Population networks with no occupancy ceiling

Phil. Pollett

The University of Queensland

ANZIAM Annual Conference 2021

Virtual, 31 January- 5 February 2021

This is joint work with ...

Liam Hodgkinson
Department of Statistics UC Berkeley

The basic model

An infinite occupancy process $\boldsymbol{X}_{t}=\left(X_{i, t}\right)_{i=1}^{\infty}$ is a (time-homogeneous) Markov chain on $\{0,1\}^{\mathbb{Z}_{+}}$with the property that, conditional on \boldsymbol{X}_{t}, the occupancies $X_{1, t+1}, X_{2, t+1}, \ldots$, at time $t+1$, are mutually independent. In particular, the dynamics are determined by the collection of functions

$$
P_{i}(\boldsymbol{x})=\mathbb{P}\left(X_{i, t+1}=1 \mid \boldsymbol{X}_{t}=\boldsymbol{x}\right), \quad i=1,2, \ldots
$$

The basic model

An infinite occupancy process $\boldsymbol{X}_{t}=\left(X_{i, t}\right)_{i=1}^{\infty}$ is a (time-homogeneous) Markov chain on $\{0,1\}^{\mathbb{Z}_{+}}$with the property that, conditional on \boldsymbol{X}_{t}, the occupancies $X_{1, t+1}, X_{2, t+1}, \ldots$, at time $t+1$, are mutually independent. In particular, the dynamics are determined by the collection of functions

$$
P_{i}(\boldsymbol{x})=\mathbb{P}\left(X_{i, t+1}=1 \mid \boldsymbol{X}_{t}=\boldsymbol{x}\right), \quad i=1,2, \ldots
$$

It will be convenient to write

$$
P_{i}(\boldsymbol{x})=S_{i}(\boldsymbol{x}) x_{i}+C_{i}(\boldsymbol{x})\left(1-x_{i}\right), \quad \boldsymbol{x} \in\{0,1\}^{\mathbb{Z}_{+}}
$$

where $S_{i}, C_{i}:\{0,1\}^{\mathbb{Z}_{+}} \rightarrow[0,1] ; C_{i}(\boldsymbol{x})$ and $1-S_{i}(\boldsymbol{x})$ are the (configuration dependent) "flip" probabilities.

The basic model

An infinite occupancy process $\boldsymbol{X}_{t}=\left(X_{i, t}\right)_{i=1}^{\infty}$ is a (time-homogeneous) Markov chain on $\{0,1\}^{\mathbb{Z}_{+}}$with the property that, conditional on \boldsymbol{X}_{t}, the occupancies $X_{1, t+1}, X_{2, t+1}, \ldots$, at time $t+1$, are mutually independent. In particular, the dynamics are determined by the collection of functions

$$
P_{i}(\boldsymbol{x})=\mathbb{P}\left(X_{i, t+1}=1 \mid \boldsymbol{X}_{t}=\boldsymbol{x}\right), \quad i=1,2, \ldots
$$

It will be convenient to write

$$
P_{i}(\boldsymbol{x})=S_{i}(\boldsymbol{x}) x_{i}+C_{i}(\boldsymbol{x})\left(1-x_{i}\right), \quad \boldsymbol{x} \in\{0,1\}^{\mathbb{Z}_{+}}
$$

where $S_{i}, C_{i}:\{0,1\}^{\mathbb{Z}_{+}} \rightarrow[0,1] ; C_{i}(\boldsymbol{x})$ and $1-S_{i}(\boldsymbol{x})$ are the (configuration dependent) "flip" probabilities.

Voter Model: $S_{i}(\boldsymbol{x})=1-\sum_{j=1}^{\infty} p_{i j}\left(1-x_{j}\right), C_{i}(\boldsymbol{x})=\sum_{j=1}^{\infty} p_{i j} x_{j}\left(p_{i i}=0\right)$.

