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OUR SETTING

A closed network of queues:

• Fixed number of nodes (queues) J

• N customers circulating

• Usual Markovian assumptions in force

Examples:

• A job shop, where manufactured items are

fashioned by various machines in turn.

• Provision of spare parts for a collection of

machines.

• A mining operation, where coal faces are

worked in turn by a number of specialized

machines.

Can we identify regions of congestion (bottle-

necks) from the parameters of the model?
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BOTTLENECKS

Common sense:

The nodes with the smallest service effort

will be the most congested.

A formal definition:

If nj is the number of customers at node j,

then this node is a bottleneck if, for all

m ≥ 0, Pr(nj ≥ m)→ 1 as N →∞.
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SIMPLE EXAMPLES

All nodes have infinitely many servers:

Pr(nj = n) =
(
N
n

)
αnj (1− αj)N−n, n = 0, . . . , N ,

where αj (< 1) is proportional to the arrival

rate at node j divided by service rate. Clearly

Pr(nj = n) → 0 for each n as N → ∞, and so

all nodes are bottlenecks.

All nodes have a single server:

The distribution of nj cannot be written down

explicitly, but we can show that if there is a

node j whose traffic intensity is strictly greater

than the others, it is the unique bottleneck.

Moreover, for each node k in the remainder of

the network, the distribution of nk approaches

a geometric distribution with parameter αk/αi
in the limit as N → ∞, and nk, for k 6= j, are

asymptotically independent.
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MARKOVIAN NETWORKS

Our only assumption:

The steady-state (joint) distribution π of the

numbers of customers n = (n1, n2, . . . , nJ) at

the various nodes has the product form

π(n) = BN

J∏
j=1

α
nj
j∏nj

r=1 φj(r)
, n ∈ S,

where S is the finite subset of ZJ+ with
∑
j nj =

N and BN is a normalizing constant chosen so

that π sums to unity over S.

Here αj is proportional to the amount of ser-

vice requirement (in items per minute) com-

ing into node j (this will actually be equal to

αjBN/BN−1). Suppose (wlog) that
∑
j αj = 1.

φj(n) is the service effort at node j (in items

per minute) when there are n customers present.

We shall assume that φj(0) = 0 and φj(n) > 0

whenever n ≥ 1.
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GENERATING FUNCTIONS

Our primary tool:

Define generating functions Φ1,Φ2, . . . ,ΦJ by

Φj(z) = 1 +
∞∑
n=1

αnj∏n
r=1 φj(r)

zn.

It is easily shown that B−1
N = <

∏J
j=1 Φj>N ,

where <·>n takes the nth coefficient of a power

series. The marginal distribution of nj can be

evaluated as

π
(N)
j (n) = BN<Φj>n<

∏
k 6=jΦk>N−n ,

for n = 0,1, . . . , N .
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SINGLE-SERVER NODES

Suppose that each node j has a single server

(φj(n) = 1 for n ≥ 1). Then, <Φj>n = αnj and

so <Φj>n+m = αmj <Φj>n. Summing

π
(N)
j (n) = BN<Φj>n<

∏
k 6=jΦk>N−n

over n, and recalling that B−1
N = <

∏J
j=1 Φj>N ,

gives Pr(nj ≥ m) = αmj BN/BN−m.

Suppose that α1 ≤ α2 ≤ · · · ≤ αJ−1 < αJ, so

that node J has maximal traffic intensity.

If we can prove that BN−1/BN → αJ as N →
∞, then Pr(nJ ≥ m) → 1 (node J is a bot-

tleneck) and Pr(nj ≥ m) → (αj/αJ)m < 1 for

j < J (the others are not).
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WHY DOES BN−1/BN → αJ?

Define Θi = Φ1 · · ·Φi, where now Φj(z) =
1/(1 − αjz). Clearly Φj has radius of con-
vergence (RC) ρj = 1/αj; in particular, Θ1
(= Φ1) has RC 1/α1.

