Birth-Death Processes and Orthogonal Polynomials

Phil. Pollett

The University of Queensland

ACEMS Workshop on Stochastic Processes and Special Functions

August 2015

ACEMS

Example: a metapopulation model (illustrating quasi stationarity)

Quasi-stationary distribution

Main message

$$
\begin{aligned}
p_{i j}(t): & =\operatorname{Pr}\left(X_{s+t}=j \mid X_{s}=i\right) \\
& =\pi_{j} \int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \mathcal{Q}_{j}(x) d \psi(x)
\end{aligned}
$$

Birth-death processes

A birth-death process is a continuous-time Markov chain $\left(X_{t}, t \geq 0\right)$ taking values in $S \cup\{-1\}$, where $S \subseteq\{0,1, \ldots\}$, with

$$
\begin{gathered}
\operatorname{Pr}\left(X_{t+h}=n+1 \mid X_{t}=n\right)=\lambda_{n} h+\circ(h) \\
\operatorname{Pr}\left(X_{t+h}=n-1 \mid X_{t}=n\right)=\mu_{n} h+o(h) \\
\operatorname{Pr}\left(X_{t+h}=n \mid X_{t}=n\right)=1-\left(\lambda_{n}+\mu_{n}\right) h+\circ(h)
\end{gathered}
$$

(as $h \rightarrow 0$). Other transitions happen with probability $\circ(h)$.

Birth-death processes

A birth-death process is a continuous-time Markov chain $\left(X_{t}, t \geq 0\right)$ taking values in $S \cup\{-1\}$, where $S \subseteq\{0,1, \ldots\}$, with

$$
\begin{gathered}
\operatorname{Pr}\left(X_{t+h}=n+1 \mid X_{t}=n\right)=\lambda_{n} h+\circ(h) \\
\operatorname{Pr}\left(X_{t+h}=n-1 \mid X_{t}=n\right)=\mu_{n} h+\circ(h) \\
\operatorname{Pr}\left(X_{t+h}=n \mid X_{t}=n\right)=1-\left(\lambda_{n}+\mu_{n}\right) h+\circ(h)
\end{gathered}
$$

(as $h \rightarrow 0$). Other transitions happen with probability $\circ(h)$.
The birth rates $\left(\lambda_{n}, n \geq 0\right)$ and the death rates $\left(\mu_{n}, n \geq 0\right)$ are all strictly positive except perhaps μ_{0}, which could be 0 . State -1 is a "extinction state", which can be reached if $\mu_{0}>0$.

Birth-death processes

The birth rates $\left(\lambda_{n}, n \geq 0\right)$ and the death rates $\left(\mu_{n}, n \geq 0\right)$ are all strictly positive, except perhaps μ_{0}, which could be 0 . State -1 is a "extinction state", which can be reached if $\mu_{0}>0$.

$$
\mu_{0}>0
$$

Birth-death processes

The birth rates $\left(\lambda_{n}, n \geq 0\right)$ and the death rates $\left(\mu_{n}, n \geq 0\right)$ are all strictly positive, except perhaps μ_{0}, which could be 0 . State -1 is a "extinction state", which can be reached if $\mu_{0}>0$.

$$
\mu_{0}>0
$$

$\mu_{0}=0$

Explosive birth-death processes

Suppose that $\lambda_{n}=2^{2 n}, \mu_{n}=2^{2 n-1}(n \geq 1)$, and $\mu_{0}=0$, with $S=\{0,1, \ldots\}$.

Explosive birth-death processes

Suppose that $\lambda_{n}=2^{2 n}, \mu_{n}=2^{2 n-1}(n \geq 1)$, and $\mu_{0}=0$, with $S=\{0,1, \ldots\}$.
An "equilibrium distribution" exists: $\pi_{n}=\left(\frac{1}{2}\right)^{n+1}$. But \ldots

Explosive birth-death processes

Suppose that $\lambda_{n}=2^{2 n}, \mu_{n}=2^{2 n-1}(n \geq 1)$, and $\mu_{0}=0$, with $S=\{0,1, \ldots\}$.

An "equilibrium distribution" exists: $\pi_{n}=\left(\frac{1}{2}\right)^{n+1}$. But \ldots

When a jump occurs it is a birth with probability

$$
p_{n}=\frac{2^{2 n}}{2^{2 n}+2^{2 n-1}}=\frac{2}{3} .
$$

Thus births are twice as likely as deaths, and so the process will have positive drift.

