} \sigma(d s)\right) .
$$