The basic model

An infinite occupancy process $\boldsymbol{X}_{t}=\left(X_{i, t}\right)_{i=1}^{\infty}$ is a (time-homogeneous) Markov chain on $\{0,1\}^{\mathbb{Z}_{+}}$with the property that, conditional on \boldsymbol{X}_{t}, the occupancies $X_{1, t+1}, X_{2, t+1}, \ldots$, at time $t+1$, are mutually independent. In particular, the dynamics are determined by the collection of functions

$$
P_{i}(\boldsymbol{x})=\mathbb{P}\left(X_{i, t+1}=1 \mid \boldsymbol{X}_{t}=\boldsymbol{x}\right), \quad i=1,2, \ldots
$$

It will be convenient to write

$$
P_{i}(\boldsymbol{x})=S_{i}(\boldsymbol{x}) x_{i}+C_{i}(\boldsymbol{x})\left(1-x_{i}\right), \quad \boldsymbol{x} \in\{0,1\}^{\mathbb{Z}_{+}}
$$

where $S_{i}, C_{i}:\{0,1\}^{\mathbb{Z}_{+}} \rightarrow[0,1] ; C_{i}(\boldsymbol{x})$ and $1-S_{i}(\boldsymbol{x})$ are the (configuration dependent) "flip" probabilities.

Voter Model: $S_{i}(\boldsymbol{x})=1-\sum_{j=1}^{\infty} p_{i j}\left(1-x_{j}\right), C_{i}(\boldsymbol{x})=\sum_{j=1}^{\infty} p_{i j} x_{j}\left(p_{i i}=0\right)$.
Domany-Kinzel PCA on the discrete torus of length $n: S_{i}(x)=\left(q_{2}-q_{1}\right) x_{i+1}$, $C_{i}(\boldsymbol{x})=q_{1} x_{i+1}, q_{1}, q_{2} \in[0,1]$.

A metapopulation model

The sites $i=1,2, \ldots$ are habitat patches, and $X_{i, t}$ is 1 or 0 according to whether patch i is occupied or unoccupied at time $t . S_{i}(\boldsymbol{x})=s_{i}$ (patch i survival probability) is the same for all \boldsymbol{x}, and

$$
C_{i}(x)=f\left(a_{i} \sum_{j=1}^{\infty} d_{i j} x_{j}\right)
$$

where $f:[0, \infty) \rightarrow[0,1]$ (called the colonisation function) satisfies $f(0)=0$ (so there is total extinction at $\boldsymbol{x} \equiv 0$), and is typically an increasing function, a_{i} is a weight that may be interpreted as the capacity, or area, of patch i, and $d_{i j}$ is the migration potential from patch j to patch i. (Further assumptions will be added later.)

A metapopulation model

The sites $i=1,2, \ldots$ are habitat patches, and $X_{i, t}$ is 1 or 0 according to whether patch i is occupied or unoccupied at time $t . S_{i}(\boldsymbol{x})=s_{i}$ (patch i survival probability) is the same for all \boldsymbol{x}, and

$$
C_{i}(x)=f\left(a_{i} \sum_{j=1}^{\infty} d_{i j} x_{j}\right)
$$

where $f:[0, \infty) \rightarrow[0,1]$ (called the colonisation function) satisfies $f(0)=0$ (so there is total extinction at $\boldsymbol{x} \equiv 0$), and is typically an increasing function, a_{i} is a weight that may be interpreted as the capacity, or area, of patch i, and $d_{i j}$ is the migration potential from patch j to patch i. (Further assumptions will be added later.)

This particular form is reminiscent of the Hanski incidence function model ${ }^{1}$, but now there is no fixed upper limit on the number of patches that can be occupied.

[^0]A famous example (Note: only known patches are shown)

Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands in Autumn 2005.

A metapopulation model

The sites $i=1,2, \ldots$ are habitat patches, and $X_{i, t}$ is 1 or 0 according to whether patch i is occupied or unoccupied at time $t . S_{i}(\boldsymbol{x})=s_{i}$ (patch i survival probability) is the same for all \boldsymbol{x}, and

$$
C_{i}(x)=f\left(a_{i} \sum_{j=1}^{\infty} d_{i j} x_{j}\right)
$$

where $f:[0, \infty) \rightarrow[0,1]$ (called the colonisation function) satisfies $f(0)=0$ (so there is total extinction at $\boldsymbol{x} \equiv 0$), and is typically an increasing function, a_{i} is a weight that may be interpreted as the capacity, or area, of patch i, and $d_{i j}$ is the migration potential from patch j to patch i. (Further assumptions will be added later.)

This particular form is reminiscent of the Hanski incidence function model ${ }^{1}$, but now there is no fixed upper limit on the number of patches that can be occupied.