Explosive birth-death processes

Explosive birth-death processes

Explosive birth-death processes

Explosive birth-death processes

Explosive birth-death processes

Explosive birth-death processes

The Kolmogorov differential equations

The conditions we have imposed ensure that the transition probabilities $p_{i j}(t)=\operatorname{Pr}\left(X_{s+t}=j \mid X_{s}=i\right)(i, j \in S, s, t \geq 0)$ do not depend on s.

The Kolmogorov differential equations

The conditions we have imposed ensure that the transition probabilities $p_{i j}(t)=\operatorname{Pr}\left(X_{s+t}=j \mid X_{s}=i\right)(i, j \in S, s, t \geq 0)$ do not depend on s.

For any such time-homogeneous continuous-time Markov chain with (conservative) transition rate matrix $Q=\left(q_{i j}\right)$, the transition function $P(t)=\left(p_{i j}(t)\right)$ satisfies the backward equations

$$
\begin{equation*}
P^{\prime}(t)=Q P(t) \tag{BE}
\end{equation*}
$$

but not necessarily the forward equations

$$
\begin{equation*}
P^{\prime}(t)=P(t) Q \tag{FE}
\end{equation*}
$$

(the derivative is taken elementwise). Note that $Q=P^{\prime}(0+)$.

The Kolmogorov differential equations

The conditions we have imposed ensure that the transition probabilities $p_{i j}(t)=\operatorname{Pr}\left(X_{s+t}=j \mid X_{s}=i\right)(i, j \in S, s, t \geq 0)$ do not depend on s.

For any such time-homogeneous continuous-time Markov chain with (conservative) transition rate matrix $Q=\left(q_{i j}\right)$, the transition function $P(t)=\left(p_{i j}(t)\right)$ satisfies the backward equations

$$
\begin{equation*}
P^{\prime}(t)=Q P(t) \tag{BE}
\end{equation*}
$$

but not necessarily the forward equations

$$
\begin{equation*}
P^{\prime}(t)=P(t) Q \tag{FE}
\end{equation*}
$$

(the derivative is taken elementwise). Note that $Q=P^{\prime}(0+)$.
There is however a minimal solution $F(t)=\left(f_{i j}(t)\right)$ to (BE) and this satisfies (FE).

The Kolmogorov differential equations

The conditions we have imposed ensure that the transition probabilities $p_{i j}(t)=\operatorname{Pr}\left(X_{s+t}=j \mid X_{s}=i\right)(i, j \in S, s, t \geq 0)$ do not depend on s.

For any such time-homogeneous continuous-time Markov chain with (conservative) transition rate matrix $Q=\left(q_{i j}\right)$, the transition function $P(t)=\left(p_{i j}(t)\right)$ satisfies the backward equations

$$
\begin{equation*}
P^{\prime}(t)=Q P(t) \tag{BE}
\end{equation*}
$$

but not necessarily the forward equations

$$
\begin{equation*}
P^{\prime}(t)=P(t) Q \tag{FE}
\end{equation*}
$$

(the derivative is taken elementwise). Note that $Q=P^{\prime}(0+)$.
There is however a minimal solution $F(t)=\left(f_{i j}(t)\right)$ to (BE) and this satisfies (FE).
Non-explosivity corresponds to F being the unique solution to (BE). Otherwise F governs the process up to the time of the (first) explosion.

The Kolmogorov differential equations

For birth-death processes the full range of behaviour is possible.

Here the transition rate matrix restricted to $S=\{0,1, \ldots\}$ has the form

$$
Q=\left(\begin{array}{cccccc}
-\left(\lambda_{0}+\mu_{0}\right) & \lambda_{0} & 0 & 0 & 0 & \ldots \\
\mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & 0 & 0 & \ldots \\
0 & \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} & 0 & \ldots \\
0 & 0 & \mu_{3} & -\left(\lambda_{3}+\mu_{3}\right) & \lambda_{3} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

The Kolmogorov differential equations

For birth-death processes the full range of behaviour is possible.