Claim: Θi has RC 1/αi for all i, so that

BN
BN−1

=
<ΘJ>N−1

<ΘJ>N
→

1

αJ
, as N →∞.

Proof : Suppose Θk has RC 1/αk and consider

<Θk+1>m =
m∑
n=0

αm−nk+1<Θk>n

= αmk+1

m∑
n=0

ρnk+1<Θk>n .

Clearly
∑∞
n=0 ρ

n
k+1<Θk>n = Θk(ρk+1) < ∞,

since ρk+1 < ρk, and so

<Θk+1>m

<Θk+1>m+1
→

1

αk+1
as m→∞,

implying that Θk+1 has RC 1/αk+1.
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THE GENERAL CASE

Message: Bottleneck behaviour depends on

the relative sizes of the radii of convergence of

the power series Φ1,Φ2, . . . ,ΦJ.

Proposition 1: Suppose Φj has radius of con-

vergence ρj and that ρJ < ρJ−1 ≤ ρJ−2 ≤ · · · ≤
ρ1. Suppose also that

<Φ1 · · ·ΦJ−1>n−1

<Φ1 · · ·ΦJ−1>n
(1)

has a limit as n → ∞. Then, node J is a

bottleneck.

Example: Suppose node j has sj servers, so

that the traffic intensity at node j is propor-

tional to αj/sj. Since φj(n) = min{n, sj}, we

have φj(n) → sj, and so <Φj>n−1/<Φj>n →
sj/αj. Therefore ρj is proportional to the re-

ciprocal of the traffic intensity at node j. It

can be shown that (1) holds.
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COMPOUND BOTTLENECKS

What happens when the generating functions

corresponding to two or more nodes share the

same minimal RC?

Proposition 2: In the setup of Proposition 1,

suppose that ρL = ρL+1 = · · · = ρJ(= ρ) and

that ρ < ρj for j = 1,2, . . . , L−1. Then, nodes

L,L+1, . . . , J behave jointly as a bottleneck in

that Pr(
∑J
i=L ni ≥ m)→ 1 as N →∞.

It might be conjectured that when the gen-

erating functions corresponding to two nodes

share the same minimal RC, they are always

bottlenecks individually. However, while this is

true when all nodes have a single server (be-

cause Pr(nj ≥ m)→ (ρ/ρj)
m), it is not true in

general.
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SOME EXAMPLES

Consider a network with J = 2 nodes and sup-

pose that α1 = α2 = 1/2. In the following

examples Φ1 and Φ2 have the same RC ρ = 2.

Only one node is a bottleneck: Suppose

that φ1(n) = (n + 1)2/n2 and φ2(n) = 1 for

n ≥ 1. Then, it can be shown that Pr(n1 =

n) → 6/(π2(n + 1)2) and Pr(n2 = n) → 0 as

N →∞.

Neither node is a bottleneck: Suppose that

φ1(n) = φ2(n) = (n+ 1)2/n2 for n ≥ 1. Then,

Pr(n1 = n)→ 3/(π2(n+ 1)2) as N →∞.
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AND FINALLY ...

Proposition 3: Suppose that Φ1,Φ2, . . . ,ΦK
have the same strictly minimal RC ρ, and that
φj(n) converges monotonically for some j ∈
{2, . . . ,K}. Then, node 1 is a bottleneck if
and only if

Pr(n1 ≥ m |
∑K
i=1ni = N)→ 1 as N →∞.

A sufficient condition for node 1 to be a bot-
tleneck is that Φ1 diverges at its RC and

<Φ2 · · ·ΦK>n−1

<Φ2 · · ·ΦK>n
converges as n→∞.

This latter condition is not necessary: In
the setup of the previous examples, suppose
that φ1(n) = (n + 1)2/n2 and φ2(n) = (n +
1)3/n3 for n ≥ 1. Then, Φ1 and Φ2 have com-
mon RC ρ = 2 and both converge at their
RC. But, it can be shown that Pr(n1 = n) is
bounded above by a quantity which is O(N−1)
as N → ∞, implying that node 1 is a bottle-
neck.
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