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Abstract

Loss networks have long been used to model various types of telecommunication net-
work, including circuit-switched networks. Such networks often use admission controls,
such as trunk reservation, to optimize revenue or stabilize the behaviour of the network.
Unfortunately, an exact analysis of such networks is not usually possible, and reduced-load
approximations such as the Erlang Fixed Point (EFP) approximation have been widely
used. The performance of these approximations is typically very good for networks with-
out controls, under several regimes. There is evidence, however, that in networks with
controls, these approximations will in general perform less well.

We propose an extension to the EFP approximation that gives marked improvement for a
simple ring-shaped network with trunk reservation. It is based on the idea of considering
pairs of links together, thus making greater allowance for dependencies between neighbour-
ing links than does the EFP approximation, which only considers links in isolation.
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1 Introduction

Loss networks have long been used as models of circuit-switched networks. They have also
been used to model local area networks, multi-processing architectures, data-base man-
agement systems, mobile/cellular radio and broadband packet networks (see for example
[6, 13, 18, 23, 27, 32]). When routing is fixed and no controls are employed, closed-form
expressions for the blocking probabilities and stationary distribution are easily obtained
from these models. However, even for moderately sized networks, these expressions are
often difficult to compute, since the number of states rapidly increases as network size
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and capacities increase. To overcome these problems, reduced-load approximations such as
the Erlang Fixed Point (EFP) approximation and stochastic knapsack approximation have
been widely used [21, 33].

When controls such as trunk reservation are added, even the derivation of closed-form
expressions is no longer possible, and the balance equations for the stationary distribu-
tion must be solved numerically. The performance of the reduced-load approximations
is typically very good for networks without controls, where theoretical justification exists
for their use under two different types of limiting regime [19, 35, 39]. However, in net-
works with controls these approximations will in general perform less well [15], although
for some classes of network their performance is still excellent when trunk reservation is
applied [16, 26]. In this paper we propose an extension to the EFP approximation for a
simple network with trunk reservation controls. It is based on the idea of considering pairs
of links together, whereas the traditional EFP approximation considers links in isolation.
We choose to consider a ring-shaped network because of its highly linear structure-it is
precisely under conditions such as these that the traditional EFP approximation might be
expected to perform less well. The simplicity of the network also enables us to obtain a
clearer understanding of the performance of our proposed two-link extension to the EFP
approximation. We find that it gives considerable improvement for the ring-shaped network
with trunk reservation under a range of traffic loadings. We believe that this improvement
will carry over to more complicated network structures and routing patterns.

Although the ring network has a simple structure, it has nevertheless been used quite
widely in practice, most recently for optical networks, where such networks with wave-
length changers at each node are exactly equivalent to circuit-switched networks [4]. For
optical ring networks without wavelength changers, the circuit-switched network model
gives bounds on the blocking probabilities [5]. As Gerstel et. al. [11] point out, ring net-
works are attractive precisely because of their simplicity, and also because they provide
some fault tolerance. The routing patterns that we study here are indeed more simplified
than those that would be seen in practice, but we regard this as an essential first step
before proceeding to further generalizations.

Consider a circuit-switched network without controls, such as the example depicted in
Figure 1. Let K be the number of links (circuit groups) or resources in the network. A route
in the network is expressed as a subset of {1,2,..., K}, where R is the set of all routes.
Calls are offered to route r € R as a Poisson stream of rate v,, where we assume that R
indexes independent Poisson processes. Each call on route r requires a;.(> 0) circuits from
link j, the total number of circuits on link j being C;. Calls requesting route r are blocked
and lost if, on any link j € r, there are fewer than a;, available circuits. Otherwise, the
call is connected and simultaneously holds aj, circuits on each link j € r for the duration
of the call. For simplicity, we shall take aj, € {0,1}. Call durations are independent and
identically distributed exponential random variables with unit mean, and are independent
of the arrival processes.

Let n = (n,, r € R), where n, is the number of calls in progress using route r, let
C=(Cj, j=1,...,K),and let A = (ajr, r € R, j =1,...,K). Then the usual model
for a circuit-switched network without controls (see for example [21]) is a continuous-time
Markov chain (n(t), ¢ > 0) taking values in

S=8(C)={neZl : An<C},

with unique equilibrium distribution 7 = (w(n), n € S) given by

Ny
m(n) = &~ H%, nes,
reR T
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Fig 1. A typical circuit-switched network
(5 nodes, 6 links and 5 routes)

where

=

nes(C) TET\’,
The stationary probability that a route r call is blocked is then given by

o(C — Aey)

S (o) B

where e, is the rth unit vector.
The reduced load approximation for the blocking probabilities is obtained as follows.

