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Metapopulations

Local Extinction
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Metapopulations
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Metapopulations

Total Extinction
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Metapopulations
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SPOM

A stochastic patch occupancy model (SPOM)
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A stochastic patch occupancy model (SPOM)

Suppose that there are n patches.

Let X (n)

t = (X
(n)

1,t , . . . , X
(n)

n,t), where X
(n)

i,t is a binary variable
indicating whether or not patch i is occupied at time t.
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SPOM

A stochastic patch occupancy model (SPOM)

Suppose that there are n patches.

Let X (n)

t = (X
(n)

1,t , . . . , X
(n)

n,t), where X
(n)

i,t is a binary variable
indicating whether or not patch i is occupied at time t.

(X
(n)

t , t = 0, 1, . . . ) is assumed to be a Markov chain.

Colonization and extinction happen in distinct, successive
phases.
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SPOM - Phase structure

For many species the propensity for colonization and local
extinction is markedly different in different phases of their
life cycle. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and

the California linderiella (Linderiella occidentalis), both

listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot

butterfly (Euphydryas editha bayensis), now extinct
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SPOM - Phase structure

Colonization and extinction happen in distinct, successive
phases.

t− 1 t t+ 1 t+ 2

We will we assume that the population is observed after
successive extinction phases (CE Model).
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SPOM - Phase structure

Colonization and extinction happen in distinct, successive
phases, as independent trials.

Colonization: unoccupied patches become occupied
independently with probability c(n−1

∑n

i=1X
(n)

i,t ), where
c : [0, 1] → [0, 1] is continuous, non-decreasing and concave.
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SPOM - Phase structure

Colonization and extinction happen in distinct, successive
phases, as independent trials.

Colonization: unoccupied patches become occupied
independently with probability c(n−1

∑n

i=1X
(n)

i,t ), where
c : [0, 1] → [0, 1] is continuous, non-decreasing and concave.

Proportion of patches occupied
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SPOM - Phase structure

Colonization and extinction happen in distinct, successive
phases, as independent trials.

Colonization: unoccupied patches become occupied
independently with probability c(n−1

∑n

i=1X
(n)

i,t ), where
c : [0, 1] → [0, 1] is continuous, non-decreasing and concave.

Extinction: occupied patch i remains occupied
independently with probability si (fixed or random).

[More generally, we can allow c( · ) to depend on the relative
positions of all patches and their areas, and allow the
survival probabilities to evolve in time.]
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SPOM - Phase structure

Colonization and extinction happen in distinct, successive
phases, as independent trials.

Colonization: unoccupied patches become occupied
independently with probability c(n−1

∑n

i=1X
(n)

i,t ), where
c : [0, 1] → [0, 1] is continuous, non-decreasing and concave.

Extinction: occupied patch i remains occupied
independently with probability si (fixed or random).
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SPOM - example

n = 30 patches

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0

(11 patches occupied)
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SPOM - example

n = 30, c(x) = 0.7x

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0

c(x) = c(1130) = 0.7× 0.36̇ = 0.256̇
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SPOM - example

n = 30, c(x) = 0.7x

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
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SPOM - example

n = 30, c(x) = 0.7x

0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0

0.60 0.56 0.63 0.62 0.52 0.61 0.68 0.49 0.49 0.49 0.50
0.41 0.59 0.63 0.60 0.61

[Survival probabilities listed for occupied patches only]



ACEMS Retreat, January 2015 - Page 28

SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0



ACEMS Retreat, January 2015 - Page 29

SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0

c(x) = c(1030) = 0.7× 0.3̇ = 0.23̇
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0
C 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0
C 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0
C 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0
C 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0
C 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
.
.
.
C 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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SPOM

The evolution of the process can be summarized by

X
(n)

i,t+1
d
= Bin

(

X
(n)

i,t + Bin
(

1−X
(n)

i,t , c
(

1
n

∑n

j=1X
(n)

j,t

)

)

, si

)

,

a “Chain Bernoulli” structure.
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SPOM

The evolution of the process can be summarized by

X
(n)

i,t+1
d
= Bin

(

X
(n)

i,t + Bin
(

1−X
(n)

i,t , c
(

1
n

∑n

j=1X
(n)

j,t

)

)

, si

)

,

a “Chain Bernoulli” structure.

In the homogeneous case, where si = s is the same for
each i, the number N (n)

t of occupied patches at time t is
Markovian. It has the following Chain Binomial structure:

N
(n)

t+1
d
= Bin

(

N
(n)

t + Bin
(

n−N
(n)

t , c
(

1
n
N

(n)

t

)

)

, s
)

.
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A deterministic limit

Letting the initial number N (n)

0 of occupied patches grow at
the same rate as n . . .

