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Total cost

Let X(t) be the population density at time t.

Let c(x) be the cost per unit time of maintaining the population
when its density is x units above a threshold γ.

Then, if τ is the time to extinction,
∫ τ

0
c(X(t) − γ)1{X(t)>γ} dt

is the total cost over the life of the population.
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A population process
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{ X(t) > γ } dt = 11.8 
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Ingredients

• A random process (X(t), t ≥ 0) in continuous time
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Ingredients

• A random process (X(t), t ≥ 0) in continuous time
• A set of states A
• The (random) time τ to first exit from A

• The cost (per unit time) fx of being in state x
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Ingredients

• A random process (X(t), t ≥ 0) in continuous time
• A set of states A
• The (random) time τ to first exit from A

• The cost (per unit time) fx of being in state x
• The “path integral”

Γ =

∫ τ

0
fX(t) dt,

the total cost incurred before leaving A (also random)
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Other examples

• Consider a dam with finite capacity V , and let X(t) be
the water level at time t.

We might wish to estimate the total time for which the
level was below a given value γ,

Γ =

∫ τ

0
1{X(t)<γ} dt,

where τ is (say) the time to reach capacity or to empty
(whichever occurs first).
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Other examples

• Let (S(t), I(t)) be the number of susceptibles and
infectives in an epidemic at time t.

If τ is the period of infection and f(s,i) = i, then Γ is the
total amount of infection:

Γ =

∫ τ

0
I(t) dt.
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 Γ = ∫
0
τ  I(t) dt = 7591 (cell days) 
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The problem

Our problem is to determine the expected value, and the
distribution of the total cost

Γ =

∫ τ

0
fX(t) dt,

where recall that τ is the time to first exit from a set A and fx

is cost per unit time of being in state x.

For simplicity, suppose that X(t) takes values in S = {0, 1, . . . }.

For example, X(t) might be the number in a population at
time t, and A = {1, 2, . . . }, so that τ is the time to extinction.
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Markovian models

We will assume that (X(t), t ≥ 0) is a Markov chain with
transition rates

Q = (qij , i, j ∈ S),

so that qij represents the rate of transition from state i to
state j, for j 6= i, and qii = −qi, where

qi :=
∑

j 6=i

qij (<∞)

represents the total rate out of state i.
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Markovian models

An example is the birth-death process, which has

qi,i+1 = λi (birth rates)

qi,i−1 = µi (death rates),

with µ0 = 0 and otherwise 0 (qi = λi + µi):

Q =













−λ0 λ0 0 0 · · ·

µ1 −(λ1 + µ1) λ1 0 · · ·

0 µ2 −(λ2 + µ2) λ2 · · ·
...

...
... 0

. . .












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Example

The Stochastic Logistic Model (simulated earlier) is a birth-
death process on S = {0, 1, . . . , N}, with

λi =
λ

N
i(N − i) and µi = µi,

where λ, µ > 0.
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Example

The Stochastic Logistic Model (simulated earlier) is a birth-
death process on S = {0, 1, . . . , N}, with

λi =
λ

N
i(N − i) and µi = µi,

where λ, µ > 0.

The epidemic model mentioned earlier is a two-dimensional
Markov chain with transition rates

q(s i),(s+1 i) = αs, q(s i),(s i−1) = γi,

q(s i),(s−1 i+1) = βsi,

α, γ, β > 0 are the splitting, removal and infection rates.
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The expected value of Γ

Returning to our general Markov chain, let
ei = Ei(Γ) := E(Γ|X(0) = i), and condition on the time of the
first jump and the state visited at that time, to get

Ei (Γ) =

∫ ∞

0

∑

k 6=i

(

fi

qi
+ Ek (Γ)

)

qik
qi
qie

−qiu du,

which leads to
qiei = fi +

∑

k 6=i

qikek,

so that
∑

k

qikek + fi = 0.
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The expected value of Γ

We can do better:

Theorem 1 e = (ei, i ∈ A), where ei = Ei(Γ), is the minimal
non-negative solution to

∑

k∈A

qikzk + fi = 0, i ∈ A,

in the sense that e satisfies these equations, and, if z = (zi, i ∈

A) is any non-negative solution, then ei ≤ zi for all i ∈ A.
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Birth-death processes

Let’s apply this to birth-death processes:

Q =













−λ0 λ0 0 0 · · ·

µ1 −(λ1 + µ1) λ1 0 · · ·

0 µ2 −(λ2 + µ2) λ2 · · ·
...

