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Abstract

Many large-scale stochastic systems, such as telecommunications networks, can be modelled

using a continuous-time Markov chain. However, it is frequently the case that a satisfactory

analysis of their time-dependent, or even equilibrium behaviour, is impossible. In this paper

we propose a new method of analyzing Markovian models, whereby the existing transition

structure is replaced by a more amenable one. Using rates of transition given by the equilibrium

expected rates of the corresponding transitions of the original chain, we are able to approximate

its behaviour. We present two formulations of the idea of expected rates. The first provides a

method for analysing time-dependent behaviour, while the second provides a highly accurate

means of analysing equilibrium behaviour. We shall illustrate our approach with reference to

a variety of models, giving particular attention to queueing and loss networks.

1 Introduction

In order to understand the rationale of expected rates, consider any large-scale stochastic system
whose natural state description is Markovian, yet its equilibrium or time-dependent behaviour is
difficult to analyze. The system in question might be a communications network, whose state
records the numbers of calls on the various routes through the network (each call using resources
at several communications links). The idea is to find an alternative state description, together
with an approximating transition structure, which can be analyzed more simply. An alternative
description for the communications network might focus on the links, rather than the routes, say
recording the resource usage on those links. Since each link will usually service several different
routes, this description is unlikely to be Markovian. However, we might usefully approximate the
behaviour of the network by considering the links in isolation, and model the resource usage on
any given link by a Markov chain whose rates of transition are given by the equilibrium expected
rates of the corresponding transitions of the original chain.

We begin by proposing a formulation of the idea of expected rates, which is similar to one
suggested to us by Peter Taylor as a “generalized reduced load concept”. We illustrate how it
applies to the study of time-dependent behaviour in Markovian queueing networks. We shall see
that the resulting approximations may be accurate for only a limited range of parameter values. We
will then describe a variant of the basic idea which offers much greater promise, for it encapsulates
several recent methods for analyzing loss networks that are known to be highly accurate in a
wide variety of circumstances. Our method is appropriate for estimating equilibrium quantities in
Markovian models for which there is no appropriate product-form equilibrium distribution.

2 Expected rates

Let (X(t), t ≥ 0) be a continuous-time Markov chain over a denumerable state space S with tran-
sition rates Q = (q(x, y), x, y ∈ S), where for simplicity q(x, x) = 0, and set q(x) =

∑

y∈S q(x, y).
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Suppose that S is irreducible (and hence q(x) > 0 for all x ∈ S) and positive recurrent, and let
π = (π(x), x ∈ S) be the unique equilibrium distribution of the chain. Thus,

∑

x∈S

π(x)q(x, y) = π(y)q(y), y ∈ S.

Now let (Xn, n = 0, 1, . . . ) be the jump chain, that is, the discrete-time Markov chain over S,
with X0 = X(0), that records the sequence of states visited. Note that S is also irreducible for the
jump chain because its transition probabilities P = (p(x, y), x, y ∈ S) are given by p(x, y) =
q(x, y)/q(x). We shall assume that

∑

x∈S π(x)q(x) < ∞, so that the jump chain admits an
equilibrium distribution m = (m(x), x ∈ S) given by m(x) = π(x)q(x)/

∑

y∈S π(y)q(y), x ∈ S; see
Exercise 1.1.5 of Kelly [9]. Notice that m coincides with π only when q(x) is the same for all x,
and so only in this exceptional case can the two chains be stationary together.

Now identify a set of transitions A ⊆ S̃, where S̃ = S × S, and define r(A) by

r(A) = Em (q(Xn, Xn+1)|(Xn, Xn+1) ∈ A) , (1)

where Em(·) denotes expectation with respect to the distribution m. Thus, r(A) is the equilibrium
expected rate of transition, given that the transition is in A. Notice that r(A) does not depend
on n because, under m, (Xn, Xn+1) forms a stationary sequence. Indeed, this sequence is a
Markov chain with transition probabilities p((u, x); (x, y)) = p(x, y) and equilibrium distribution
m(x, y) = m(x)p(x, y); see Proposition 2.1 of Kelly and Pollett [10]. We can evaluate r(A) as
follows:

r(A) =
∑

(x,y)∈A

q(x, y)
Pr(Xn = x,Xn+1 = y)

