Large Population Networks with Patch Dependent Extinction Probabilities

Phil Pollett

Department of Mathematics
The University of Queensland
http://www.maths.uq.edu.au/~pkp

ACEMS

australian research council centre of excellence for MATHEMATICAL AND STATISTICAL FRONTIERS

Collaborators

Fionnuala Buckley Department of Mathematics University of Queensland

Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time metapopulation models. Probability Surveys 7, 53-83.

Buckley, F.M. and Pollett, P.K. (2010) Analytical methods for a stochastic mainland-island metapopulation model. Ecological Modelling 221, 2526-2530.

Collaborators

Fionnuala Buckley
 Department of Mathematics
 University of Queensland

Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time metapopulation models. Probability Surveys 7, 53-83.

Buckley, F.M. and Pollett, P.K. (2010) Analytical methods for a stochastic mainland-island metapopulation model. Ecological Modelling 221, 2526-2530.

Collaborators

Ross McVinish
 Department of Mathematics University of Queensland

McVinish, R. and Pollett, P.K. (2010) Limits of large metapopulations with patch dependent extinction probabilities. Adv. Appl. Probab. 42, 1172-1186.

McVinish, R. and Pollett, P.K. (2011) The limiting behaviour of a mainland-island metapopulation. J. Math. Biol. 67, 693-716.

McVinish, R. and Pollett, P.K. (2012) A central limit theorem for a discrete-time SIS model with individual variation. J. Appl. Probab. 49, 521-530.

McVinish, R. and Pollett, P.K. (2013) The limiting behaviour of a stochastic patch occupancy model. J. Math. Biol. 67, 693-716.

McVinish, R. and Pollett, P.K. The limiting behaviour of Hanski's incidence function metapopulation model. J. Appl. Probab. 51. In press (accepted 29/06/2013).

Collaborators

Ross McVinish
 Department of Mathematics University of Queensland

McVinish, R. and Pollett, P.K. (2010) Limits of large metapopulations with patch dependent extinction probabilities. Adv. Appl. Probab. 42, 1172-1186.

McVinish, R. and Pollett, P.K. (2011) The limiting behaviour of a mainland-island metapopulation. J. Math. Biol. 67, 693-716.

McVinish, R. and Pollett, PK. (2012) A central limit theorem for a discrete-time SIS model with individual variation. J. Appl. Probab. 49, 521-530.

McVinish, R. and Pollett, P.K. (2013) The limiting behaviour of a stochastic patch occupancy model. J. Math. Biol. 67, 693-716.

[^0]
Metapopulations

Metapopulations

Metapopulations

$$
\because \because
$$

SPOM

A stochastic patch occupancy model (SPOM)

SPOM

A stochastic patch occupancy model (SPOM)
Suppose that there are n patches.
Let $X_{t}^{(n)}=\left(X_{1, t}^{(n)}, \ldots, X_{n, t}^{(n)}\right)$, where $X_{i, t}^{(n)}$ is a binary variable indicating whether or not patch i is occupied at time t.

SPOM

A stochastic patch occupancy model (SPOM)
Suppose that there are n patches.
Let $X_{t}^{(n)}=\left(X_{1, t}^{(n)}, \ldots, X_{n, t}^{(n)}\right)$, where $X_{i, t}^{(n)}$ is a binary variable indicating whether or not patch i is occupied at time t.
$\left(X_{t}^{(n)}, t=0,1, \ldots\right)$ is assumed to be a Markov chain.

SPOM

A stochastic patch occupancy model (SPOM)
Suppose that there are n patches.
Let $X_{t}^{(n)}=\left(X_{1, t}^{(n)}, \ldots, X_{n, t}^{(n)}\right)$, where $X_{i, t}^{(n)}$ is a binary variable indicating whether or not patch i is occupied at time t.
$\left(X_{t}^{(n)}, t=0,1, \ldots\right)$ is assumed to be a Markov chain.
Colonization and extinction happen in distinct, successive phases.

SPOM - Phase structure

For many species the propensity for colonization and local extinction is markedly different in different phases of their life cycle. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and the California linderiella (Linderiella occidentalis), both listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot butterfly (Euphydryas editha bayensis), now extinct

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases.

