Ensemble behaviour in population processes

Phil Pollett

http://www.maths.uq.edu.au/~pkp

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Patients in later stages of congestive heart failure.

Clinicians claimed that numbers appear to be "quasi-stationary".

MASCOS

MASCOS

Their model

A discrete-time Markov chain with state space $S = \{0, 1, 2, 3, 4\}$ and with 1-step transition matrix $P = (p_{ij})$ given by

$$p_{i,i-1} = 1 - p_{ii} = r_i$$
 $(i = 1, ..., 4)$ $(r_1, ..., r_4 \text{ given}).$
 $p_{00} = 1.$

Their model

A discrete-time Markov chain with state space $S = \{0, 1, 2, 3, 4\}$ and with 1-step transition matrix $P = (p_{ij})$ given by

$$p_{i,i-1} = 1 - p_{ii} = r_i$$
 $(i = 1, ..., 4)$ $(r_1, ..., r_4 \text{ given}).$
 $p_{00} = 1.$

Comments please.

A discrete-time Markov chain with state space $S = \{0, 1, 2, 3, 4\}$ and with 1-step transition matrix $P = (p_{ij})$ given by

$$p_{i,i-1} = 1 - p_{ii} = r_i$$
 $(i = 1, ..., 4)$ $(r_1, ..., r_4 \text{ given}).$
 $p_{00} = 1.$

Comments please.

Their method of analysis involved evaluating the conditional probability $p_j(t)/(1 - p_0(t))$ (j = 1, ..., 4), where $p_j(t) = (P^t)_{ij}$ (*i* is the initial state).

A discrete-time Markov chain with state space $S = \{0, 1, 2, 3, 4\}$ and with 1-step transition matrix $P = (p_{ij})$ given by

$$p_{i,i-1} = 1 - p_{ii} = r_i$$
 $(i = 1, ..., 4)$ $(r_1, ..., r_4 \text{ given}).$
 $p_{00} = 1.$

Comments please.

Their method of analysis involved evaluating the conditional probability $p_j(t)/(1 - p_0(t))$ (j = 1, ..., 4), where $p_j(t) = (P^t)_{ij}$ (*i* is the initial state).

Correct!

... because the *proportion* of patients in stage s at time t should be approximately equal to $p_s(t)$, the *probability* that the *individual* patient is in stage s at time t.

... because the *proportion* of patients in stage s at time t should be approximately equal to $p_s(t)$, the *probability* that the *individual* patient is in stage s at time t.

Can properties of an ensemble of individuals be deduced from a model for the behaviour of the individual?

... because the *proportion* of patients in stage s at time t should be approximately equal to $p_s(t)$, the *probability* that the *individual* patient is in stage s at time t.

Can properties of an ensemble of individuals be deduced from a model for the behaviour of the individual?

Further examples

Example A *population network*, where a fixed number of individuals occupies geographically separated "patches".

Patches may become empty, but can be recolonized through migration from other patches.

The individual spends a period of time in a given patch and might then emigrate to another patch, spend a period there, and so forth.

We could model the progress of the individual as a random walk on the patches, and thus evaluate quantities such as the probability $p_j(t)$ that the individual occupies patch j at time t. We expect that the *proportion* of individuals in patch j at time t should be approximately equal to $p_j(t)$. **Example** A variant where we allow death or external emigration from any patch.

There are two cases: (i) the *open* network, where there is external immigration to one or more patches, and (ii) the *closed* network, where all individuals eventually disappear from the network through death or external emigration.

Now individuals (perhaps arriving from outside the network) perform a random walk on the patches but then eventually leave.

The total number of individuals is now *random*, but we would expect to be able to draw similar conclusions concerning ensemble proportions.

Butterfly life cycle

APWSPM08, February 2008 - Page 13

MASCOS

Egg \simeq 4 days

Larva (caterpillar) \simeq 14 days

Pupa (chrysalis) \simeq 7 days

Adult (butterfly) \simeq 14 days

Butterfly life cycle

MASCOS

Ensemble of organisms

Ensemble of organisms

Ensemble vs individual behaviour

Can properties of the ensemble, be deduced from a model for the behaviour of an individual?