Theorem If N (n)

0 /n
p→ x0 (a constant), then

N
(n)

t /n
p→ xt, for all t ≥ 1,

with (xt) determined by xt+1 = f(xt), where

f(x) = s(x+ (1− x)c(x)).
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A deterministic limit

Letting the initial number N (n)

0 of occupied patches grow at
the same rate as n . . .

Theorem If N (n)

0 /n
p→ x0 (a constant), then

N
(n)

t /n
p→ xt, for all t ≥ 1,

with (xt) determined by xt+1 = f(xt), where

f(x) = s(x+ (1− x)c(x)).

Survival probability Colonization probability
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CE Model - Evanescence
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CE Model - Quasi stationarity
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Stability

xt+1 = f(xt), where f(x) = s(x+ (1− x)c(x)).

Stationarity : c(0) > 0. There is a unique fixed point
x∗ ∈ [0, 1]. It satisfies x∗ ∈ (0, 1) and is stable.

Evanescence: c(0) = 0 and 1 + c ′(0) ≤ 1/s. Now 0 is the
unique fixed point in [0, 1]. It is stable.

Quasi stationarity : c(0) = 0 and 1 + c ′(0) > 1/s. There are
two fixed points in [0, 1]: 0 (unstable) and x∗ ∈ (0, 1) (stable).
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CE Model - Evanescence
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
CE Model simulation (n =100, s =0.8, c(x) = cx with c =0.7)

t

N
u
m
b
er

of
o
cc
u
p
ie
d
p
at
ch
es



ACEMS Retreat, January 2015 - Page 47

A Gaussian limit

Theorem Further suppose that c(x) is twice continuously
differentiable, and let

Z
(n)
t =

√
n(N

(n)

t /n− xt).

If Z(n)
0

d→ z0, then Z
(n)
• converges weakly to the Gaussian

Markov chain Z• defined by

Zt+1 = f ′(xt)Zt + Et (Z0 = z0),

with (Et) independent and Et ∼ N(0, v(xt)), where

v(x) = s
[

(1− s)x+ (1− x)c(x)
(

1− sc(x)
)]

.
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CE Model - Quasi stationarity
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CE Model - Gaussian approximation
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CE Model - Quasi stationarity
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CE Model - Gaussian approximation
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SPOM - general case

Return now to the general case, where patch survival
probabilities (si) are random and patch dependent , and we
keep track of which patches are occupied . . .

X
(n)

i,t+1
d
= Bin

(

X
(n)

i,t + Bin
(

1−X
(n)

i,t , c
(

1
n

∑n

j=1X
(n)

j,t

)

)

, si

)

.
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Our approach - Point Processes

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].
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Our approach - Point Processes

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].

Define sequences (σn) and (µn,t) of random measures by

σn(B) = #{si ∈ B}/n, B ∈ B([0, 1]),

µn,t(B) = #{si ∈ B : X
(n)

i,t = 1}/n, B ∈ B([0, 1]).
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Our approach - Point Processes

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].

Define sequences (σn) and (µn,t) of random measures by

σn(B) = #{si ∈ B}/n, B ∈ B([0, 1]),

µn,t(B) = #{si ∈ B : X
(n)

i,t = 1}/n, B ∈ B([0, 1]).

We are going to suppose that σn
d→ σ for some non-random

(probability) measure σ.
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Our approach - Point Processes

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].

Define sequences (σn) and (µn,t) of random measures by

σn(B) = #{si ∈ B}/n, B ∈ B([0, 1]),

µn,t(B) = #{si ∈ B : X
(n)

i,t = 1}/n, B ∈ B([0, 1]).

We are going to suppose that σn
d→ σ for some non-random

(probability) measure σ.

Think of σ as being the distribution of survival probabilities.
In the earlier simulation σ was a Beta(25.2, 19.8) distribution.
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Our approach - Point Processes

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].

Define sequences (σn) and (µn,t) of random measures by

σn(B) = #{si ∈ B}/n, B ∈ B([0, 1]),

µn,t(B) = #{si ∈ B : X
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i,t = 1}/n, B ∈ B([0, 1]).

We are going to suppose that σn
d→ σ for some non-random

(probability) measure σ.