Let
C c n -t
o (5)

be Erlang’s formula for the loss probability on a single link with C' circuits and Poisson
traffic offered at rate v. The Erlang fixed point equations are then given by

BJ:E(pjaCJ)a j:1,2a"',K,

where

Za],«z/r H 1 - Bz)

ier—{j}

Kelly [19] proved that there is a unique vector (By,...,Bg) € [0,1]% satisfying these
equations. The EFP approximation is obtained by using B; to estimate the probability



that link j is full, and
Ly=1- H(1 — By)%r
1E€T

to estimate the probability that a call on route r € R is blocked. Similar equations can
be derived for more complex systems (for instance, when routing is not fixed), but they
may then have more than one fixed point (see for example [12]). The idea underlying the
approximation is that if links blocked independently (they clearly do not) then the arrival
process at link j due to route » would be Poisson, thinned by a factor 1 — B; at each of the
other links 7 € r, before being offered to link j. For an excellent overview of loss networks
in general, and this approximation in particular, see Kelly [21], and also Ross [33].

The EFP approximation performs particularly well under two limiting regimes. The
first is one in which the topology of the network is held fixed, while capacities and arrival
rates at the links become large [19]; this has become known as the Kelly limiting regime,
or (somewhat misleadingly) as the heavy traffic limit. Under the second limiting regime,
called diverse routing, the number of links, and the number of routes which use these
links, become large, while the capacities are held fixed and the arrival rates on multi-link
routes become small. Examples of this are star networks and fully-connected networks with
alternate routing [14, 16, 26, 35, 39].

The above description is for a network without admission or routing controls. In this
paper we will be concerned with a form of admission control known as trunk reservation.
A trunk reservation policy or threshold policy is one where a call on route r is accepted
on link j € r provided there will be at least ¢, circuits free on that link after that call is
accepted. More formally, when the system is in state n, a route r call is accepted on link j
provided ) ajsns < Cj — tjr — ajr. Usually we have ¢j, = t,, the same for all links on a
route. As before, a call is lost if there is any link on its route unable to accept it.

Trunk reservation controls have a number of desirable properties including ease of im-
plementation and, typically, robustness to fluctuations in arrival rates. They were first
introduced as a means of admitting only higher-priority traffic when links were relatively
full. If route r calls produce a reward w, when accepted, and the standard assumptions of
Poisson arrivals, exponential holding times and independence hold, then such a policy is
optimal for a single link [24]. If these assumptions don’t hold, or if the system has multiple
links, then trunk reservation is no longer optimal, but can still be very close to optimal (see
for example [1, 22, 29, 38]). Moreover, it may still be asymptotically optimal for networks
with diverse routing [16, 26] or in the Kelly limiting regime [17]. Trunk reservation has
also been used as a control in networks with alternative routing to eliminate problems with
bistability [12]. More recently, dynamic trunk reservation policies have been proposed as a
means of ensuring fair and efficient service to competing streams of traffic [28].

Unfortunately, when trunk reservation is incorporated in the loss network model the
equilibrium distribution no longer has product form. Although transition rates are still
easily obtained, there is no closed-form solution to the full balance equations, which can
then only be solved numerically. For moderate or large networks, solving these equations
in real time (which may be desirable for network optimization) will not be feasible. In
addition, a desirable feature of network controls is that they only require local knowledge of
the system occupancies. In this situation, approximations are especially useful, particularly
if they can be applied locally.