Here the transition rate matrix restricted to $S=\{0,1, \ldots\}$ has the form

$$
Q=\left(\begin{array}{cccccc}
-\left(\lambda_{0}+\mu_{0}\right) & \lambda_{0} & 0 & 0 & 0 & \ldots \\
\mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & 0 & 0 & \ldots \\
0 & \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} & 0 & \cdots \\
0 & 0 & \mu_{3} & -\left(\lambda_{3}+\mu_{3}\right) & \lambda_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Returning to the example where $\lambda_{n}=2^{2 n}, \mu_{n}=2^{2 n-1}(n \geq 1)$, and $\mu_{0}=0$, we have \ldots

The process governed by F (the "minimal process")

A process where P satisfies (BE) but not (FE)

A process where P satisfies both (BE) and (FE)

The birth-death polynomials

Define a sequence ($\mathcal{Q}_{n}, n \in S$) of polynomials by

$$
\begin{aligned}
\mathcal{Q}_{0}(x) & =1 \\
-x \mathcal{Q}_{0}(x) & =-\left(\lambda_{0}+\mu_{0}\right) \mathcal{Q}_{0}(x)+\lambda_{0} \mathcal{Q}_{1}(x) \\
-x \mathcal{Q}_{n}(x) & =\mu_{n} \mathcal{Q}_{n-1}(x)-\left(\lambda_{n}+\mu_{n}\right) \mathcal{Q}_{n}(x)+\lambda_{n} \mathcal{Q}_{n+1}(x),
\end{aligned}
$$

and a sequence of strictly positive numbers $\left(\pi_{n}, n \in S\right)$ by $\pi_{0}=1$ and, for $n \geq 1$,

$$
\pi_{n}=\frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}}
$$

A explicit expression for $p_{i j}(t)$

Theorem (Karlin and McGregor (1957))

Let $P(t)=\left(p_{i j}(t)\right)$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$
p_{i j}(t)=\pi_{j} \int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \mathcal{Q}_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

${ }^{1}$ Karlin, S. and McGregor, J.L. (1957) The differential equations of birth-and-death processes, and the Stieltjes Moment Problem. Trans. Amer. Math. Soc. 85, 489-546.

A explicit expression for $p_{i j}(t)$

Theorem (Karlin and McGregor (1957))

Let $P(t)=\left(p_{i j}(t)\right)$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$
p_{i j}(t)=\pi_{j} \int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \mathcal{Q}_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

Since $p_{i j}(0)=\delta_{i j}$, it is clear that $\left(\mathcal{Q}_{n}\right)$ are orthogonal with orthogonalizing measure ψ :

$$
\int_{0}^{\infty} \mathcal{Q}_{i}(x) \mathcal{Q}_{j}(x) d \psi(x)=\frac{\delta_{i j}}{\pi_{j}} \quad(i, j \geq 0)
$$

A explicit expression for $p_{i j}(t)$

Theorem (Karlin and McGregor (1957))

Let $P(t)=\left(p_{i j}(t)\right)$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$
p_{i j}(t)=\pi_{j} \int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \mathcal{Q}_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

Proof. We use mathematical induction: on i using (BE) with $j=0$ and then on j using (FE). But, showing that there is a probability measure ψ with support $[0, \infty)$ whose Laplace transform is $p_{00}(t)$, that is

$$
p_{00}(t)=\int_{0}^{\infty} e^{-t x} d \psi(x)\left(=\pi_{0} \int_{0}^{\infty} e^{-t x} \mathcal{Q}_{0}(x) \mathcal{Q}_{0}(x) d \psi(x)\right)
$$

is not completely straightforward. More on this later.

A explicit expression for $p_{i j}(t)$ - Why is it useful?

Theorem (Karlin and McGregor (1957))

Let $P(t)=\left(p_{i j}(t)\right)$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$
p_{i j}(t)=\pi_{j} \int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \mathcal{Q}_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

A explicit expression for $p_{i j}(t)$ - Why is it useful?

Theorem (Karlin and McGregor (1957))

Let $P(t)=\left(p_{i j}(t)\right)$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$
p_{i j}(\boldsymbol{t})=\pi_{j} \int_{0}^{\infty} e^{-t x} Q_{i}(x) Q_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

A explicit expression for $p_{i j}(t)$ - Why is it useful?

Theorem (Karlin and McGregor (1957))

Let $P(t)=\left(p_{i j}(t)\right)$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$
p_{i j}(t)=\pi_{j} \int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \mathcal{Q}_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

A explicit expression for $p_{i j}(t)$ - Why is it useful?

Theorem (Karlin and McGregor (1957))

Let $P(t)=\left(p_{i j}(t)\right)$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$
p_{i j}(t)=\int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \pi_{j} \mathcal{Q}_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

A explicit expression for $p_{i j}(t)$ - Why is it useful?

Theorem (Karlin and McGregor (1957))

Let $P(t)=\left(p_{i j}(t)\right)$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$
p_{i j}(t)=\int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \pi_{j} \mathcal{Q}_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

A explicit expression for $p_{i j}(t)$ - Why is it useful?