[^1]

A simulation - patches located on the integer lattice $\mathbb{Z}_{+}^{2}(t=0)$

A simulation - patches located on the integer lattice $\mathbb{Z}_{+}^{2}(t=1)$

A simulation - patches located on the integer lattice $\mathbb{Z}_{+}^{2}(t=2)$

A simulation - patches located on the integer lattice $\mathbb{Z}_{+}^{2}(t=3)$

A simulation - patches located on the integer lattice $\mathbb{Z}_{+}^{2}(t=4)$

A simulation - patches located on the integer lattice $\mathbb{Z}_{+}^{2}(t=5)$

A simulation - patches located on the integer lattice $\mathbb{Z}_{+}^{2}(t=10)$

A simulation - patches located on the integer lattice $\mathbb{Z}_{+}^{2}(t=20)$

A simulation - patches located on the integer lattice $\mathbb{Z}_{+}^{2}(t=50)$

An approximating model

Returning to the general case

$$
\mathbb{P}\left(X_{i, t+1}=1 \mid \boldsymbol{X}_{t}\right)=S_{i}\left(\boldsymbol{X}_{t}\right) X_{i, t}+C_{i}\left(\boldsymbol{X}_{t}\right)\left(1-X_{i, t}\right), \quad i=1,2, \ldots, t=0,1, \ldots,
$$

we consider a deterministic analogue ${ }^{2} \boldsymbol{p}_{t}=\left\{p_{i, t}\right\}_{i=1}^{\infty}$ that evolves according to

$$
p_{i, t+1}=S_{i}\left(\boldsymbol{p}_{t}\right) p_{i, t}+C_{i}\left(\boldsymbol{p}_{t}\right)\left(1-p_{i, t}\right), \quad i=1,2, \ldots, t=0,1, \ldots
$$

${ }^{2}$ Barbour, A.D., McVinish, R. and Pollett, P.K. (2015) Connecting deterministic and stochastic metapopulation models. J. Math. Biol. 71, 1481-1504.
(The domains of S_{i} and C_{i} have been extended to $[0,1]^{\mathbb{Z}_{+}}$.)

The main result

To assess the quality of our approximation, we shall let 3

$$
\alpha=\sup _{j \in \mathbb{Z}_{+}} \sum_{i=1}^{\infty}\left\|\partial_{j} P_{i}\right\|_{\infty} \quad \beta=\sum_{i=1}^{\infty}\left(\sum_{j=1, j \neq i}^{\infty}\left\|\partial_{j} P_{i}\right\|_{\infty}^{2}\right)^{1 / 2} \gamma=\sum_{i, j=1}^{\infty}\left\|\partial_{j}^{2} P_{i}\right\|_{\infty}
$$

and assume these quantities are all finite. Here ∂_{j} and ∂_{j}^{2} are the first and second partial derivative operators in the j-th coordinate.

[^2]
The main result

To assess the quality of our approximation, we shall let ${ }^{3}$

$$
\alpha=\sup _{j \in \mathbb{Z}_{+}} \sum_{i=1}^{\infty}\left\|\partial_{j} P_{i}\right\|_{\infty} \quad \beta=\sum_{i=1}^{\infty}\left(\sum_{j=1, j \neq i}^{\infty}\left\|\partial_{j} P_{i}\right\|_{\infty}^{2}\right)^{1 / 2} \gamma=\sum_{i, j=1}^{\infty}\left\|\partial_{j}^{2} P_{i}\right\|_{\infty}
$$

and assume these quantities are all finite. Here ∂_{j} and ∂_{j}^{2} are the first and second partial derivative operators in the j-th coordinate.

Theorem 1 There is a constant $C \in(0,2 \sqrt{\pi}]$ such that, for any $\boldsymbol{w} \in \ell^{\infty}$ and $t \geqslant 0$,

$$
\mathbb{E}\left|\sum_{i=1}^{\infty} w_{i}\left(X_{i, t}-p_{i, t}\right)\right| \leqslant C\|\boldsymbol{w}\|_{\infty}(\beta+\gamma)(1+2 \alpha)^{t}+\left(\sum_{i=1}^{\infty} w_{i}^{2} p_{i, t}\right)^{1 / 2}
$$

[^3]
The metapopulation model

In our metapopulation model

$$
P_{i}(x):=s_{i} x_{i}+f\left(a_{i} \sum_{j} d_{i j} x_{j}\right)\left(1-x_{i}\right), \quad x \in[0,1]^{\mathbb{Z}_{+}} .
$$

Recall that s_{i} is the patch i survival probability, a_{i} is the patch weight, $d_{i j}$ is the migration potential from patch j to patch i, and $f:[0, \infty) \rightarrow[0,1]$, the colonisation function, satisfies $f(0)=0$.