The EFP can easily be extended to allow for trunk reservation (see for example [20]).
As for standard EFP, the occupancy of a single link is approximated using a birth and
death process. Arrival rates are now state-dependent, since arrivals at link 7 on route r can
only be accepted if the occupancy is no more than C; — tj, — aj,. Provided a;, € {0,1},



the stationary distribution for the jth link is approximated by

c; -1

1 k—1 1 n—1
Wj(V,t,C;n): yH)\JZ HHAﬁ’
k=0 " i=0 T i=0

where

Nji = ZaerrI{igcftjﬁajr} H (1- B](cr))'
r ker—{j}

The B,(CT) here is an estimate of the probability that a call on route r is blocked on link %,

and is given by
Ck

B,(:) = Z (v, t, C;n).
n=Cg—tgr—ag,+1
The probability that a call is blocked on route r is approximated by

Ly=1-[J@-B").
jEr

Under the diverse routing limit it seems that the approximation is valid [16, 26]. How-
ever, it is known that the extended EFP is not asymptotically correct in the Kelly limiting
regime when trunk reservation is in use [15]. Thus, particular care must be taken with its
use, and it is correspondingly of greater interest to find refined approximations for networks
which do not exhibit diverse routing.

In this paper we examine a simple, highly linear network and develop a refined approx-
imation for the blocking probabilities under trunk reservation. The network we consider
consists of a number of links forming a single loop or ring, with single-link and two-link
traffic. This paper briefly reviews previous related work, and then develops a new, im-
proved version of the fixed-point equations derived in [2] incorporating trunk reservation,
which gives a marked improvement over previous methods.

The remainder of this paper is organized as follows. In section 2 we describe the
ring network in greater detail, and discuss approximations for the network without trunk
reservation. Section 3 generalizes this to the situation incorporating trunk reservation. In
section 4 we give numerical examples that demonstrate that the new approximation does
give a marked improvement on the classical extended EFP approximation for networks with
trunk reservation. Finally, in section 5 we discuss extensions and directions for further work.

2 The symmetric ring network

Consider a symmetric loss network with K links forming a loop, each link having the same
capacity C. Such a network is depicted in Figure 2. There are only two types of route:
one-link routes (type 1), and two-link routes (type 2) comprising pairs of adjacent links.
Single-link traffic is offered at rate v; on each link, and two-link traffic is offered at rate v» to
each two-link route. Associated with each traffic stream is a trunk reservation parameter.
Type ¢ routes have trunk reservation parameter t;, i = 1,2. In this section we assume
t;1 = t2 = 0. The EFP approximation then gives

Li=B and L,=1-(1-B)?
where B is the unique solution to

B = E(V1 + 21/2(1 - B),C)
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(rate vy) \
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Two-link traffic
(rate vo)

Fig 2. A ring network with 6 nodes showing
one- and two-link traffic using a given link

To illustrate why we might expect the EFP approximation to perform badly in the
present context, we shall assess the dependence between two adjacent links. Take links 1
and 2 as reference links and consider the subnetwork depicted in Figure 3. We identify
three routes: {1}, {2} and {1,2}. If m, denotes the number of calls on route r in the
subnetwork, then m4 is the number of calls occupying capacity on link 1 but not on link 2,
that is m1 = n1 + nK1, meo is the number occupying capacity on link 2 but not on link 1,
that is mo = ng + n93, and, mi2(= n12) is the number of calls occupying capacity on both
links. Figure 4 shows the correlation between links 1 and 2 for the network with C = 12,
K =12 and v; = 1»(= v); to be precise, we have plotted

Corr (I{m1+m12<C’}’ I{m2—|—m12<c})

against the arrival rate v. We note that the correlation peaks when the total arrival rate
v1 + 215 at a link is approximately equal to the capacity C.

The blocking probabilities can be estimated more accurately by making explicit al-
lowance for the dependencies between adjacent links. The presentation here follows that of
Bebbington et al. [2], which proposed an improved approximation by considering two-link
subnetworks with state-dependent arrival rates. Zachary and Ziedins [37] used a Markov
random field approach to obtain improved approximations for general networks without
controls. Their approximations give successive multi-link refinements of the EFP approxi-
mation for networks without controls. The approximation that they give for the blocking
probabilities for the symmetric ring network with one-link and two-link traffic is the same
as that given here, although expressed somewhat differently. The expressions are exact for
the infinite line network, and they show both convergence and uniqueness for the line and
ring networks. Earlier papers by Zachary [36] and Kelly [19] had previously shown that
this approximation is exact for an infinite line network carrying only two-link traffic. The
idea of using state-dependent arrival rates in two-link subnetworks has also been discussed
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(C=12, K =12, v1 = v = V)




by Pallant [30] and Pallant and Taylor [31] (see also [7, 8, 9]), although they obtain rather
different expressions than the ones given below. For a fuller discussion refer to [3].