Theorem (Karlin and McGregor (1957))

Let $P(t)=\left(p_{i j}(t)\right)$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$
p_{i j}(t)=\pi_{j} \int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \mathcal{Q}_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

This formula, together with the myriad of properties of $\left(\mathcal{Q}_{n}\right)$ and ψ, are used to develop theory peculiar to birth-death processes.

Some properties of $\left(\mathcal{Q}_{n}\right)$ and ψ

Of particular interest and importance is the "interlacing" property of the zeros $x_{n, i}$ $(i=1, \cdots, n)$ of \mathcal{Q}_{n} : they are strictly positive, simple, and they satisfy

$$
0<x_{n+1, i}<x_{n, i}<x_{n+1, i+1}, \quad(i=1, \cdots, n, n \geq 1)
$$

from which it follows that the limits $\xi_{i}=\lim _{n \rightarrow \infty} x_{n, i}(i \geq 1)$ exist and satisfy $0 \leq \xi_{i} \leq \xi_{i+1}<\infty$.

Some properties of $\left(\mathcal{Q}_{n}\right)$ and ψ

Of particular interest and importance is the "interlacing" property of the zeros $x_{n, i}$ $(i=1, \cdots, n)$ of \mathcal{Q}_{n} : they are strictly positive, simple, and they satisfy

$$
0<x_{n+1, i}<x_{n, i}<x_{n+1, i+1}, \quad(i=1, \cdots, n, \quad n \geq 1)
$$

from which it follows that the limits $\xi_{i}=\lim _{n \rightarrow \infty} x_{n, i}(i \geq 1)$ exist and satisfy $0 \leq \xi_{i} \leq \xi_{i+1}<\infty$.

Interestingly, $\xi_{1}:=\inf \operatorname{supp}(\psi)$ and $\xi_{2}:=\inf \left\{\operatorname{supp}(\psi) \cap\left(\xi_{1}, \infty\right)\right\}$, quantities that are particularly important in the theory of quasi-stationary distributions.

The time to extinction

Consider the case $\mu_{0}>0$:

${ }^{2}$ Van Doorn, E.A. and Pollett, P.K. (2013) Quasi-stationary distributions for discrete-state models. Invited paper. European J. Operat. Res. 230, 1-14.

The time to extinction

Consider the case $\mu_{0}>0$:

Suppose that $\sum_{n=0}^{\infty}\left(\lambda_{n} \pi_{n}\right)^{-1}=\infty$, which ensures that the extinction state -1 is reached with probability 1 (and necessarily the process is non-explosive).
${ }^{2}$ Van Doorn, E.A. and Pollett, P.K. (2013) Quasi-stationary distributions for discrete-state models. Invited paper. European J. Operat. Res. 230, 1-14.

The time to extinction

Consider the case $\mu_{0}>0$:

Suppose that $\sum_{n=0}^{\infty}\left(\lambda_{n} \pi_{n}\right)^{-1}=\infty$, which ensures that the extinction state -1 is reached with probability 1 (and necessarily the process is non-explosive).

Let $T=\inf \left\{t \geq 0: X_{t}=-1\right\}$ be the time to extinction.
${ }^{2}$ Van Doorn, E.A. and Pollett, P.K. (2013) Quasi-stationary distributions for discrete-state models. Invited paper. European J. Operat. Res. 230, 1-14.

The time to extinction

Consider the case $\mu_{0}>0$:

Suppose that $\sum_{n=0}^{\infty}\left(\lambda_{n} \pi_{n}\right)^{-1}=\infty$, which ensures that the extinction state -1 is reached with probability 1 (and necessarily the process is non-explosive).

Let $T=\inf \left\{t \geq 0: X_{t}=-1\right\}$ be the time to extinction.
Clearly $\operatorname{Pr}\left(T>t \mid X_{0}=i\right) \rightarrow 0$ as $t \rightarrow \infty$, but how fast?
${ }^{2}$ Van Doorn, E.A. and Pollett, P.K. (2013) Quasi-stationary distributions for discrete-state models. Invited paper. European J. Operat. Res. 230, 1-14.

The time to extinction

Consider the case $\mu_{0}>0$:

Suppose that $\sum_{n=0}^{\infty}\left(\lambda_{n} \pi_{n}\right)^{-1}=\infty$, which ensures that the extinction state -1 is reached with probability 1 (and necessarily the process is non-explosive).