We will we assume that the population is observed after successive extinction phases (CE Model).

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases, as independent trials.

Colonization: unoccupied patches become occupied independently with probability $c\left(n^{-1} \sum_{i=1}^{n} X_{i, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ is continuous, non-decreasing and concave.

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases, as independent trials.

Colonization: unoccupied patches become occupied independently with probability $c\left(n^{-1} \sum_{i=1}^{n} X_{i, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ is continuous, non-decreasing and concave.

Extinction: occupied patch i remains occupied independently with probability s_{i} (fixed or random).

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases, as independent trials.

Colonization: unoccupied patches become occupied independently with probability $c\left(n^{-1} \sum_{i=1}^{n} X_{i, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ is continuous, non-decreasing and concave.

Extinction: occupied patch i remains occupied independently with probability s_{i} (fixed or random).
[In our most recent work, we allow the patch colonization probability $c(\cdot)$ to depend on the relative positions of all patches and their areas.]

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases, as independent trials.

Colonization: unoccupied patches become occupied independently with probability $c\left(n^{-1} \sum_{i=1}^{n} X_{i, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ is continuous, non-decreasing and concave.

Extinction: occupied patch i remains occupied independently with probability s_{i} (fixed or random).

SPOM - example

$n=30$ patches

$$
000010110101000011101010001000
$$

(11 patches occupied)

SPOM - example

$$
n=30, c(x)=0.7 x
$$

$$
000010110101000011101010001000
$$

$$
c(x)=c\left(\frac{11}{30}\right)=0.7 \times 0.3 \dot{6}=0.25 \dot{6}
$$

SPOM - example

$$
n=30, c(x)=0.7 x
$$

000010110101000011101010001000
C 100011110101000011111110001010

SPOM - example

$$
n=30, c(x)=0.7 x
$$

$$
000010110001000011101010001000
$$

$$
\text { C } 100011110101000011111110001010
$$

SPOM - example

$$
n=30, c(x)=0.7 x \text { and } s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right)
$$

$$
\begin{aligned}
& 000010110001000011101010001000 \\
& \text { C } 100011110101000011111110001010
\end{aligned}
$$

[Survival probabilities listed for occupied patches only]

SPOM - example

$$
n=30, c(x)=0.7 x \text { and } s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right)
$$

$$
000010110101000011101010001000
$$

$$
\text { C } 100011110101000011111110001010
$$

$$
\text { E } 000010010101000010111100000010
$$

SPOM - example

$$
n=30, c(x)=0.7 x \text { and } s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right)
$$

$$
000010110101000011101010001000
$$

$$
\text { C } 100011110101000011111110001010
$$

$$
\text { E } 000010010101000010111100000010
$$

SPOM - example

$$
n=30, c(x)=0.7 x \text { and } s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right)
$$

$$
000010110101000011101010001000
$$

$$
\text { C } 100011110101000011111110001010
$$

$$
\text { E } 000010010101000010111100000010
$$

$$
c(x)=c\left(\frac{10}{30}\right)=0.7 \times 0 . \dot{3}=0.2 \dot{3}
$$

SPOM - example

$$
n=30, c(x)=0.7 x \text { and } s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right)
$$

$$
000010110101000011101010001000
$$

$$
\text { C } 100011110101000011111110001010
$$

$$
\text { E } 000010010101000010111100000010
$$

$$
\mathrm{C} 001010011101001011111100000010
$$

SPOM - example

$$
n=30, c(x)=0.7 x \text { and } s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right)
$$

$$
000010110101000011101010001000
$$

C1000111101010000111111110001010
E 000010010101000010111100000010
C 001010011101001011111100000010

SPOM - example

$$
n=30, c(x)=0.7 x \text { and } s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right)
$$

000010110101000011101010001000

C 100011110101000011111110001010
E 000010010101000010111100000010
C 001010011101001011111100000010
E 000010010101000001000100000010

SPOM - example

$$
n=30, c(x)=0.7 x \text { and } s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right)
$$