The approximation in [2] considers a two-link subnetwork of the ring network as in
Figure 2 above and uses knowledge of the state of a given link in estimating the probability
that the adjacent link is full. The two-link subnetwork has calls requiring capacity on
both links and also calls requiring capacity on just one. Arrivals requesting capacity from
both links arrive at rate vo. Arrival rates at each of the single links of the subnetwork
are state-dependent and given by p, = v1 + 12(1 — by), n € {0,1,...,C — 1}, where b, is
the probability that link K is fully occupied, conditional on m; = n (by symmetry, b, is
also the probability that link 3 is fully occupied, conditional on mo = n). The stationary
distribution for the two-link subnetwork is then given by

Vém (H:Ln:lal Pn) (H:anzal Pn)

m1!m2!m12!

W(ml,mg,mu) = 7r(m) =o'

An estimate of b, is found by assuming that b,, does not depend on m5. Forn =0,...,C—
1, we set
n
>m=oP(n —m,C —m,m)
n — C— 7
Z?n:O Zrzom p(n —m,T, m)

where
ni, NK1 mpg—1
SD) (HS:O /)s)

n1!mK!nK1!

p(nlamK,nKl) =

The dependence of b, on m19 in the ring network is due to the cyclic nature of the network,
but is expected to be slight for large networks: indeed, Zachary and Ziedins [37] have shown
that this dependence decays as the size of the network increases. Once b, is estimated and
7 determined, we approximate the probability that a single-link call is blocked by

C C—-mi2

L = Z Z 7(C — mi2, m2, m12)

mi12=0 mao=0
and the probability that a two-link call is blocked by

c
Ly =2L — Z (C — mi2,C — miz,m12).

mi2=0

Figures 5a and 5b show the relative error in using the EFP approximation and the two-
link approximation to estimate the blocking probability of single-link and two-link calls,
respectively, in a network with C = 12, K = 12 and v; = vo(= v). The improvement
over the EFP approximation obtained using this approximation is considerable. Indeed,
in this example the maximum error is of order 10~2 for both types of traffic. There is an
interesting connection between the correlation and relative error of the EFP. Correlation
peaks when the total offered load to a link (17 + 214) is equal to the capacity of the link.
For single link calls, this is the point at which the EFP for single-link calls is most sensitive,
that is, exhibits the greatest variation, as demonstrated in the plot of the relative errors
for the two approximations (Figure 5a).

3 Trunk Reservation

In this section we will present an extension of the approach considered in the previous
section to allow for trunk reservation.
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We begin by detailing the standard extension of the EFP to the ring network with trunk
reservation. As outlined in section 1, the general idea is to approximate the stationary
distribution on a single link by a birth and death process with state-dependent arrival
rates (see for example [20]). Let L1(L2) be the approximate probabilities that a single-link
(two-link) call is blocked, and B(!) and B(®) be the approximate probabilities that a link
has no circuit available for single-link and two-link calls, respectively. There are two cases
to consider, depending on whether single-link or two-link calls have higher priority.

If single-link calls have higher priority, then the trunk reservation parameter against
two-link calls is 3 > 0 and the upwards transition rates on a single link are given by

vi+ 21 -B®) i< C—ty
A = 141 C—-ty<i<C
0 i>C

with downward rates p; = i. The stationary distribution for a single link, considered in
isolation, is given by

(1 + 2v5(1 — B@)ymin(n,C—ta) [n=Cals

n!

m(n) =&

?
where [-]; denotes the positive part. We approximate B() = 7(C), B? = Zg:C—tg w(n)
and I; = BY, Ly =1— (1 - B®)2

Now suppose that two-link calls have higher priority. Then #; > 0 and the upwards
transition rates are now

vi+2»(1-B®) i<C-t

i =< 2uy(1—B®) C-t<i<C
0 i>C

with downwards transition rates, as previously, u; = ¢. The stationary distribution for a
single link in isolation is now given by

(11 + 2u5(1 — B@))min(n,C—11) (21, (1 — B2)))ln—Ctal+

m(n) =&} -

)

with B® = 7(C) and B = Schtl m(n). The blocking probabilities are again esti-
mated by L1 = B, L, =1 — (1 — B®)2. Henceforth EFP will refer, in the presence of
trunk reservation, to the extended version outlined above.