Think of σ as being the distribution of survival probabilities.
In the earlier simulation σ was a Beta(25.2, 19.8) distribution.
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Our approach - Point Processes

Equivalently, we may define (σn) and (µn,t) by

∫

h(s)σn(ds) =
1

n

n
∑

i=1

h(si)

∫

h(s)µn,t(ds) =
1

n

n
∑

i=1

X
(n)

i,t h(si),

for h in C+([0, 1]), the class of continuous functions that map
[0, 1] to [0,∞).
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Our approach - Point Processes

Equivalently, we may define (σn) and (µn,t) by

∫

h(s)σn(ds) =
1

n

n
∑

i=1

h(si)

∫

h(s)µn,t(ds) =
1

n

n
∑

i=1

X
(n)

i,t h(si),

for h in C+([0, 1]), the class of continuous functions that map
[0, 1] to [0,∞). For example (h ≡ 1),

∫

µn,t(ds) =
1

n

n
∑

i=1

X
(n)

i,t (proportion occupied).
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A measure-valued difference equation

Theorem Suppose that σn
d→ σ and µn,0

d→ µ0 for some

non-random measures σ and µ0. Then, µn,t
d→ µt for all

t = 1, 2, . . ., where µt is defined by the following recursion:
for h ∈ C+([0, 1]),

∫

h(s)µt+1(ds) = (1− ct)

∫

sh(s)µt(ds) + ct

∫

sh(s)σ(ds),

where ct = c (µt([0, 1])) = c
(∫

µt(ds)
)

.
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Homogeneous case

When σ̄(k) = (σ̄(1) )k for all k, that is the patch survival
probabilities are the same, then it is possible to simplify

µ̄
(k)

t+1 = (1− µ̄
(0)

t )µ̄
(k+1)

t + µ̄
(0)

t σ̄
(k+1) ,

We can show by induction that µ(k)

t = (σ̄(1) )kxt, where

xt+1 = σ̄(1) (xt + (1− xt) c(xt)) .

Compare this with the earlier result.
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CE Model (homogeneous) - Evanescence
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CE Model - Evanescence
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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Extra - equilibria

Our recursion is
∫

h(s)µt+1(ds) = (1− ct)

∫

sh(s)µt(ds) + ct

∫

sh(s)σ(ds).
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Extra - equilibria

Our recursion is
∫

h(s)µt+1(ds) = (1− ct)

∫

sh(s)µt(ds) + ct

∫

sh(s)σ(ds).

Let M be the set of measures that are absolutely
continuous with respect to σ and whose Radon-Nikodym
derivative is bounded by 1, σ − a.e.

We shall be interested in the behaviour of solutions to our
recursion starting with µ0 ∈ M.
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Extra - equilibria

"Differentiating" with respect to σ, we see that our recursion
can be written

∂µt+1

∂σ
= s

∂µt
∂σ

+ sct

(

1− ∂µt
∂σ

)

.



ACEMS Retreat, January 2015 - Page 72

Extra - equilibria

"Differentiating" with respect to σ, we see that our recursion
can be written

∂µt+1

∂σ
= s

∂µt
∂σ

+ sct

(

1− ∂µt
∂σ

)

.

It will be clear that µ0 ∈ M implies that µt ∈ M for all t.
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Extra - equilibria

"Differentiating" with respect to σ, we see that our recursion
can be written

∂µt+1

∂σ
= s

∂µt
∂σ

+ sct

(

1− ∂µt
∂σ

)

.

It will be clear that µ0 ∈ M implies that µt ∈ M for all t.

Furthermore, a measure µ∞ ∈ M will be an equilibrium
point of our recursion if it satisfies

∂µ∞
∂σ

= s
∂µ∞
∂σ

+ sc∞

(

1− ∂µ∞
∂σ

)

,

where c∞ = c (µ∞([0, 1])).
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Extra - equilibria

Theorem Suppose that c(0) = 0 and c ′(0) <∞. Let ψ∗ be a
solution to the equation

ψ = Rσ(ψ) :=
∫

sc(ψ)
1−s+sc(ψ)

σ(ds). (1)

The fixed points of our recursion are given by

µ∞(ds) =
sc(ψ∗)

1− s+ sc(ψ∗)
σ(ds).

Equation (1) has the unique solution ψ∗ = 0 if and only if

c ′(0)
∫

s
1−sσ(ds) ≤ 1.

Otherwise, there are two solutions, one of which is ψ∗ = 0.
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Extra - stability

Theorem If ψ∗ = 0 is the only solution to Equation (1),
then, for all µ0 ∈ M, µt → 0. If Equation (1) has a non-zero
solution, then, for all µ0 ∈ M such that

∫

µ0,j(ds) > 0 for
some j, µt → µ∞.
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