The metapopulation model

In our metapopulation model

$$
P_{i}(x):=s_{i} x_{i}+f\left(a_{i} \sum_{j} d_{i j} x_{j}\right)\left(1-x_{i}\right), \quad x \in[0,1]^{\mathbb{Z}_{+}} .
$$

Recall that s_{i} is the patch i survival probability, a_{i} is the patch weight, $d_{i j}$ is the migration potential from patch j to patch i, and $f:[0, \infty) \rightarrow[0,1]$, the colonisation function, satisfies $f(0)=0$.

Now assume that $\sum_{i} a_{i}<+\infty$ (the total weight of all patches is finite), and suppose that $d_{i j}=D\left(z_{i}, z_{j}\right):=\kappa\left(\left\|z_{i}-z_{j}\right\|\right)$, for patches located at points $\left\{z_{i}\right\}$ in \mathbb{R}^{d}, where κ is a smooth, non-negative, monotone decreasing function (typically $\kappa(x)=e^{-\psi x}$, or $\left.\kappa(x)=e^{-\psi x^{2}}, \psi>0\right)$. These assumptions are enough to ensure that α, β, γ are all finite.

The metapopulation model - a high density limit

We shall suppose that the patch locations are spaced according to some measure σ. In particular, for any bounded continuous function g,

$$
\frac{1}{m^{d}} \sum_{i=1}^{\infty} g\left(m^{-1} z_{i}\right) \rightarrow \int_{\mathbb{R}^{d}} g(z) \sigma(\mathrm{d} z), \quad \text { as } m \rightarrow \infty
$$

If z_{i} are spaced on a regular lattice, then σ is d-dimensional Lebesgue measure.

The metapopulation model - a high density limit

We shall suppose that the patch locations are spaced according to some measure σ. In particular, for any bounded continuous function g,

$$
\frac{1}{m^{d}} \sum_{i=1}^{\infty} g\left(m^{-1} z_{i}\right) \rightarrow \int_{\mathbb{R}^{d}} g(z) \sigma(\mathrm{d} z), \quad \text { as } m \rightarrow \infty
$$

If z_{i} are spaced on a regular lattice, then σ is d-dimensional Lebesgue measure.
Suppose that there is a sequence of models $\left\{\boldsymbol{X}_{t}^{(m)}\right\}_{m=1}^{\infty}$ with parameters $s_{i}^{(m)}, a_{i}^{(m)}, d_{i j}^{(m)}$, and the same colonisation function f, such that

$$
s_{i}^{(m)}=s\left(m^{-1} z_{i}\right), \quad a_{i}^{(m)}=a\left(m^{-1} z_{i}\right), \quad d_{i j}^{(m)}=m^{-d} \kappa\left(m^{-1}\left\|z_{i}-z_{j}\right\|\right)
$$

for smooth functions $\kappa: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}, a: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$, and $s: \mathbb{R}^{d} \rightarrow[0,1]$.
In this way, the patch locations are effectively being drawn together as $m \rightarrow \infty$.

The metapopulation model - a high density limit

To cut a long story short, we use the earlier result,

$$
\mathbb{E}\left|\sum_{i=1}^{\infty} w_{i}\left(X_{i, t}-p_{i, t}\right)\right| \leqslant C\|\boldsymbol{w}\|_{\infty}(\beta+\gamma)(1+2 \alpha)^{t}+\left(\sum_{i=1}^{\infty} w_{i}^{2} p_{i, t}\right)^{1 / 2}
$$

to compare the finite measure $\pi_{t}^{(m)}$ defined by

$$
\pi_{t}^{(m)}(B)=m^{-d} \sum_{i=1}^{\infty} p_{i, t}^{(m)} \mathbb{1}\left\{m^{-1} z_{i} \in B\right\}, \quad B \in \mathcal{B}\left(\mathbb{R}^{d}\right)
$$

with the random measure $\mu_{t}^{(m)}$ defined by

$$
\mu_{t}^{(m)}(B)=m^{-d} \sum_{i=1}^{\infty} X_{i, t}^{(m)} \mathbb{1}\left\{m^{-1} z_{i} \in B\right\}, \quad B \in \mathcal{B}\left(\mathbb{R}^{d}\right)
$$