Other single-link approximation schemes might also be used. For instance, if capacity
requirements and holding times for the two call types are not the same, then a multi-
dimensional description of the state of a single link might be used. However, the stationary
distribution of the single link no longer has product form, even if no trunk reservation
controls are used. Coyle et al. [10] suggest two ways of dealing with this difficulty in order
to achieve a product-form approximation, citing the source of the approach as Ciardo
and Trivedi [7, 8]. We investigated an extension of their approach to incorporate trunk
reservation and found that it did not perform as well as the EFP. Thus in this paper,
two-link approximation schemes will always be compared with the single-link EFP scheme.

In the previous section we outlined a two-link approximation for the ring network with-
out controls, based on conditional probabilities and state-dependent arrival rates. The
two-link approximation that we develop in this section is an extension of that idea. The
approximation takes the two-link subnetwork (1,2) (Figure 3) with state space {m =
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(m1,ma, mi2) : m1 +miz2 < Cyma+miz < C,myg < C—tg,my > 0,mp >0,m2 >0} and
calculates the equilibrium distribution 7(-), using the full balance equations,

n(m) Y q(m,m') = n(m')q(m’,m),

m/’ m/’
where
g(m,m') =

( Vil ympp<o—ti}y T v2a(ma + mio) I tmipco—ty ™ = (M1 +1,m2,m12)
VlI{m2—|—m12<C—t1} + V2a(m2 + ml?)I{MQ+m12<C—t2} ml = (m17 ma + 1 ml?)
VQI{ml+m12<C—t2}I{m2+m12<C—t2} m' = (m17 ™o, mi2 + 1)

< mlI{m1>0} m' = (m1 -1 mg,mlg)
mal{m,>0} m' = (my,ms — 1,m19)
m12d{my,>0) m' = (m1,ma,mis — 1)

L 0 otherwise,

are the transition rates from state m to m’. Thus a(m) can be thought of as the conditional
probability of accepting a two-link call on the link, K, adjacent to link 1, given m =
m1 + mi12. An analogous expression applies for links 2 and 3 due to the symmetry of the
network. In terms of the blocking probabilities, a(m) = 1 — b(m), where
in(m,C—t Cc—
b(m) — ZE;EZO & ZmKTZIél—tz—mKl 7.‘-(""’1’1(7 m —1MmKi, mKl)

Zmin(m,()—t2) ZC—mKl

mK1:0 mK:0

w(mg,m —mK1, K1)

The b(m),0 < m < C — t3, can be interpreted as conditional blocking probabilities, anal-
ogous to those obtained for the network without controls. Given that a link has total
occupied capacity m, b(m) is the conditional probability that the adjacent link will not
accommodate a two-link call.

We have investigated various estimates of the conditional probabilities and found this
to be the most satisfactory. Other estimates that we investigated included ones that were
considerably more complicated, with the arrival rates depending on (mq,m12), not just
m1 + m19 as they do here.

4 Numerical examples

In this section we present a selection of simulation results illustrating the performance
of both the EFP and the two-link approximation that we propose above. All the plots
below give the relative errors of the blocking probabilities for the two types of call. Since
it is not feasible to calculate the exact stationary distribution for the ring network when
trunk reservation is in use, we compared both the EFP approximation and the two-link
approximation with the simulated [34] proportion of calls blocked in a system with K = 24,
after a presample period sufficient to discount transient effects. The simulated blocking
probabilities were found to be relatively insensitive to variations in K above 6 or so. The
95% confidence intervals obtained for the blocking probabilities were used to give 95%
confidence intervals for the relative errors. Thus if the blocking probability had confidence
interval (I1,l2) and the approximation is denoted by a, the confidence interval for the
relative error was given by ((a —I3)/l2, (a —11)/11).

Let us begin with two examples with varying traffic load, where C = 12 and 1» =
2v1. Figures 6a and 6b show the relative errors for the two types of call under both
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approximations when ¢; = 0,%2 = 3 (one-link traffic is protected) while Figures 7a and 7b
illustrate the case when t; = 3,2 = 0 (two-link traffic is protected). We note that the
two-link approximation performs better, in general, than the EFP. The improvement is
particularly apparent when two-link traffic is protected. In that case, the relative error of
the EFP for two-link calls is quite high (10%) even for relatively low values of the blocking
probability (around 3%). When one-link traffic is protected, the result for high traffic
load is simply a system containing predominantly one-link calls, and hence there is little
inaccuracy in the EFP approximation.

