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Motivating example

Patients in later stages of congestive heart failure.

Clinicians claimed that numbers appear to be
“quasi-stationary”.
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Their model

A discrete-time Markov chain with state space� � ���� �� �� �� 	 


and with 1-step transition matrix

� � ��� � �

given by� �� � � � � � � � � �� �� � �� � � �� 	 �
( � �� � � �� �� given). � � � �

.

Comments please.

Their method of analysis involved evaluating the conditional
probability , where
( is the initial state).

Correct!
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Ensemble vs individual behaviour

Why did our clinicians propose a model for the progress of
a disease in a single patient, when they were interested in
the behaviour of a large group?

because the proportion of patients in stage at time
should be approximately equal to , the probability that
the individual patient is in stage at time .

Can properties of an ensemble of individuals be deduced
from a model for the behaviour of the individual?

Further examples .
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Metapopulation

Example A population network , where a fixed number of
individuals occupies geographically separated “patches”.

Patches may become empty, but can be recolonized
through migration from other patches.

The individual spends a period of time in a given patch and
might then emigrate to another patch, spend a period there,
and so forth.

We could model the progress of the individual as a random
walk on the patches, and thus evaluate quantities such as
the probability  � ��� �

that the individual occupies patch

�

at
time � . We expect that the proportion of individuals in
patch

�

at time
�

should be approximately equal to  � �� �

.
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Metapopulation

Example A variant where we allow death or external
emigration from any patch.

There are two cases: (i) the open network, where there is
external immigration to one or more patches, and (ii) the
closed network, where all individuals eventually disappear
from the network through death or external emigration.

Now individuals (perhaps arriving from outside the network)
perform a random walk on the patches but then eventually
leave.

The total number of individuals is now random, but we
would expect to be able to draw similar conclusions
concerning ensemble proportions.
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Butterfly life cycle
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Butterfly life cycle

Egg " 4 days

Larva (caterpillar) " 14 days

Pupa (chrysalis) " 7 days

Adult (butterfly) " 14 days

MASCOS APWSPM08, February 2008 - Page 14



Butterfly life cycle

0 2 4 6 8 10 12 14 16

Death 

Adult 

Pupa 

Larva 

Egg 

 Life cycle simulation

 Time (days)

MASCOS APWSPM08, February 2008 - Page 15



Ensemble of organisms
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Ensemble vs individual behaviour

Can properties of the ensemble, be deduced from a model
for the behaviour of an individual?

For example, suppose we have butterflies.

Our intuition tells us that, for the ensemble, the proportion
of organisms in stage at time should be approximately
equal to , the probability that the individual organism is
in stage at time .

So strong is this intuition that scientists frequently model
population proportions using individual-level models.
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State probabilities (individual)
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State probabilities (individual)
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Simulated proportions (ensemble)
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State proportions (ensemble)

Perhaps not surprising � � �

If the individual organisms behave independently, we can
employ the Law of Large Numbers.

Look at the ensemble at a fixed time � . Fix a stage  and let

$ � � �

if organism

�
is in stage  

�

if organism
�

is in another stage.

Clearly

$ �� $&%� � � � are independent. So,

�' '�)( � $ � (the
proportion in stage  ) converges almost surely to

* � $ � � ,
being the probability that any given organism is in stage  .
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Individual organism
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Evaluating state probabilities

What is the probability that the organism is in stage  of its
life cycle at time � ?

Using a simple Markov chain model, we can evaluate this
for each stage and for all times .

MASCOS APWSPM08, February 2008 - Page 25



Evaluating state probabilities

What is the probability that the organism is in stage  of its
life cycle at time � ?
Using a simple Markov chain model, we can evaluate this
for each stage  and for all times � .

MASCOS APWSPM08, February 2008 - Page 25



Evaluating state probabilities

$ ��� �

- the state of an individual at time � �,+ � �
, for example,

the current stage in the individual’s life cycle.

Suppose

� $ ��� �� � + � �

is a continuous-time Markov chain
taking values in a discrete set

�

with transition rates

��-� � � :-� � is the rate of transition from state
� . � (

� / � � ).

-� � � � -� � � � � 0( � -� � is the total rate out of state

�

.