Let $T=\inf \left\{t \geq 0: X_{t}=-1\right\}$ be the time to extinction.
Clearly $\operatorname{Pr}\left(T>t \mid X_{0}=i\right) \rightarrow 0$ as $t \rightarrow \infty$, but how fast?
Claim. $\inf \left\{a \geq 0: \int_{0}^{\infty} e^{a t} \operatorname{Pr}\left(T>t \mid X_{0}=i\right) d t=\infty\right\}=\xi_{1}$.
${ }^{2}$ Van Doorn, E.A. and Pollett, P.K. (2013) Quasi-stationary distributions for discrete-state models. Invited paper. European J. Operat. Res. 230, 1-14.

Quasi-stationary distributions

A distribution $\boldsymbol{u}=\left(u_{n}, n \geq 0\right)$ is called a limiting conditional distribution (or sometimes quasi-stationary distribution $)$ if $u_{i j}(t):=\operatorname{Pr}\left(X_{t}=j \mid T>t, X_{0}=i\right) \rightarrow u_{j}$ as $t \rightarrow \infty$.
${ }^{3}$ van Doorn, E.A. (1991) Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. Adv. Appl. Probab. 23, 683-700.
${ }^{4}$ Kijima, M., Nair, M.G., Pollett, P.K. and van Doorn, E.A. (1997) Limiting conditional distributions for birth-death processes. Adv. Appl. Probab. 29, 185-204.

Quasi-stationary distributions

A distribution $\boldsymbol{u}=\left(u_{n}, n \geq 0\right)$ is called a limiting conditional distribution (or sometimes quasi-stationary distribution) if $u_{i j}(t):=\operatorname{Pr}\left(X_{t}=j \mid T>t, X_{0}=i\right) \rightarrow u_{j}$ as $t \rightarrow \infty$.

Theorem

If $\xi_{1}>0$ then $u_{i j}(t) \rightarrow u_{j}:=\mu_{0}^{-1} \xi_{1} \pi_{j} \mathcal{Q}_{j}\left(\xi_{1}\right)$. If $\xi_{1}=0$ then $u_{j}(t) \rightarrow 0$.
${ }^{3}$ van Doorn, E.A. (1991) Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. Adv. Appl. Probab. 23, 683-700.
${ }^{4}$ Kijima, M., Nair, M.G., Pollett, P.K. and van Doorn, E.A. (1997) Limiting conditional distributions for birth-death processes. Adv. Appl. Probab. 29, 185-204.

Quasi-stationary distributions

A distribution $\boldsymbol{u}=\left(u_{n}, n \geq 0\right)$ is called a limiting conditional distribution (or sometimes quasi-stationary distribution) if $u_{i j}(t):=\operatorname{Pr}\left(X_{t}=j \mid T>t, X_{0}=i\right) \rightarrow u_{j}$ as $t \rightarrow \infty$.

Theorem

If $\xi_{1}>0$ then $u_{i j}(t) \rightarrow u_{j}:=\mu_{0}^{-1} \xi_{1} \pi_{j} \mathcal{Q}_{j}\left(\xi_{1}\right)$. If $\xi_{1}=0$ then $u_{j}(t) \rightarrow 0$.

Again, how fast?
${ }^{3}$ van Doorn, E.A. (1991) Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. Adv. Appl. Probab. 23, 683-700.
${ }^{4}$ Kijima, M., Nair, M.G., Pollett, P.K. and van Doorn, E.A. (1997) Limiting conditional distributions for birth-death processes. Adv. Appl. Probab. 29, 185-204.

Quasi-stationary distributions

A distribution $\boldsymbol{u}=\left(u_{n}, n \geq 0\right)$ is called a limiting conditional distribution (or sometimes quasi-stationary distribution) if $u_{i j}(t):=\operatorname{Pr}\left(X_{t}=j \mid T>t, X_{0}=i\right) \rightarrow u_{j}$ as $t \rightarrow \infty$.

Theorem

If $\xi_{1}>0$ then $u_{i j}(t) \rightarrow u_{j}:=\mu_{0}^{-1} \xi_{1} \pi_{j} \mathcal{Q}_{j}\left(\xi_{1}\right)$. If $\xi_{1}=0$ then $u_{j}(t) \rightarrow 0$.

Again, how fast?
Claim. $\inf \left\{a \geq 0: \int_{0}^{\infty} e^{a t}\left|u_{i j}(t)-u_{j}\right| d t=\infty\right\}=\xi_{2}-\xi_{1}$ (same for all $i, j \in S$).
${ }^{3}$ van Doorn, E.A. (1991) Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. Adv. Appl. Probab. 23, 683-700.
${ }^{4}$ Kijima, M., Nair, M.G., Pollett, P.K. and van Doorn, E.A. (1997) Limiting conditional distributions for birth-death processes. Adv. Appl. Probab. 29, 185-204.