∑

(u,v)∈A Pr(Xn = u,Xn+1 = v)

=
∑

(x,y)∈A

q(x)p(x, y)
m(x)p(x, y)

∑

(u,v)∈Am(u)p(u, v)

=

∑

(x,y)∈A q(x)m(x)p(x, y)2
∑

(x,y)∈Am(x)p(x, y)
=

∑

(x,y)∈A π(x)q(x, y)
2

∑

(x,y)∈A π(x)q(x, y)
. (2)

Remark It is natural for the expectation in (1) to be taken with respect to the equilibrium
distribution of the jump chain. However, if it had been taken with respect to π, thus giving a
quantity rn(A) which would generally depend on n, we would have rn(A) → r(A) as n → ∞, at
least formally, since because the jump chain is aperiodic, Pr(Xn = x)→ m(x).

Example 1 To illustrate how expected rates can be evaluated, consider the M/M/1 queue. It has
Poisson arrivals at rate α > 0, independent exponentially distributed service times with unit mean,
and a single server operating at rate φ > 0, serving customers one at a time in the order in which
they arrive. With the state X(t) representing the number of customers in the system at time t, we
have S = {0, 1, . . . }, q(x, x+ 1) = α and q(x, x− 1) = φ for x ≥ 1, with all other transition rates
equal to 0. Define transitions A = {(x, x + 1), x = 0, 1, . . . } and D = {(x, x − 1), x = 1, 2, . . . },
corresponding to arrivals and departures, respectively. Assuming that the traffic intensity ρ = α/φ
is strictly less than 1, an equilibrium distribution exists for both X(t) and its jump chain, and,
π(x) = (1− ρ)ρx. Using (2) we find, perhaps not unexpectedly, that r(A) = α (notice that, more
generally, if q(x, y) = α for x, y ∈ A, so that transitions in A form a Poisson process with rate α,
then r(A) = α). We also find that r(D) = φ, but note that the equilibrium expected departure rate
is Eπ(φ1{X(t)>0}) = φPr(X(t) > 0) = α, which is different from r(D). We see that the expected
rates approximation for this simple queueing system is the same as the original system.

3 Markovian queueing networks

In this section we shall study a network of queues, with the queues labelled 1, . . . , J . If customers
can enter or leave the network, it is said to be open. In this case customers arrive at queue i
from outside the network as a Poisson stream with rate νi (if νi = 0 there is no exogenous arrival



process at that queue). Otherwise, a fixed number N of customers circulate, and the network
is said to be closed . After completing service at queue i, a customer either leaves the network,
with probability λi0, or proceeds to another queue j, with probability λij (in the closed case we
take λi0 = 0). For simplicity, we shall assume that λii = 0. Clearly

∑

j λij = 1. We shall
assume that these parameters are chosen so that a customer can reach any queue from anywhere
in the network. In the open case we shall also assume that a customer can reach any queue from
outside the network and eventually leave the network starting from anywhere. In the closed case
these conditions ensure that the routing matrix (λij) is irreducible and, hence, that there is a
unique collection (α1, α2, . . . , αJ ) of strictly positive numbers which satisfy the traffic equations
αj =

∑

i αiλij , j = 1, 2, . . . , J . Here we may assume without loss of generality that
∑

j αj = 1. In
the open case these conditions ensure that there is a unique positive solution (α1, α2, . . . , αJ ) to the
equations αj = νj+

∑

i αiλij , j = 1, 2, . . . , J . In this case αj is the arrival rate at queue j, while in
the closed case αj is proportional to the arrival rate at queue j. Service times of customers at the
various queues in the network are assumed to be independent exponentially distributed random
variables with unit mean, and independent of the arrival and routing processes. When there are n
customers at a given queue j, a service effort of φj(n) is offered. We shall assume that φj(0) = 0
and φj(n) > 0 whenever n ≥ 1. For example, when φj(n) = φjn, every customer at queue j gets
the same service effort φj (the infinite-server queue), while if φj(n) = φj min{n, sj}, for n ≥ 1,
then at most sj customers receive service, each at the same rate φj (the sj-server queue). In this
latter case ρj = αj/(φjsj) is called the traffic intensity at queue j.