Example (Butterfly life cycle)
Egg ( 4 days)

Caterpillar ( 14 days)

Chrysalis ( 7 days)

Adult ( 14 days)
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- � � - �1 � �� 	 2
Egg ( " 4 days)

- 1 � - 1 % � �� � 	 2
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- % � - % � � ��3 2

Chrysalis ( " 7 days)

- � � - � � � �� � 	 2
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Evaluating state probabilities

In matrix form

4 �
5656565657565

� � � � �

�� � 	 � �� � 	 � � �

� ��3 � ��3 � �

� � �� � 	 � �� � 	 �

� � � �� 	 � �� 	
8686868687868
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solve are then easier to write down.
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Evaluating state probabilities

The state probabilities 9 ��� � � �� � ��� �� � : � �

, where

 � ��� � � ;=< � $ ��� � � � ��
can be obtained as the (unique) solution to

9 > ��� � � 9 ��� � 4

satisfying 9 �� � � ?�

where ? � ��@ �� � : � �

is a given initial distribution.

Customary disclaimer : It will be convenient to restrict our
attention to the case where is a finite set, but I note that
many of the arguments presented hold more generally.
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Using Matlab

% State probabilities (butterfly life cycle)

q(1)=1/14; q(2)=1/7; q(3)=1/14; q(4)=1/4;
Q=zeros(5,5);
for i=2:5
state=i-1; % Matlab doesn’t like a 0 index
Q(i,i-1)=q(state); Q(i,i)=-q(state);

end
i=5; t=10;
P=expm(Q*t); % The solution to p’(t)=p(t)Q
p=P(i,1:5); % with p_4(0)=1
bar(0:4,p);
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Individual organism
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Analytically

The state probabilities can almost never be evaluated
analytically.

There are exceptions

Suppose that an organism has stages of life ( for
the butterfly), and that the expected time spent in stage is

( is the rate of departure from stage ).

Exercise (Grimmett and Stirzaker, Exercise 6.8.31): Show
that if are distinct, then

for , and .
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 � ��� � � �
- �

A
B( �

- BC � DE � A
F( � � F 0( B

- F
- F � - B�

for

� � �� � � �� , and  � ��� � � � � A� ( �  � ��� �

.
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Ensemble of organisms
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The ensemble model

Suppose that at time � � � the individuals are assigned to
the states according to some rule and then each moves
independently in

�

as a Markov chain governed by

4

.

The key assumption here is independence: individuals do
not affect one another.

We record only the number of individuals in the various
states, rather than their positions.

Let be the number of individuals in state at time ,
and let . The process is also a
continuous-time Markov chain.

MASCOS APWSPM08, February 2008 - Page 45



The ensemble model

Suppose that at time � � � the individuals are assigned to
the states according to some rule and then each moves
independently in

�

as a Markov chain governed by

4

.

The key assumption here is independence: individuals do
not affect one another.

We record only the number of individuals in the various
states, rather than their positions.

Let

G � ��� �

be the number of individuals in state

�

at time � ,
and let � � G �� � : � �

. The process

� ��� �� � + � �

is also a
continuous-time Markov chain.

MASCOS APWSPM08, February 2008 - Page 45



The ensemble model

Suppose that at time � � � the individuals are assigned to
the states according to some rule and then each moves
independently in

�

as a Markov chain governed by

4

.

The key assumption here is independence: individuals do
not affect one another.

We record only the number of individuals in the various
states, rather than their positions.

Let

G � ��� �

be the number of individuals in state

�

at time � ,
and let � � G �� � : � �

. The process

� ��� �� � + � �

is also a
continuous-time Markov chain.

MASCOS APWSPM08, February 2008 - Page 46



The ensemble model

Suppose that at time � � � the individuals are assigned to
the states according to some rule and then each moves
independently in

�

as a Markov chain governed by

4

.

The key assumption here is independence: individuals do
not affect one another.

We record only the number of individuals in the various
states, rather than their positions.

Let

G � ��� �

be the number of individuals in state

�

at time � ,
and let � � G �� � : � �

. The process

� ��� �� � + � �

is also a
continuous-time Markov chain.