We prove that, as $m \rightarrow \infty, \int g(z) \mu_{t}^{(m)}(\mathrm{d} z) \rightarrow \int g(z) p_{t}(z) \sigma(\mathrm{d} z)$, for some function p_{t}. In particular, the functions $p_{t}, t=0,1, \ldots$, satisfy the recursion

$$
p_{t+1}(z)=s(z) p_{t}(z)+\left(1-p_{t}(z)\right) f\left(a(z) \int \kappa(\|z-x\|) p_{t}(x) \sigma(\mathrm{d} z)\right), \quad z \in \mathbb{R}^{d}
$$

Nice interpretation: if a patch is located at $z, p_{t}(z)$ is the chance it is occupied.

The earlier simulation - patches located on the integer lattice \mathbb{Z}_{+}^{2}

Details

$d=2$
Colonisation function: $f(x)=1-\exp (-\alpha x)$ with $\alpha=0.01$.
Survival function: $s(z)=\exp (-\phi\|z\|)$ with $\phi=0.25$.
Patch weight function: $a(z)=\exp (-\theta\|\boldsymbol{z}\|)$ with $\theta=0.25$.
Easy of movement function: $d(\boldsymbol{x}, \boldsymbol{z})=b \exp (-\psi\|\boldsymbol{x}-\boldsymbol{z}\|)$ with $b=25$ and $\psi=0.4$.
Scaling: $m=8$

$$
s_{i}^{(m)}=s\left(m^{-1} z_{i}\right), \quad a_{i}^{(m)}=a\left(m^{-1} z_{i}\right), \quad d_{i j}^{(m)}=m^{-2} \kappa\left(m^{-1}\left\|z_{i}-z_{j}\right\|\right)
$$

Initially configuration: 70 percent of patches are occupied in $\{1,2, \ldots, 10\}^{2}$.

The earlier simulation - patches located on the integer lattice $\mathbb{Z}_{+}^{2}(t=50)$

Occupancy probability heatmap $p_{t}(z)(t=0)$

Occupancy probability heatmap $p_{t}(z)(t=1)$

Occupancy probability heatmap $p_{t}(z)(t=2)$

Occupancy probability heatmap $p_{t}(z)(t=3)$

Occupancy probability heatmap $p_{t}(z)(t=4)$

Occupancy probability heatmap $p_{t}(z)(t=5)$

Occupancy probability heatmap $p_{t}(z)(t=6)$

Occupancy probability heatmap $p_{t}(z)(t=7)$

Occupancy probability heatmap $p_{t}(z)(t=8)$

Occupancy probability heatmap $p_{t}(\boldsymbol{z})(t=9)$

Occupancy probability heatmap $p_{t}(z)(t=10)$

Occupancy probability heatmap $p_{t}(z)(t=50)$

A simulation - patches located on the integer lattice $\mathbb{Z}_{+}^{2}(t=50)$

$=$| $=1$ |
| :--- |
| -0.9 |
| -0.7 |
| -0.6 |
| -0.5 |
| -0.4 |
| -0.3 |
| 0.2 |
| 0.1 |

[^0]: ${ }^{1}$ McVinish, R. and Pollett, P.K. (2014) The limiting behaviour of Hanski's incidence function metapopulation model. J. Appl. Probab. 51, 297-316.

[^1]: ${ }^{1}$ McVinish, R. and Pollett, P.K. (2014) The limiting behaviour of Hanski's incidence function metapopulation model. J. Appl. Probab. 51, 297-316.

[^2]: ${ }^{3}$ Hodgkinson, L., McVinish, R. and Pollett, P.K. (2020) Normal approximations for discrete-time occupancy processes. Stochastic Process. Appl. 130, 6414-6444.

[^3]: ${ }^{3}$ Hodgkinson, L., McVinish, R. and Pollett, P.K. (2020) Normal approximations for discrete-time occupancy processes. Stochastic Process. Appl. 130, 6414-6444.