Can properties of the ensemble, be deduced from a model for the behaviour of an individual?

For example, suppose we have n butterflies.

Our intuition tells us that, for the ensemble, the *proportion* of organisms in stage s at time t should be approximately equal to $p_s(t)$, the *probability* that the *individual* organism is in stage s at time t.

Can properties of the ensemble, be deduced from a model for the behaviour of an individual?

For example, suppose we have n butterflies.

Our intuition tells us that, for the ensemble, the *proportion* of organisms in stage s at time t should be approximately equal to $p_s(t)$, the *probability* that the *individual* organism is in stage s at time t.

So strong is this intuition that scientists frequently model population proportions using individual-level models.

State probabilities (individual)

MASCOS

State probabilities (individual)

Simulated proportions (ensemble)

Simulated proportions (ensemble)

Perhaps not surprising ...

- If the individual organisms behave independently, we can employ the Law of Large Numbers.
- Look at the ensemble at a fixed time t. Fix a stage s and let

$$X_j = \begin{cases} 1 & \text{if organism } j \text{ is in stage } s \\ 0 & \text{if organism } j \text{ is in another stage.} \end{cases}$$

Clearly X_1, X_2, \ldots are independent. So, $\frac{1}{n} \sum_{j=1}^n X_j$ (the proportion in stage *s*) converges *almost surely* to $\mathbb{E}(X_1)$, being the probability that any given organism is in stage *s*.

Individual organism

What is the probability that the organism is in stage s of its life cycle at time t?

What is the probability that the organism is in stage s of its life cycle at time t?

Using a simple Markov chain model, we can evaluate this for each stage *s* and for all times *t*.

Evaluating state probabilities

X(t) - the state of an individual at time $t (\ge 0)$, for example, the current stage in the individual's life cycle.

Suppose $(X(t), t \ge 0)$ is a continuous-time Markov chain taking values in a discrete set *S* with transition rates (q_{ij}) : q_{ij} is the rate of transition from state $i \rightarrow j$ $(j \ne i)$.

 $q_i (= -q_{ii}) = \sum_{j \neq i} q_{ij}$ is the total rate out of state *i*.

X(t) - the state of an individual at time $t (\ge 0)$, for example, the current stage in the individual's life cycle.

Suppose $(X(t), t \ge 0)$ is a continuous-time Markov chain taking values in a discrete set *S* with transition rates (q_{ij}) : q_{ij} is the rate of transition from state $i \rightarrow j$ $(j \neq i)$.

 $q_i (= -q_{ii}) = \sum_{j \neq i} q_{ij}$ is the total rate out of state *i*.

Example (Butterfly life cycle) $\{4\} \rightarrow \{3\} \rightarrow \{2\} \rightarrow \{1\} \rightarrow \{0\}$

 $q_4 = q_{43} = 1/4$ $\downarrow \text{Egg} (\simeq 4 \text{ days})$ $q_3 = q_{32} = 1/14$ $\downarrow \text{Caterpillar} (\simeq 14 \text{ days})$ $q_2 = q_{21} = 1/7$ $\downarrow \text{Chrysalis} (\simeq 7 \text{ days})$ $q_1 = q_{10} = 1/14$ $\downarrow \text{Adult} (\simeq 14 \text{ days})$
In matrix form

$$Q = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1/14 & -1/14 & 0 & 0 & 0 \\ 0 & 1/7 & -1/7 & 0 & 0 \\ 0 & 0 & 1/14 & -1/14 & 0 \\ 0 & 0 & 0 & 1/4 & -1/4 \end{pmatrix}$$

In matrix form

$$Q = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1/14 & -1/14 & 0 & 0 & 0 \\ 0 & 1/7 & -1/7 & 0 & 0 \\ 0 & 0 & 1/14 & -1/14 & 0 \\ 0 & 0 & 0 & 1/4 & -1/4 \end{pmatrix}$$

Why put minus the total rate on the diagonal?