Although it appears that confining our attention to the case where two-link traffic is
protected will be more rewarding, we shall briefly further examine the effect of changing
the trunk reservation parameter. Again we have C' = 12, and this time v; = 3,1y = 4.5,
so that the arrival rate is in the critical region. Figures 8a and 8b show the relative errors
in the two approximations for one-link and two-link calls respectively. The horizontal axis
here gives the trunk reservation against single-link calls, that is, 1. A negative t; should
be interpreted here as trunk reservation against two-link calls. Thus, for instance, t; = —3
corresponds to to = 3,21 = 0. We see that the relative error is most pronounced when
there is trunk reservation against single-link calls, with the two-dimensional approximation
providing a marked improvement over the EFP.

Our penultimate example examines more closely the behaviour of the approximation at
the critical point where v; +21p = C. We take C' = 12 and t; = 3,t2 = 0 as above and allow
vy to vary while holding the total load fixed. Figures 9a and 9b show the relative errors.
The relative error of the EFP is again highest for the two-link calls, and interestingly we
note it is not monotone in the arrival rate for two-link calls.

Our final example investigates the effect of increasing capacities and loads in proportion.
We let v; = C/6,v, = 1.75v1, while varying C. Again we protect two-link traffic, with
t1 = 3,12 = 0. The relative errors are shown in Figures 10a and 10b. We see that, while
the accuracy of the EFP approximation for two-link traffic increases slowly with increasing
C, its performance is again markedly worse than the two-link approximation. For one-link
calls, while the relative error in the EFP approximation is better than for two-link traffic,
the two-link approximation is still superior. Moreover, the EFP approximation exhibits
systematic error with increasing C.

As our examples show, the two-link approximation that we have proposed performs
better than the EFP approximation in general and, on occasion, markedly better. The
convergence of the method is typically fast—for the examples we studied the fixed point
had converged to the fourth decimal place within 5 or 6 iterations.

We also performed some experiments to assess the computational complexity of our
algorithm. These indicate that the algorithm is NP-hard (in the number of circuits),
with the computation time increasing by approximately 50% with each additional circuit,
yet insensitive to the loading and the particular trunk reservation regime used. To our
knowledge there are no analytical results on the computational complexity for even the
standard EFP approximation, although direct methods for evaluating blocking probabilities
are known to be #P-complete [25] (and thus at least a hard as NP-complete problems).

5 Conclusions and Future Work

In this paper we have proposed a two-link approximation scheme for the ring network that
performs better than the EFP approximation in general and, on occasion, markedly better.

The model studied throughout this paper of a symmetric ring network with only one-
and two-link routes was deliberately chosen for ease of exposition and calculation, and to

12
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Fig 6a. Relative error in the estimated blocking probability of
single-link calls (C' =12, K = 24, v, =2v, t; =0, t3 = 3)
------------ EFP Two-link Approx.
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Fig 6b. Relative error in the estimated blocking probability of
two-link calls (C =12, K =24, vy =2u1, t; =0, to = 3)
------------ EFP — — Two-link Approx.
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------------ EFP Two-link Approx.
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14



-0.01 0.0 0.01 0.02

Relative error for single-link calls

-0.02

0.02 0.04 0.06 0.08 0.10

Relative error for two-link calls

0.0

-4 -2

Trunk reservation against single-link calls ¢; (—t2)

Fig 8a. Relative error in the estimated blocking probability of
single-link calls (C' = 12, K = 24, v; = 3.0, v, = 4.5)
EFP ——— Two-link Approx.

2 4

Trunk reservation against single-link calls ¢ (—t2)

Fig 8b. Relative error in the estimated blocking probability of
two-link calls (C' =12, K =24, v, = 3.0, v» = 4.5)
EFP —— Two-link Approx.