...
... 0

. . .













Assume that the birth rates (λi, i ≥ 1) and the death rates
(µi, i ≥ 0) are all strictly positive, except that λ0 = 0. So, all
states in A = {1, 2, . . . } intercommunicate, and 0 is an
absorbing state (corresponding to population extinction).
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Birth-death processes

Define (πi, i ≥ 1) by π1 = 1 and

πi =

i
∏

j=2

λj−1

µj
, i ≥ 2,

and assume that
∞
∑

i=1

1

µiπi
= ∞,

a condition that corresponds to extinction being certain.
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Birth-death processes

On applying Theorem 1 we get:

Proposition The expected cost up to the time of extinction,
starting in state i (≥ 1), is given by

Ei(Γ) =

i
∑

j=1

1

µjπj

∞
∑

k=j

fkπk,

this being finite if and only if
∑∞

k=1 fkπk <∞.
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Birth-death processes

In the finite state-space case (S = {0, 1, . . . , N}), we get

Ei(Γ) =

i
∑

j=1

1

µjπj

N
∑

k=j

fkπk, i = 1, 2, . . . , N.

For the Stochastic Logistic Model,

Ei(Γ) =
1

µ

i
∑

j=1

N−j
∑

k=0

(

1

Nρ

)k fj+k

j + k

(N − j)!

(N − j − k)!
,

where ρ = µ/λ. If ρ < 1 (the interesting case),

Ei(Γ) ∼
ρ

µ(1 − ρ)

(

e−(1−ρ)

ρ

)N √

2π

N

i
∑

j=1

fjρ
j as N → ∞.
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The distribution of Γ

Can we evaluate the distribution of Γ, that is,

Pr(Γ ≤ x|X(0) = i) ?
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The distribution of Γ

Can we evaluate the distribution of Γ, that is,

Pr(Γ ≤ x|X(0) = i) ?

I will explain how to evaluate yi(θ) = Ei(e
−θΓ), the

Laplace-Steiltjes Transform (LST) of the distribution:

yi(θ) =

∫ ∞

0
e−θx dPr(Γ ≤ x|X(0) = i).
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The distribution of Γ

An argument similar to that used to evaluate Ei(Γ) leads to:

Theorem 2 For each θ > 0, y(θ) = (yi(θ), i ∈ S) is the
maximal solution to

∑

k∈S

qikzk = θfizi, i ∈ A,

with 0 ≤ zi ≤ 1 for i ∈ A and zi = 1 for i /∈ A.
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A catastrophe process

Assume that the transition rates have the form

qij =























iρa, i ≥ 0, j = i+ 1,

−iρ, i ≥ 0, j = i,

iρdi−j , i ≥ 2, 1 ≤ j < i,

iρ
∑

k≥i dk, i ≥ 1, j = 0,

with all other transition rates equal to 0. Here ρ and a are
positive, di is positive for at least one i in A = {1, 2, . . . } and
a+

∑∞
i=1 di = 1.

Clearly 0 is an absorbing state for the process and A is a com-

municating class.
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A catastrophe process

We will consider only the subcritical case, where the drift D,
given by D = a−

∑∞
i=1 idi, is strictly negative and extinction is

certain.

Let b(s) = d(s) − s, where d is the probability generating
function d(s) = a+

∑∞
i=1 dis

i+1, |s| < 1.

There is a unique solution, σ, to b(s) = 0 on the interval 0 < s <

1.
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A catastrophe process

We can evaluate Ei(e
−θΓ) for specific choices of f .

For example, take fi = i.

We seek the maximal solution to

∞
∑

j=0

qijzj = θizi, i ≥ 1,

satisfying 0 ≤ zi ≤ 1 for i ≥ 1 and z0 = 1.
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A catastrophe process

We can evaluate Ei(e
−θΓ) for specific choices of f .

For example, take fi = i.