In matrix form

$$Q = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1/14 & -1/14 & 0 & 0 & 0 \\ 0 & 1/7 & -1/7 & 0 & 0 \\ 0 & 0 & 1/14 & -1/14 & 0 \\ 0 & 0 & 0 & 1/4 & -1/4 \end{pmatrix}$$

Why put minus the total rate on the diagonal?

For mathematical convenience ... the equations we must solve are then easier to write down.

The state probabilities $p(t) = (p_j(t), j \in S)$, where

$$p_j(t) = \Pr(X(t) = j),$$

can be obtained as the (unique) solution to

p'(t) = p(t) Q satisfying p(0) = a,

where $a = (a_j, j \in S)$ is a given initial distribution.

The state probabilities $p(t) = (p_j(t), j \in S)$, where

$$p_j(t) = \Pr(X(t) = j),$$

can be obtained as the (unique) solution to

p'(t) = p(t) Q satisfying p(0) = a,

where $a = (a_j, j \in S)$ is a given initial distribution.

Customary disclaimer: It will be convenient to restrict our attention to the case where *S* is a *finite* set, but I note that many of the arguments presented hold more generally.

% State probabilities (butterfly life cycle)

```
q(1)=1/14; q(2)=1/7; q(3)=1/14; q(4)=1/4;
Q=zeros(5,5);
for i=2:5
  state=i-1; % Matlab doesn't like a 0 index
  Q(i,i-1)=q(state); Q(i,i)=-q(state);
end
i=5; t=10;
P = expm(Q*t); % The solution to p'(t)=p(t)Q
p=P(i,1:5); % with p_4(0)=1
bar(0:4,p);
```


Analytically

The state probabilities can almost never be evaluated analytically.

The state probabilities can almost never be evaluated analytically. There are exceptions ...

Suppose that an organism has M stages of life (M = 4 for the butterfly), and that the expected time spent in stage j is $1/q_j$ (q_j is the rate of departure from stage j).

Exercise (Grimmett and Stirzaker, Exercise 6.8.31): Show that if q_1, q_2, \ldots, q_M are distinct, then

$$p_j(t) = \frac{1}{q_j} \sum_{k=j}^M q_k e^{-q_k t} \prod_{l=j, l \neq k}^M \frac{q_l}{q_l - q_k},$$

for j = 1, ..., M, and $p_0(t) = 1 - \sum_{j=1}^M p_j(t)$.

Ensemble of organisms

The key assumption here is *independence*: individuals do not affect one another.

The key assumption here is *independence*: individuals do not affect one another.

We record only the *number* of individuals in the various states, rather than their positions.

Let $N_j(t)$ be the number of individuals in state j at time t, and let $N = (N_j, j \in S)$. The process $(N(t), t \ge 0)$ is also a continuous-time Markov chain.

The key assumption here is *independence*: individuals do not affect one another.

We record only the *number* of individuals in the various states, rather than their positions.

Let $N_j(t)$ be the number of individuals in state j at time t, and let $N = (N_j, j \in S)$. The process $(N(t), t \ge 0)$ is also a continuous-time Markov chain.

The key assumption here is *independence*: individuals do not affect one another.

We record only the *number* of individuals in the various states, rather than their positions.

Let $N_j(t)$ be the number of individuals in state j at time t, and let $N = (N_j, j \in S)$. The process $(N(t), t \ge 0)$ is also a continuous-time Markov chain.

Ensemble of organisms

MASCOS

The closed ensemble. We suppose that there is a fixed number n of individuals, each moving according to Q.

The process takes values in

$$E = \{ n \in \{0, \dots, n\}^S : \sum_{j \in S} n_j = n \},\$$

and its transition rates $Q_E = (q(n, m), n, m \in E)$ are given by

$$q(\boldsymbol{n}, \boldsymbol{n} + \boldsymbol{e}_j - \boldsymbol{e}_i) = n_i q_{ij},$$

for all states $j \neq i$ in *S*, where $e_j = (0, ..., 0, 1, 0, ..., 0)$ is the unit vector with a 1 as its *j*-th entry (this transition corresponds to a single individual moving from state *i* to state *j*).