000010110101000011101010001000

C 100011110101000011111110001010
E 000010010101000010111100000010
C 001010011101001011111100000010
E 000010010101000001000100000010

SPOM - example

$$
n=30, c(x)=0.7 x \text { and } s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right)
$$

000010110101000011101010001000
C 100011110101000011111110001010
E 000010010101000010111100000010
C 001010011101001011111100000010
E 000010010101000001000100000010

C 000010000000000010000000000000
E 000000000000000000000000000000

SPOM

The evolution of the process can be summarized by

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right),
$$

a "Chain Bernoulli" structure.

SPOM

The evolution of the process can be summarized by

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right),
$$

a "Chain Bernoulli" structure.
In the homogeneous case, where $s_{i}=s$ is the same for each i, the number $N_{t}^{(n)}$ of occupied patches at time t is Markovian. It has the following Chain Binomial structure:

$$
N_{t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(N_{t}^{(n)}+\operatorname{Bin}\left(n-N_{t}^{(n)}, c\left(\frac{1}{n} N_{t}^{(n)}\right)\right), s\right) .
$$

A deterministic limit

Letting the initial number $N_{0}^{(n)}$ of occupied patches grow at the same rate as $n \ldots$
Theorem [BP] If $N_{0}^{(n)} / n \xrightarrow{p} x_{0}$ (a constant), then

$$
N_{t}^{(n)} / n \xrightarrow{p} x_{t}, \quad \text { for all } t \geq 1,
$$

with $\left(x_{t}\right)$ determined by $x_{t+1}=f\left(x_{t}\right)$, where

$$
f(x)=s(x+(1-x) c(x)) .
$$

[BP] Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time metapopulation models. Probability Surveys 7, 53-83.

CE Model - Evanescence

CE Model - Quasi stationarity

Stability

$x_{t+1}=f\left(x_{t}\right)$, where $f(x)=s(x+(1-x) c(x))$.
Stationarity: $c(0)>0$. There is a unique fixed point $x^{*} \in[0,1]$. It satisfies $x^{*} \in(0,1)$ and is stable.
Evanescence: $c(0)=0$ and $1+c^{\prime}(0) \leq 1 / s$. Now 0 is the unique fixed point in $[0,1]$. It is stable.

Quasi stationarity: $c(0)=0$ and $1+c^{\prime}(0)>1 / s$. There are two fixed points in $[0,1]: 0$ (unstable) and $x^{*} \in(0,1)$ (stable).
[Notice that $c(0)=0$ implies that $c^{\prime}(0)>0$.]

Stability

$x_{t+1}=f\left(x_{t}\right)$, where $f(x)=s(x+(1-x) c(x))$.
Stationarity: $c(0)>0$. There is a unique fixed point $x^{*} \in[0,1]$. It satisfies $x^{*} \in(0,1)$ and is stable.
Evanescence: $c(0)=0$ and $1+c^{\prime}(0) \leq 1 / s$. Now 0 is the unique fixed point in $[0,1]$. It is stable.

Quasi stationarity: $c(0)=0$ and $1+c^{\prime}(0)>1 / s$. There are two fixed points in $[0,1]: 0$ (unstable) and $x^{*} \in(0,1)$ (stable).
[Notice that $c(0)=0$ implies that $\left.c^{\prime}(0)>0.\right]$

CE Model - Evanescence

CE Model - Quasi stationarity

CE Model - Quasi stationarity

A Gaussian limit

Theorem [BP] Further suppose that $c(x)$ is twice continuously differentiable, and let

$$
Z_{t}^{(n)}=\sqrt{n}\left(N_{t}^{(n)} / n-x_{t}\right) .
$$

If $Z_{0}^{(n)} \xrightarrow{d} z_{0}$, then $Z_{\bullet}^{(n)}$ converges weakly to the Gaussian Markov chain Z. defined by

$$
Z_{t+1}=f^{\prime}\left(x_{t}\right) Z_{t}+E_{t} \quad\left(Z_{0}=z_{0}\right),
$$

with $\left(E_{t}\right)$ independent and $E_{t} \sim \mathrm{~N}\left(0, v\left(x_{t}\right)\right)$, where

$$
v(x)=s[(1-s) x+(1-x) c(x)(1-s c(x))] .
$$

CE Model - Quasi stationarity

CE Model - Gaussian approximation

CE Model - Quasi stationarity

CE Model - Gaussian approximation

SPOM - general case

Returning to the general case, where patch survival probabilities $\left(s_{i}\right)$ are random and patch dependent, and we keep track of which patches are occupied ...