We seek the maximal solution to

ρazi+1 − ρzi + ρ

i−1
∑

j=1

di−jzj + ρz0

∞
∑

j=i

dj = θzi, i ≥ 1,

satisfying 0 ≤ zi ≤ 1 for i ≥ 1 and z0 = 1.
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A catastrophe process

Multiplying by si−1 and summing over i gives

∞
∑

i=1

Ei(e
−θΓ)si−1 =

1

1 − s
−

θ(γθ − s)

(1 − γθ)(1 − s)(ρb(s) − θs)
,

where γθ is the unique solution to ρb(s) = θs on the interval
0 < s < σ, where σ itself is the unique solution to b(s) = 0 on
the interval 0 < s < 1.
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A catastrophe process

In the case of “geometric catastrophes” (di = d(1 − q)qi−1,
i ≥ 1, where d > 0 satisfies a+ d = 1, and 0 ≤ q < 1), we get

Ei(e
−θΓ) =

β(θ) − q

1 − q
(β(θ))i−1 , i ≥ 1,

where β(θ) is the smaller of the two zeros of
aρs2 − (ρ(1 + qa) + θ)s+ ρ(d+ qa) + qθ.
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Koalas (Phascolarctos cinereus)
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Koalas (Phascolarctos cinereus)
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Controlling Koalas
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Controlling Koalas
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Outline

• Stochastic Models
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Outline

• Stochastic Models

• Selection of Rates and Reduction Level

• Selection of Control Policy

• - Total cost of control

MASCOS Workshop on Stochastics and their Applications, September 2004 - Page 33



Models - Controlled Populations

The birth-and-death process - Transition Diagram
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Models - Controlled Populations

The birth-and-death process is a continuous-time Markov
chain taking values in S = {0, 1, . . . } with non-zero transition
rates

qx,x+1 = λx

and
qx,x−1 = µx

where λx and µx are the population birth and death rates
respectively.
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Models - Controlled Populations

The linear birth-and-death process is a continuous-time
Markov chain taking values in S = {0, 1, . . . } with non-zero
transition rates

qx,x+1 = λx

and
qx,x−1 = µx

where λ and µ are the per individual birth and death rates
respectively.
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Models - Controlled Populations

Linear birth-and-death process with suppression and
constant culling

qx,x+1 = λx for all x

qx,x−1 =

{

µx x ≤ U

µx+ κ x > U

where κ is the rate of culling (control).
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Models - Controlled Populations

Transition Diagram for Reduction Regime Models
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Models - Controlled Populations

Linear birth-and-death process with reduction and
per-capita culling

q(x,0),(x+1,0) = λx x < U − 1

q(x,0),(x−1,0) = µx x < U
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Models - Controlled Populations

Linear birth-and-death process with reduction and
per-capita culling

q(x,0),(x+1,0) = λx x < U − 1

q(x,0),(x−1,0) = µx x < U

q(U−1,0),(U,1) = λ(U − 1)
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Models - Controlled Populations

Linear birth-and-death process with reduction and
per-capita culling

q(x,0),(x+1,0) = λx x < U − 1

q(x,0),(x−1,0) = µx x < U

q(U−1,0),(U,1) = λ(U − 1)

q(x,1),(x+1,1) = λx x ∈ {L+ 1, L+ 2, . . .}

q(x,1),(x−1,1) = (µ+ ψ)x x ∈ {L+ 2, L+ 3, . . .}

q(L+1,1),(L,0) = (µ+ ψ)(L+ 1)

where ψ is the rate of culling (control).
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Some Decisions of Controlling

• Which control regime?
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Some Decisions of Controlling

• Which control regime?

• How much culling (control) to perform?

i.e. What level should L be set to?
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Some Decisions of Controlling

• Which control regime?

• How much culling (control) to perform?

i.e. What level should L be set to?

• What rate of culling to use?

i.e. How large should κ and/or ψ be?
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Koala Parameters

• Per-koala birth rate: λ = 0.3
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Koala Parameters

• Per-koala birth rate: λ = 0.3

• Per-koala death rate: µ = 0.1
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Koala Parameters

• Per-koala birth rate: λ = 0.3

• Per-koala death rate: µ = 0.1

• Culling level: U = 5, 000
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Koala Parameters

• Per-koala birth rate: λ = 0.3

• Per-koala death rate: µ = 0.1

• Culling level: U = 5, 000

• Reduction level: L = ?
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Koala Parameters

• Per-koala birth rate: λ = 0.3

• Per-koala death rate: µ = 0.1

• Culling level: U = 5, 000

• Reduction level: L = ?

• Reduction per-koala culling rate: ψ = ?
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Koala Parameters

• Per-koala birth rate: λ = 0.3

• Per-koala death rate: µ = 0.1

• Culling level: U = 5, 000

• Reduction level: L = ?

• Reduction per-koala culling rate: ψ = ?