MASCOS APWSPM08, February 2008 - Page 47



Ensemble of organisms

0 2 4 6 8 10 12 14 16 18 20

Death 

Adult 

Pupa 

Larva 

Egg 

 Life cycle simulation (n =  7 butterflies)

 Time (days)

MASCOS APWSPM08, February 2008 - Page 48



Ensemble state description
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The closed ensemble

The closed ensemble. We suppose that there is a fixed
number # of individuals, each moving according to

4

.

The process takes values in

H � �JI : � �� � � �� # 
 KML �N K # � � # 
�

and its transition rates

4PO � ��- �I � Q �� I � Q : H �

are given by

- �I � I RTS � � S � � � #� -� ��

for all states

� / � � in
�

, where S � � ��� � � �� �� �� �� � � �� � �

is the
unit vector with a

�
as its

�
-th entry (this transition

corresponds to a single individual moving from state

�

to
state

�

).
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Ensemble proportions (simulation)
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Ensemble proportions (simulation)
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Convergence of ensemble proportions

Let

U ' V ��� � � ��� �� #, where # is the number of individuals,

so that

$ U ' V� �� �

is the proportion if individuals in state

�

.

Theorem 1. If as , then, for all ,
and for every ,

as

where is the unique solution to
satisfying , namely ,

where is the matrix exponential.
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;=< [\]�^ �^`_
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where 9 ��� � � �� � ��� �� � : � �
is the unique solution to9 > �� � � 9 ��� � 4
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Convergence of ensemble proportions
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Convergence of ensemble proportions
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Convergence of ensemble proportions
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Convergence of ensemble proportions
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Convergence of ensemble proportions
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

2-Stage life cycle (n =100 organisms)

Proportion in Stage A

P
ro

p
o
rt

io
n

in
S

ta
g
e

B

MASCOS APWSPM08, February 2008 - Page 95



A Central Limit Theorem

Theorem 2. In the setup of Theorem 1, let

f U ' V ��� � � # � U ' V ��� � � 9 ��� � � �
If

f U ' V �� � .g as # . W, then

� f U ' V �� � �
converges weakly inh i�� � j

(the space of right-continuous, left-hand limits
functions on

i�� � j

) to a Gaussian diffusion

� f ��� � �

with initial
value

f �� � � k and with mean and covariance given byl ! L � * � f �  � � � C ! m ng and

o ! L � prqs � f �  � � � C ! m n !
� C �_ m nut � 9 � X � � C �_ mwv X C ! m�
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A Central Limit Theorem

Theorem 2 (continued).

� � � where the matrix

t �Jx �

has entries

t B B�Jx � � y B- B R � 0( B y� -� Band

t BF �Jx � � � � y F - F B R y B- BF � .

Theorem 2 has many implications. One immediate one is
that the population proportions have an
approximate multivariate Gaussian (normal) distribution
with known mean vector and covariance matrix.

This helps explain the observed fluctuations (now seen to
be of order ) of about .
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A Central Limit Theorem
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Convergence of scaled fluctuations
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Convergence of scaled fluctuations
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Convergence of scaled fluctuations
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Further details

Pollett, P.K. (2008) Ensemble behaviour in population
processes with applications to ecological systems.
Environmental and Ecological Statistics (to appear).

Open ensembles
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Further details

Pollett, P.K. (2008) Ensemble behaviour in population
processes with applications to ecological systems.
Environmental and Ecological Statistics (to appear).

Open ensembles

Stationary behaviour

Quasi-stationary behaviour
Quasi-stationary distributions (QSDs) for reducible
Markov chains
QSDs for ensemble processes
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Bonus theorem

In our general setup (with

z

being the set of transient
states and { being the decay parameter ) � � �
Theorem 3. Let | � �~} �� � : z �

be the QSD of the individual
process. If the initial numbers

G � �� �
,

� : z
, are chosen

independently with

G � �� �

having a Poisson distribution with
mean } � , then, for all � Y � ,

G � ��� �
,

� : z
, are independent

with

G � ��� �

having a Poisson distribution with mean } � C � � �

.

For aficionados. This result holds in much greater
generality;

z

need not be finite,

4

could be explosive,| � �} �� � : z �

could be any {-subinvariant measure and,
more remarkably still, | need not be finite (we could have�N � } � � W).
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