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right) .
$$

Our approach - Point Processes

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.

Our approach - Point Processes

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.
Define sequences $\left(\sigma_{n}\right)$ and ($\mu_{n, t}$) of random measures by

$$
\begin{gathered}
\sigma_{n}(B)=\#\left\{s_{i} \in B\right\} / n, \quad B \in \mathcal{B}([0,1]), \\
\mu_{n, t}(B)=\#\left\{s_{i} \in B: X_{i, t}^{(n)}=1\right\} / n, \quad B \in \mathcal{B}([0,1]) .
\end{gathered}
$$

Our approach - Point Processes

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.
Define sequences $\left(\sigma_{n}\right)$ and ($\mu_{n, t}$) of random measures by

$$
\begin{gathered}
\sigma_{n}(B)=\#\left\{s_{i} \in B\right\} / n, \quad B \in \mathcal{B}([0,1]), \\
\mu_{n, t}(B)=\#\left\{s_{i} \in B: X_{i, t}^{(n)}=1\right\} / n, \quad B \in \mathcal{B}([0,1]) .
\end{gathered}
$$

We are going to suppose that $\sigma_{n} \xrightarrow{d} \sigma$ for some non-random (probability) measure σ.

Our approach - Point Processes

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.
Define sequences $\left(\sigma_{n}\right)$ and ($\mu_{n, t}$) of random measures by

$$
\begin{gathered}
\sigma_{n}(B)=\#\left\{s_{i} \in B\right\} / n, \quad B \in \mathcal{B}([0,1]), \\
\mu_{n, t}(B)=\#\left\{s_{i} \in B: X_{i, t}^{(n)}=1\right\} / n, \quad B \in \mathcal{B}([0,1]) .
\end{gathered}
$$

We are going to suppose that $\sigma_{n} \xrightarrow{d} \sigma$ for some non-random (probability) measure σ.
Think of σ as being the distribution of survival probabilities. In the earlier simulation σ was a $\operatorname{Beta}(25.2,19.8)$ distribution.

Our approach - Point Processes

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.
Define sequences $\left(\sigma_{n}\right)$ and ($\mu_{n, t}$) of random measures by

$$
\begin{gathered}
\sigma_{n}(B)=\#\left\{s_{i} \in B\right\} / n, \quad B \in \mathcal{B}([0,1]), \\
\mu_{n, t}(B)=\#\left\{s_{i} \in B: X_{i, t}^{(n)}=1\right\} / n, \quad B \in \mathcal{B}([0,1]) .
\end{gathered}
$$

We are going to suppose that $\sigma_{n} \xrightarrow{d} \sigma$ for some non-random (probability) measure σ.
Think of σ as being the distribution of survival probabilities. In the earlier simulation σ was a $\operatorname{Beta}(25.2,19.8)$ distribution.

Our approach - Point Processes

Equivalently, we may define $\left(\sigma_{n}\right)$ and $\left(\mu_{n, t}\right)$ by

$$
\begin{gathered}
\int h(s) \sigma_{n}(d s)=\frac{1}{n} \sum_{i=1}^{n} h\left(s_{i}\right) \\
\int h(s) \mu_{n, t}(d s)=\frac{1}{n} \sum_{i=1}^{n} X_{i, t}^{(n)} h\left(s_{i}\right),
\end{gathered}
$$

for h in $C^{+}([0,1])$, the class of continuous functions that map $[0,1]$ to $[0, \infty)$.