Recall

Theorem (Karlin and McGregor (1957))

Let $P(t)=\left(p_{i j}(t)\right)$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$
p_{i j}(t)=\pi_{j} \int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \mathcal{Q}_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

Proof. We use mathematical induction: on i using (BE) with $j=0$ and then on j using (FE). But, showing that there is a probability measure ψ with support $[0, \infty$) whose Laplace transform is $p_{00}(t)$, that is

$$
p_{00}(t)=\int_{0}^{\infty} e^{-t x} d \psi(x)\left(=\pi_{0} \int_{0}^{\infty} e^{-t x} \mathcal{Q}_{0}(x) \mathcal{Q}_{0}(x) d \psi(x)\right)
$$

is not completely straightforward. More on this later.

Why does this work?

Theorem (Karlin and McGregor (1957))
Let $P(t)=\left(p_{i j}(t)\right)$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$
p_{i j}(t)=\pi_{j} \int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \mathcal{Q}_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

Why does this work?

Theorem (Karlin and McGregor (1957))

Let $P(t)=\left(p_{i j}(t)\right)$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$
p_{i j}(t)=\pi_{j} \int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \mathcal{Q}_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

Why is there a ψ whose Laplace transform is $p_{00}(t): p_{00}(t)=\int_{0}^{\infty} e^{-t x} d \psi(x) ?$

Why does this work?

Theorem (Karlin and McGregor (1957))

Let $P(t)=\left(p_{i j}(t)\right)$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$
p_{i j}(t)=\pi_{j} \int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \mathcal{Q}_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

Why is there a ψ whose Laplace transform is $p_{00}(t): p_{00}(t)=\int_{0}^{\infty} e^{-t x} d \psi(x) ?$
Answer. Weak symmetry: $\pi_{i} q_{i j}=\pi_{j} q_{j i}\left(\pi_{i} \lambda_{i}=\pi_{i+1} \mu_{i+1}\right)$

Finite state Markov chains - some linear algebra

Let $\left(X_{t}, t \geq 0\right)$ be a continuous-time Markov chain taking values in $S=\{0,1, \ldots, N\}$ with (conservative) transition rate matrix Q. So, there is collection $\pi=\left(\pi_{j}, j \in S\right)$ of strictly positive numbers such that $\pi Q=0$, that is

$$
\sum_{i \in S} \pi_{i} q_{i j}=\pi_{j} \sum_{i \in S} q_{j i} \quad(j \in S)
$$

Finite state Markov chains - some linear algebra

Let $\left(X_{t}, t \geq 0\right)$ be a continuous-time Markov chain taking values in $S=\{0,1, \ldots, N\}$ with (conservative) transition rate matrix Q. So, there is collection $\pi=\left(\pi_{j}, j \in S\right)$ of strictly positive numbers such that $\pi Q=0$, that is

$$
\sum_{i \in S} \pi_{i} q_{i j}=\pi_{j} \sum_{i \in S} q_{j i} \quad(j \in S)
$$

Suppose that Q is weakly symmetric with respect to $\pi: \pi_{i} q_{i j}=\pi_{j} q_{j i}$.

Finite state Markov chains - some linear algebra

Let $\left(X_{t}, t \geq 0\right)$ be a continuous-time Markov chain taking values in $S=\{0,1, \ldots, N\}$ with (conservative) transition rate matrix Q. So, there is collection $\pi=\left(\pi_{j}, j \in S\right)$ of strictly positive numbers such that $\pi Q=0$, that is

$$
\sum_{i \in S} \pi_{i} q_{i j}=\pi_{j} \sum_{i \in S} q_{j i} \quad(j \in S)
$$

Suppose that Q is weakly symmetric with respect to π : $\pi_{i} q_{i j}=\pi_{j} q_{j i}$.
Let A be the symmetric matrix with entries $a_{i j}=\sqrt{\pi_{i}} q_{i j} / \sqrt{\pi_{j}}$. It is orthogonally similar to a diagonal matrix $D=\operatorname{diag}\left\{d_{0}, d_{1}, \ldots, d_{N}\right\}: A=M D M^{\top} \ldots$, et cetera, \ldots