• Suppression constant culling rate: κ = ?
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Choice of Reduction Level L

• Probability of the population “persisting”.
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Choice of Reduction Level L

• Probability of the population reaching the culling level U
before 0 starting from reduction level L

αL = Pr(hit U before 0 | X(0) = L) ≥ ρ.
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Choice of Reduction Level L

• Probability of the population reaching the culling level U
before 0 starting from reduction level L

αL = Pr(hit U before 0 | X(0) = L) ≥ ρ.

• Expected time between culling phases.
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Choice of Reduction Level L

• Probability of the population reaching the culling level U
before 0 starting from reduction level L

αL = Pr(hit U before 0 | X(0) = L) ≥ ρ.

• Expected time to hit U starting from L conditional on
hitting U before 0

E(TU | X(0) = L, hit U before 0).
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Choice of Reduction Level L

For a birth-and-death process

αi = Pr(hit U before 0|X(0) = i) =
si
sU

where s0 = 0, s1 = 1 and for 2 ≤ i ≤ U

si = 1 +
i−1
∑

j=1

j
∏

k=1

µk

λk

.
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Choice of Reduction Level L

For a birth-and-death process

αi = Pr(hit U before 0|X(0) = i) =
si
sU

where s0 = 0, s1 = 1 and for 2 ≤ i ≤ U

si = 1 +
i−1
∑

j=1

j
∏

k=1

µk

λk

.

Therefore we have

αi =
1 −

(

µ
λ

)i

1 −
(

µ
λ

)U
.
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Choice of Reduction Level L

After choosing a suitable minimum probability ρ, the minimum
reduction level L is given by

L :=

⌈

ln{1 − ρ[1 − (µ/λ)U ]}

ln(µ/λ)

⌉

.
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Koalas - Minimum L

L ρ

4 0.9876543209877

6 0.9986282578875

8 0.9998475842097

10 0.9999830649122

12 0.9999981183236

14 0.9999997909248

16 0.9999999767694

18 0.9999999974188

20 0.9999999997132
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Expected Phase Times

• Phase 1 - Time between culling phases.
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Expected Phase Times

• Phase 1 - Time between culling phases.
• - Monitoring and assessment periods.
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Expected Phase Times

• Phase 1 - Time between culling phases.
• - Monitoring and assessment periods.

τL = E(TU | hit U before 0,X(0) = L) =

U−1
∑

i=L

1

λiπisisi+1

i
∑

j=1

s2jπj
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Expected Phase Times

• Phase 1 - Time between culling phases.
• - Monitoring and assessment periods.

τL = E(TU | hit U before 0,X(0) = L) =

U−1
∑

i=L

1

λiπisisi+1

i
∑

j=1

s2jπj

where s0 = 0, s1 = 1 and for 2 ≤ i ≤ U ,

si = 1 +

i−1
∑

j=1

j
∏

k=1

µk

λk

and π1 = 1, πj =
∏j

i=2
λi−1

µi
for j ≥ 2.
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Koalas - Expected Phase 1 Time

L Expected Time (yrs)

20 27.868

500 11.522

1000 8.051

2000 4.583

3000 2.555
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Koalas - Expected Phase 1 Time

L Expected Time (yrs)

20 27.868

500 11.522

1000 8.051

2000 4.583

3000 2.555

L = 1000.
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Expected Phase Times

• Phase 2 - Duration of culling phase.
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• Phase 2 - Duration of culling phase.
• - Planning and choice of culling rates.
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Expected Phase Times

• Phase 2 - Duration of culling phase.
• - Planning and choice of culling rates.

For our model

τL
U =

1

µ+ ψ

U
∑

k=L+1

∞
∑

j=0

1

j + k

(

λ

µ+ ψ

)j

.
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Choice of Culling Rates κ and ψ

• Choice of ψ
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Choice of Culling Rates κ and ψ

• Choice of ψ
• - Minimise the cost of a culling phase.
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Choice of Culling Rates κ and ψ

• Choice of ψ
• - Minimise the cost of a culling phase.

For a birth-death process

cU =

U
∑

k=L+1

1

µkπk

∞
∑

j=k

fjπj

where πj =
∏j

i=L+1
λi−1

µi
and fj is the cost per unit time of

culling a population of size j.
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Choice of Culling Rates κ and ψ

• Choice of ψ
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Choice of Culling Rates κ and ψ

• Choice of ψ
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Choice of Culling Rates κ and ψ

• Choice of ψ
• - Minimise the cost of the culling phase.

• - Cost function fj = dψ1+δj or fj = dψ1+δ
(

b+ c
j

)

j.
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Choice of Culling Rates κ and ψ

• Choice of ψ
• - Minimise the cost of the culling phase.