Our approach - Point Processes

Equivalently, we may define $\left(\sigma_{n}\right)$ and $\left(\mu_{n, t}\right)$ by

$$
\begin{gathered}
\int h(s) \sigma_{n}(d s)=\frac{1}{n} \sum_{i=1}^{n} h\left(s_{i}\right) \\
\int h(s) \mu_{n, t}(d s)=\frac{1}{n} \sum_{i=1}^{n} X_{i, t}^{(n)} h\left(s_{i}\right),
\end{gathered}
$$

for h in $C^{+}([0,1])$, the class of continuous functions that map $[0,1]$ to $[0, \infty)$. For example $(h \equiv 1)$,

$$
\left.\int \mu_{n, t}(d s)=\frac{1}{n} \sum_{i=1}^{n} X_{i, t}^{(n)} \quad \text { (proportion occupied }\right) .
$$

A measure-valued difference equation

Theorem [MP] Suppose that $\sigma_{n} \xrightarrow{d} \sigma$ and $\mu_{n, 0} \xrightarrow{d} \mu_{0}$ for some non-random measures σ and μ_{0}. Then, $\mu_{n, t} \xrightarrow{d} \mu_{t}$ for all $t=1,2, \ldots$, where μ_{t} is defined by the following recursion: for $h \in C^{+}([0,1])$,

$$
\int h(s) \mu_{t+1}(d s)=\left(1-c_{t}\right) \int s h(s) \mu_{t}(d s)+c_{t} \int s h(s) \sigma(d s)
$$

where $c_{t}=c\left(\mu_{t}([0,1])\right)=c\left(\int \mu_{t}(d s)\right)$.
[MP] McVinish, R. and Pollett, P.K. (2011) The limiting behaviour of a mainland-island metapopulation. J. Math. Biol. 67, 693-716.

Moments

Set $h(s)=s^{k}$. Then, our recursion is

$$
\int s^{k} \mu_{t+1}(d s)=\left(1-c_{t}\right) \int s^{k+1} \mu_{t}(d s)+c_{t} \int s^{k+1} \sigma(d s)
$$

where $c_{t}=c\left(\mu_{t}([0,1])\right)=c\left(\int \mu_{t}(d s)\right)$.

Moments

Set $h(s)=s^{k}$. Then, our recursion is

$$
\int s^{k} \mu_{t+1}(d s)=\left(1-c_{t}\right) \int s^{k+1} \mu_{t}(d s)+c_{t} \int s^{k+1} \sigma(d s),
$$

where $c_{t}=c\left(\mu_{t}([0,1])\right)=c\left(\int \mu_{t}(d s)\right)$. So, with moments defined by $\bar{\sigma}^{(k)}:=\int s^{k} \sigma(d s)$ and $\bar{\mu}_{t}^{(k)}:=\int s^{k} \mu_{t}(d s)$,

$$
\bar{\mu}_{t+1}^{(k)}=\left(1-\bar{\mu}_{t}^{(0)}\right) \bar{\mu}_{t}^{(k+1)}+\bar{\mu}_{t}^{(0)} \bar{\sigma}^{(k+1)},
$$

and the theorem allows to conclude that

$$
\left.\frac{1}{n} \sum_{i=1}^{n} s_{i}^{k} X_{i, t}^{(n)}\left(=\int s^{k} \mu_{n, t}(d s)\right)\right) \rightarrow \bar{\mu}_{t}^{(k)},
$$

for example, $\frac{1}{n} \sum_{i=1}^{n} X_{i, t}^{(n)} \rightarrow \bar{\mu}_{t}^{(0)}$.