Finite state Markov chains - some linear algebra

Let $\left(X_{t}, t \geq 0\right)$ be a continuous-time Markov chain taking values in $S=\{0,1, \ldots, N\}$ with (conservative) transition rate matrix Q. So, there is collection $\pi=\left(\pi_{j}, j \in S\right)$ of strictly positive numbers such that $\pi Q=0$, that is

$$
\sum_{i \in S} \pi_{i} q_{i j}=\pi_{j} \sum_{i \in S} q_{j i} \quad(j \in S)
$$

Suppose that Q is weakly symmetric with respect to π : $\pi_{i} q_{i j}=\pi_{j} q_{j i}$.
Let A be the symmetric matrix with entries $a_{i j}=\sqrt{\pi_{i}} q_{i j} / \sqrt{\pi_{j}}$. It is orthogonally similar to a diagonal matrix $D=\operatorname{diag}\left\{d_{0}, d_{1}, \ldots, d_{N}\right\}: A=M D M^{\top} \ldots$, et cetera, \ldots leading to the spectral solution of $P^{\prime}(t)=Q P(t)(\mathrm{BE})$:

$$
p_{i j}(t)=\pi_{j} \sum_{k=0}^{N} e^{d_{k} t} \mathcal{Q}_{i}^{(k)} \mathcal{Q}_{j}^{(k)}, \quad \text { where } \mathcal{Q}_{i}^{(k)}=\frac{M_{i k}}{\sqrt{\pi_{i}}}
$$

General symmetric Markov chains - some functional analysis

Let $\pi=\left(\pi_{j}, j \in S\right)$ be a collection of strictly positive numbers and suppose that P is weakly symmetric with respect to π : $\pi_{i} p_{i j}(t)=\pi_{j} p_{j i}(t)(i, j \in S)$.
${ }^{5}$ Kendall, D.G (1959) Unitary dilations of one-parameter semigroups of Markov transition operators, and the corresponding integral representations for Markov processes with a countable infinity of states. Proc. London Math. Soc. 9, 417-431.

General symmetric Markov chains - some functional analysis

Let $\boldsymbol{\pi}=\left(\pi_{j}, j \in S\right)$ be a collection of strictly positive numbers and suppose that P is weakly symmetric with respect to π : $\pi_{i} p_{i j}(t)=\pi_{j} p_{j i}(t)(i, j \in S)$.

Define $T_{t}: \ell_{2} \rightarrow \ell_{2}$ by

$$
\left(T_{t} x\right)_{j}=\sum_{i \in S} x_{i}\left(\pi_{i} / \pi_{j}\right)^{1 / 2} p_{i j}(t) \quad\left(i \in S, x \in \ell_{2}\right)
$$

${ }^{5}$ Kendall, D.G (1959) Unitary dilations of one-parameter semigroups of Markov transition operators, and the corresponding integral representations for Markov processes with a countable infinity of states. Proc. London Math. Soc. 9, 417-431.

General symmetric Markov chains - some functional analysis

Let $\boldsymbol{\pi}=\left(\pi_{j}, j \in S\right)$ be a collection of strictly positive numbers and suppose that P is weakly symmetric with respect to π : $\pi_{i} p_{i j}(t)=\pi_{j} p_{j i}(t)(i, j \in S)$.

Define $T_{t}: \ell_{2} \rightarrow \ell_{2}$ by

$$
\left(T_{t} x\right)_{j}=\sum_{i \in S} x_{i}\left(\pi_{i} / \pi_{j}\right)^{1 / 2} p_{i j}(t) \quad\left(i \in S, x \in \ell_{2}\right)
$$

Then $\left(T_{t}, t \geq 0\right)$ is a semigroup which is self adjointing $\left\langle T_{t} x, y\right\rangle=\left\langle x, T_{t} y\right\rangle$.
${ }^{5}$ Kendall, D.G (1959) Unitary dilations of one-parameter semigroups of Markov transition operators, and the corresponding integral representations for Markov processes with a countable infinity of states. Proc. London Math. Soc. 9, 417-431.

General symmetric Markov chains - some functional analysis

Let $\pi=\left(\pi_{j}, j \in S\right)$ be a collection of strictly positive numbers and suppose that P is weakly symmetric with respect to π : $\pi_{i} p_{i j}(t)=\pi_{j} p_{j i}(t)(i, j \in S)$.