• - Cost function fj = dψ1+δj or fj = dψ1+δ
(

b+ c
j

)

j.

Therefore we have

cU =
dψ1+δ(U − L)

µ+ ψ − λ
.
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Choice of Culling Rates κ and ψ

• Choice of ψ
• - Minimise the cost of the culling phase.

• - Cost function fj = dψ1+δj or fj = dψ1+δ
(

b+ c
j

)

j.

Therefore we have

cU =
dψ1+δ(U − L)

µ+ ψ − λ
.

Minimising with respect to ψ

ψ =

(

1 + δ

δ

)

(λ− µ).
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Choice of Culling Rates κ and ψ

• Choice of ψ
• - Minimise the cost of the culling phase.

• - Cost function fj = dψ1+δj or fj = dψ1+δ
(

b+ c
j

)

j.

Therefore we have

cU =
dψ1+δ(U − L)

µ+ ψ − λ
.

Minimising with respect to ψ

ψ =

(

1 + δ

δ

)

(λ− µ).

δ = 0.05 =⇒ ψ = 4.2 and τL
U = 246 hrs =⇒ 41 days.
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Choice of Culling Rates κ and ψ

• Choice of κ
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Choice of Culling Rates κ and ψ

• Choice of κ
• - Probability of remaining in “control".

MASCOS Workshop on Stochastics and their Applications, September 2004 - Page 49



Choice of Culling Rates κ and ψ

• Choice of κ
• - Probability of reaching states in which the total

death rate is less than the birth rate, starting from U , is
very small.
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Choice of Culling Rates κ and ψ

• Choice of κ
• - Probability of reaching states in which the total

death rate is less than the birth rate, starting from U , is
very small.

αU+1 = Pr

(

hit
⌈

κ

λ− µ

⌉

before U |X(0) = U + 1

)

≤ ρ.
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Choice of Culling Rates κ and ψ

• Choice of κ
• - Probability of reaching states in which the total

death rate is less than the birth rate, starting from U , is
very small.

αU+1 = Pr

(

hit
⌈

κ

λ− µ

⌉

before U |X(0) = U + 1

)

≤ ρ.

For a birth-death process

αU+1 =
sU+1

sl

κ
λ−µ

m

and sU+1 = 1, si = 1 +
∑i−1

j=U+1

∏j
k=U+1

µk

λk
for i > U + 1.
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Koalas - Choice of Culling Rates

κ αU+1

1010 1.7825 × 10−2

1020 6.280 × 10−3

1050 1.5501 × 10−4

1070 3.3711 × 10−6

1100 1.1707 × 10−9

1120 1.3957 × 10−12

1200 6.3347 × 10−29
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Koalas - Choice of Culling Rates

κ αU+1

1010 1.7825 × 10−2

1020 6.280 × 10−3

1050 1.5501 × 10−4

1070 3.3711 × 10−6

1100 1.1707 × 10−9

1120 1.3957 × 10−12

1200 6.3347 × 10−29

κ = 1120.
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Summary of Koala Models

General
• λ = 0.3

• µ = 0.1

• U = 5, 000
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• κ = 1, 120
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Summary of Koala Models

General
• λ = 0.3

• µ = 0.1

• U = 5, 000

Suppression model with constant culling
• κ = 1, 120

Reduction model with per-capita culling
• L = 1, 000

• ψ = 4.2
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Choice of Control Policy

How do we choose the “best" control regime?
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• Extinction Probabilities
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Choice of Control Policy

How do we choose the “best" control regime?

• Extinction Probabilities

• Extinction Times
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Choice of Control Policy

How do we choose the “best" control regime?

• Extinction Probabilities

• Extinction Times

• Total Costs
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Total Costs

Cost Functions

Linear Birth-death Suppression Model with Constant Culling

fj = K1{j>U} +M .

Linear Birth-death Reduction Model with Per-capita Culling

f(j,0) = N and f(j,1) = Cj +N .
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Total Costs

Cost Functions

Linear Birth-death Suppression Model with Constant Culling

fj = K1{j>U} +M .

K = $50, 000 and M = $10, 000.

Linear Birth-death Reduction Model with Per-capita Culling

f(j,0) = N and f(j,1) = Cj +N .

C = $100 and N = $7, 000.
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Choice of Control Policy

Decision Tool Supp. & Const. Red. & Per-capita

Cost/Time $36, 470 per year $7, 841 per year
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Conclusion
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