A deterministic limit $\bar{\mu}_{t}^{(0)}$

A deterministic limit $\bar{\mu}_{0}^{(k)}$

A deterministic limit $\bar{\mu}_{1}^{(k)}$

A deterministic limit $\bar{\mu}_{2}^{(k)}$

A deterministic limit $\bar{\mu}_{3}^{(k)}$

A deterministic limit $\bar{\mu}_{t}^{(k)}$

A deterministic limit $\bar{\mu}_{t}^{(0)}$

CE Model (homogeneous) - Evanescence

CE Model - Evanescence

CE Model - Quasi stationarity

Extra - equilibria

Our recursion is

$$
\int h(s) \mu_{t+1}(d s)=\left(1-c_{t}\right) \int \operatorname{sh}(s) \mu_{t}(d s)+c_{t} \int \operatorname{sh}(s) \sigma(d s)
$$

Extra - equilibria

Our recursion is

$$
\int h(s) \mu_{t+1}(d s)=\left(1-c_{t}\right) \int \operatorname{sh}(s) \mu_{t}(d s)+c_{t} \int \operatorname{sh}(s) \sigma(d s) .
$$

Let \mathcal{M} be the set of measures that are absolutely continuous with respect to σ and whose Radon-Nikodym derivative is bounded by $1, \sigma-$ a.e.

We shall be interested in the behaviour of solutions to our recursion starting with $\mu_{0} \in \mathcal{M}$.

Extra - equilibria

"Differentiating" with respect to σ, we see that our recursion can be written

$$
\frac{\partial \mu_{t+1}}{\partial \sigma}=s \frac{\partial \mu_{t}}{\partial \sigma}+s c_{t}\left(1-\frac{\partial \mu_{t}}{\partial \sigma}\right)
$$

Extra - equilibria

"Differentiating" with respect to σ, we see that our recursion can be written

$$
\frac{\partial \mu_{t+1}}{\partial \sigma}=s \frac{\partial \mu_{t}}{\partial \sigma}+s c_{t}\left(1-\frac{\partial \mu_{t}}{\partial \sigma}\right)
$$

It will be clear that $\mu_{0} \in \mathcal{M}$ implies that $\mu_{t} \in \mathcal{M}$ for all t.

Extra - equilibria

"Differentiating" with respect to σ, we see that our recursion can be written

$$
\frac{\partial \mu_{t+1}}{\partial \sigma}=s \frac{\partial \mu_{t}}{\partial \sigma}+s c_{t}\left(1-\frac{\partial \mu_{t}}{\partial \sigma}\right)
$$

It will be clear that $\mu_{0} \in \mathcal{M}$ implies that $\mu_{t} \in \mathcal{M}$ for all t.
Furthermore, a measure $\mu_{\infty} \in \mathcal{M}$ will be an equilibrium point of our recursion if it satisfies

$$
\frac{\partial \mu_{\infty}}{\partial \sigma}=s \frac{\partial \mu_{\infty}}{\partial \sigma}+s c_{\infty}\left(1-\frac{\partial \mu_{\infty}}{\partial \sigma}\right),
$$

where $c_{\infty}=c\left(\mu_{\infty}([0,1])\right)$.

Extra - equilibria

Theorem [MP] Suppose that $c(0)=0$ and $c^{\prime}(0)<\infty$. Let ψ^{*} be a solution to the equation

$$
\begin{equation*}
\psi=R_{\sigma}(\psi):=\int \frac{s c(\psi)}{1-s+s c(\psi)} \sigma(d s) . \tag{1}
\end{equation*}
$$

The fixed points of our recursion are given by

$$
\mu_{\infty}(d s)=\frac{s c\left(\psi^{*}\right)}{1-s+s c\left(\psi^{*}\right)} \sigma(d s) .
$$

Equation (1) has the unique solution $\psi^{*}=0$ if and only if

$$
c^{\prime}(0) \int \frac{s}{1-s} \sigma(d s) \leq 1 .
$$

Otherwise, there are two solutions, one of which is $\psi^{*}=0$.

Extra - stability

Theorem [MP] If $\psi^{*}=0$ is the only solution to Equation (11), then, for all $\mu_{0} \in \mathcal{M}, \mu_{t} \rightarrow 0$. If Equation (1) has a non-zero solution, then, for all $\mu_{0} \in \mathcal{M}$ such that $\int \mu_{0, j}(d s)>0$ for some $j, \mu_{t} \rightarrow \mu_{\infty}$.

[^0]: McVinish, R. and Pollett, P.K. The limiting behaviour of Hanski's incidence function metapopulation model. J. Appl. Probab. 51. In press (accepted 29/06/2013).