Define $T_{t}: \ell_{2} \rightarrow \ell_{2}$ by

$$
\left(T_{t} x\right)_{j}=\sum_{i \in S} x_{i}\left(\pi_{i} / \pi_{j}\right)^{1 / 2} p_{i j}(t) \quad\left(i \in S, x \in \ell_{2}\right)
$$

Then $\left(T_{t}, t \geq 0\right)$ is a semigroup which is self adjointing $\left\langle T_{t} x, y\right\rangle=\left\langle x, T_{t} y\right\rangle$.
Kendall used a result of Riesz and Sz.-Nagy on the spectral representation of self-adjoint semigroups to show that there is a finite signed measure $\gamma_{i j}$ with support $[0, \infty)$ such that

$$
p_{i j}(t)=\left(\pi_{j} / \pi_{i}\right)^{1 / 2} \int_{[0, \infty)} e^{-t x} d \gamma_{i j}(x)
$$

Furthermore, $\gamma_{i i}$ is a probability measure.
${ }^{5}$ Kendall, D.G (1959) Unitary dilations of one-parameter semigroups of Markov transition operators, and the corresponding integral representations for Markov processes with a countable infinity of states. Proc. London Math. Soc. 9, 417-431.

General symmetric Markov chains - speculation

In can be seen from the definition of the birth-death polynomials $\mathcal{Q}=\left(\mathcal{Q}_{n}, n \in S\right)$,

$$
\begin{aligned}
\mathcal{Q}_{0}(x) & =1 \\
-x \mathcal{Q}_{0}(x) & =-\left(\lambda_{0}+\mu_{0}\right) \mathcal{Q}_{0}(x)+\lambda_{0} \mathcal{Q}_{1}(x) \\
-x \mathcal{Q}_{n}(x) & =\mu_{n} \mathcal{Q}_{n-1}(x)-\left(\lambda_{n}+\mu_{n}\right) \mathcal{Q}_{n}(x)+\lambda_{n} \mathcal{Q}_{n+1}(x)
\end{aligned}
$$

and the form of transition rate matrix restricted to $S=\{0,1, \ldots\}$,

$$
Q=\left(\begin{array}{cccccc}
-\left(\lambda_{0}+\mu_{0}\right) & \lambda_{0} & 0 & 0 & 0 & \ldots \\
\mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & 0 & 0 & \ldots \\
0 & \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} & 0 & \ldots \\
0 & 0 & \mu_{3} & -\left(\lambda_{3}+\mu_{3}\right) & \lambda_{3} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right),
$$

that $\mathcal{Q}=\mathcal{Q}(x)$ as a column vector satisfies $\mathcal{Q}=-x \mathcal{Q}(\mathcal{Q}(x)$ is an x-invariant vector for Q), and $\mathcal{R}=\mathcal{R}(x)$, where $\mathcal{R}_{j}(x)=\pi_{j} \mathcal{Q}_{j}(x)$, as a row vector satisfies $\mathcal{R} Q=-x \mathcal{R}$ ($\mathcal{R}(x)$ is an x-invariant measure for Q).

General symmetric Markov chains - speculation

One might speculate that

$$
p_{i j}(t)=\pi_{j} \int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \mathcal{Q}_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

holds more generally under weak symmetry $\left(\pi_{i} q_{i j}=\pi_{j} q_{j i}\right)$ for a function system $\mathcal{Q}=\left(\mathcal{Q}_{n}, n \in S\right)$ (necessarily orthogonal with respect to ψ) satisfying $\mathcal{Q} \mathcal{Q}=-x \mathcal{Q}$.

General symmetric Markov chains - speculation

One might speculate that

$$
p_{i j}(t)=\pi_{j} \int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \mathcal{Q}_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

holds more generally under weak symmetry $\left(\pi_{i} q_{i j}=\pi_{j} q_{j i}\right)$ for a function system $\mathcal{Q}=\left(\mathcal{Q}_{n}, n \in S\right)$ (necessarily orthogonal with respect to ψ) satisfying $\mathcal{Q} \mathcal{Q}=-x \mathcal{Q}$.

It might perhaps be too much to expect that

$$
p_{i j}(t)=\int_{0}^{\infty} e^{-t x} \mathcal{Q}_{i}(x) \mathcal{R}_{j}(x) d \psi(x) \quad(i, j \geq 0, t \geq 0)
$$

holds with just $\boldsymbol{\pi} Q=0$ for function systems $\mathcal{Q}=\left(\mathcal{Q}_{n}, n \in S\right)$ and $\mathcal{R}=\left(\mathcal{R}_{n}, n \in S\right)$ satisfying $Q \mathcal{Q}=-x \mathcal{Q}$ and $\mathcal{R} Q=-x \mathcal{R}$, and, of necessity,

$$
\int_{0}^{\infty} \mathcal{Q}_{i}(x) \mathcal{R}_{j}(x) d \psi(x)=\delta_{i j} \quad(i, j \geq 0)
$$