Let $X^{(n)}(t) = N(t)/n$, where *n* is the number of individuals, so that $X_j^{(n)}(t)$ is the proportion if individuals in state *j*.

Let $X^{(n)}(t) = N(t)/n$, where *n* is the number of individuals, so that $X_j^{(n)}(t)$ is the proportion if individuals in state *j*. **Theorem 1.** If $X^{(n)}(0) \rightarrow a$ as $n \rightarrow \infty$, then, for all u > 0, and for every $\epsilon > 0$,

$$\Pr\left(\sup_{0\leq t\leq u} \left| \boldsymbol{X}^{(n)}(t) - \boldsymbol{p}(t) \right| > \epsilon\right) \to 0 \quad \text{as } n \to \infty,$$

where $p(t) = (p_j(t), j \in S)$ is the unique solution to p'(t) = p(t)Q satisfying p(0) = a, namely $p(t) = a \exp(tQ)$, where $\exp(\cdot)$ is the matrix exponential.

MASCOS
Convergence of ensemble proportions

Convergence of ensemble proportions

Theorem 2. In the setup of Theorem 1, let

$$\boldsymbol{Z}^{(n)}(t) = \sqrt{n}(\boldsymbol{X}^{(n)}(t) - \boldsymbol{p}(t)).$$

If $Z^{(n)}(0) \to z$ as $n \to \infty$, then $(Z^{(n)}(t))$ converges weakly in D[0,t] (the space of right-continuous, left-hand limits functions on [0,t]) to a *Gaussian diffusion* (Z(t)) with initial value Z(0) = z and with mean and covariance given by $\mu_s := \mathbb{E}(Z(s)) = e^{sQ^{\top}} z$ and

$$V_s := \operatorname{Cov}(\boldsymbol{Z}(s)) = e^{sQ^{\top}} \left(\int_0^s e^{-uQ^{\top}} G(\boldsymbol{p}(u)) e^{-uQ} \, du \right) \, e^{sQ},$$

A Central Limit Theorem

Theorem 2 (continued).

 \dots where the matrix $G(\boldsymbol{x})$ has entries

 $G_{kk}(x) = x_k q_k + \sum_{i \neq k} x_i q_{ik}$ and $G_{kl}(x) = -(x_l q_{lk} + x_k q_{kl})$.

Theorem 2 (continued).

 \dots where the matrix $G(\boldsymbol{x})$ has entries

 $G_{kk}(x) = x_k q_k + \sum_{i \neq k} x_i q_{ik}$ and $G_{kl}(x) = -(x_l q_{lk} + x_k q_{kl})$.

Theorem 2 has many implications. One immediate one is that the population proportions $X^{(n)}(t)$ have an approximate multivariate Gaussian (normal) distribution with known mean vector and covariance matrix.

This helps explain the observed fluctuations (now seen to be of order $1/\sqrt{n}$) of $\mathbf{X}^{(n)}(t)$ about $\mathbf{p}(t)$.

A Central Limit Theorem

MASCOS

MASCOS

MASCOS

Open ensembles

- Open ensembles
- Stationary behaviour

- Open ensembles
- Stationary behaviour
- Quasi-stationary behaviour

- Open ensembles
- Stationary behaviour
- Quasi-stationary behaviour
 - Quasi-stationary distributions (QSDs) for reducible Markov chains
 - QSDs for ensemble processes

In our general setup (with *C* being the set of transient states and α being the *decay parameter*) ...

Theorem 3. Let $\pi = (\pi_j, j \in C)$ be the QSD of the individual process. If the initial numbers $N_j(0)$, $j \in C$, are chosen independently with $N_j(0)$ having a Poisson distribution with mean π_j , then, for all t > 0, $N_j(t)$, $j \in C$, are independent with $N_j(t)$ having a Poisson distribution with mean $\pi_j e^{-\alpha t}$.

For aficionados. This result holds in much greater generality; *C* need not be finite, *Q* could be explosive, $\pi = (\pi_j, j \in C)$ could be any α -subinvariant measure and, more remarkably still, π need not be finite (we could have $\sum_{j \in C} \pi_j = \infty$).