15



Relative error for single-link calls

Relative error for two-link calls

-0.03 -0.02 -0.01 0.0

-0.04

0.02 0.04 0.06 0.08 0.10

0.0

2 4 6 8 10
Arrival rate for single-link calls v

Fig 9a. Relative error in the estimated blocking probability of
single-link calls (C =12, K =24, vy +2v, = C, t; = 3, t2 = 0)
------------ EFP — Two-link Approx.

Arrival rate for single-link calls v

Fig 9b. Relative error in the estimated blocking probability of
two-link calls (C =12, K =24, 11+ 21 =C, t;1 =3, t2 = 0)
------------ EFP — — Two-link Approx.

16



Relative error for single-link calls

Relative error for two-link calls

0.01

0.0

-0.01

1‘0 1‘5 2b 2‘5 Sb
Capacity C
Fig 10a. Relative error in the estimated blocking probability of
single-link calls (K =24, v = C/6,va =7C/24, t; = 3, t2 = 0)
------------ EFP — Two-link Approx.
2 A

0.04 0.06 0.08

0.02

10 15 20 25 30
Capacity C

Fig 10b. Relative error in the estimated blocking probability of
two-link calls (K =24, v1 = C/6, va = TC/24, t1 = 3, t2 = 0)
------------ EFP — — Two-link Approx.

17



provide a case where the EFP was expected to perform inaccurately. There would seem to
be several aspects worth considering in a generalization of the method: routes longer than
two links, asymmetry in the network, routes requiring multiple circuits from individual
links (multi-rate traffic), and finally, intersections of more than two links (that is, networks
other than ring networks). We will briefly outline what we see as the difficulties and likely
outcome of extending our algorithm in these cases.

Routes longer than two links in the ring network can be dealt with directly by ad-
justing the expression given for the transition rates g(m,m') in section 3 for the two-link
approximation. Acceptance probabilities for such routes are then calculated by multiplying
together acceptance probabilities on subnetworks along the route, possibly with the added
refinement of using conditional acceptance probabilities for links and subnetworks.

The formulation of the approximation becomes more interesting when the ring network
is not symmetric, as then a collection of fixed point equations will need to be solved, giving
separate acceptance probabilities for each connected two-link subnetwork. This will lead
to a modular, or decomposition, type fixed point solution (see for example [30, 9]), where
blocking probabilities for individual subnetworks are calculated using other subnetworks’
blocking probabilities (in the exposition above, since all subnetworks were identical, this
was considerably simplified). Some form of (weighted) average of the blocking probabilities
may then need to be constructed.

We have briefly investigated the possibility of multiple-circuit traffic using a modifica-
tion of the approximation. The remainder of the formulation (a symmetric ring network
with only one- and two-link calls) was unchanged. A fundamental question is how multi-
circuit calls are cleared down, in particular how they are represented in the state variable.
Since it is not feasible to have a 6-dimensional representation of the network occupancy,
multi-circuit calls must have their circuits clear down independently. We tried two ways
of weighting these, first assigning weights to find a new rate of cleardown per occupied
circuit, and secondly adding a two-circuit cleardown to the possible transitions. Weights
were assigned iteratively on the basis of the calculated loss probabilities for the various
types of call. The second option was by far the better, and actually performed somewhat
better than the extended EFP on the limited range of examples tried. This is in contrast
to the decomposition approach of Coyle et al.[9].

Let us now consider multiple-link intersections. If we consider only those portions of
calls on the links in the intersection, a three-link intersection is equivalent to a three-link
ring network. A three-link approximation was examined for the ring network and found to
be (very) memory intensive, and hence slow, with no increase in accuracy (although for a
different formulation this may not be the case). We note also that Zachary and Ziedins [37]
consider a fully-connected four node network without trunk reservation, using the Markov
random field approximation, and find that there is no need to consider anything more than
a two-link approximation. Hence we would expect the two-link approximation to serve
adequately for multiple-link intersections. However, for star-shaped networks the single-
link EFP approximation is adequate, and so for networks that have topologies that are
primarily star-like the benefits of employing these more complex methods may be slight
when compared with the cost of doing so. In practice, the two-link approximation might be
used for the linear sections of the network, with the single-link EFP approximation used for
those sections of the network that are more star-like in structure and have diverse routing.

Future directions for research are to apply the method to more complicated networks,
with the ultimate aim of obtaining a theoretical basis for determining more refined approx-
imations for general networks with trunk reservation and, possibly, other controls.
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