We have described the basic migration process of Whittle [21] (see also Whittle [22]), a special
case of which was considered first by Jackson [8]; for further details see Chapter 2 of Kelly [9].
The equilibrium behaviour of these networks is well understood, and summarized in Theorems 2.3
and 2.4 of Kelly [9]. The network can be described by a continuous-time Markov chain with state
n = (n1, n2, . . . , nJ ), where nj is the number of customers at queue j (including those in service).
In the open case S = ZJ

+ and the transition rates are given by

q(n,n + ej) = νj (external arrival at queue j)

q(n,n− ei) = λi0φi(ni) (external departure at queue i)

q(n,n− ei + ej) = λijφi(ni) (movement from queue i to queue j) ,

where ej is the unit vector in ZJ
+ with a 1 as its j-th entry. An equilibrium distribution exists if

b−1
j := 1 +

∑∞
n=1(α

n
j /
∏n
r=1 φj(r)) <∞ for all j, in which case

π(n) =

J
∏

j=1

πj(nj), where πj(n) = bj
αnj

∏n
r=1 φj(r)

. (3)

Thus, in equilibrium, n1, n2, . . . , nJ are independent and each queue j behaves as if it were isolated
with Poisson input at rate αj .

In the closed case S (= SN ) is the finite subset of ZJ
+ with

∑

j nj = N , where recall that N is
the total number of customers in the network. The transition rates are now simply

q(n,n− ei + ej) = λijφi(ni) (movement from queue i to queue j) .

An equilibrium distribution always exists and is given by

π(n) (= πN (n)) = BN

J
∏

j=1

α
nj

j
∏nj

r=1 φj(r)
,

where BN is a normalizing constant chosen so that π sums to 1 over SN .
There are very few explicit results concerning the time-dependent behaviour of these networks,

and a product form such as (3) is exhibited rather rarely by the transient distribution. Indeed,
Boucherie and Taylor [4] have shown that the networks with all queues being ·/M/∞ are the only
ones with a transient product-form distribution (among a much larger class of Markovian networks
than the ones considered here). We propose the following approximation using expected rates.



Define

Ak(m) = {(m,n) ∈ S̃ : mk = m,nk = m+ 1}, m ≥ 0,

Dk(m) = {(m,n) ∈ S̃ : mk = m,nk = m− 1}, m ≥ 1,
(4)

where recall that S̃ = S × S. These represent, respectively, an arrival and a departure transition
at queue k when there are m individuals at that queue, and so ak(m) = r(Ak(m)) and dk(m) =
r(Dk(m)) will give the expected (state-dependent) arrival and departure rates for queue k under
the equilibrium distribution of the jump chain. We propose to approximate the behaviour of the
network by a system of isolated queues, with each queue k modelled as a birth-death process with
birth rates qk(m,m+ 1) = ak(m), m ≥ 0, and death rates qk(m,m− 1) = dk(m), m ≥ 1.

On summing m(m)q(m,n) and m(m)q(m,n)2 over (m,n) in Ak(m) and in Dk(m), we find
that the expected rates can be expressed in terms of π. In the open case ak(m) = ak is the same
for all m and given by

ak =
1

αk



ν2
k +

∑

j

αjλ
2
jk

∞
∑

n=0

πj(n)φj(n+ 1)



 ,

while dk(m) = dkφk(m), where dk = λ2
k0 +

∑

j λ
2
kj . In the closed case

ak(m) =

∑

j αjλ
2
jkEπN−1

(

φj(nj + 1)1{nk=m}

)

αkPrπN−1
(nk = m)

,

where PrπN−1
(nk = m) is the equilibrium probability that there are m customers at queue k in

a network with N − 1 customers circulating, while dk(m) = dkφk(m), where dk =
∑

j λ
2
kj . For

both the open and closed cases dk(m) is given explicitly. In contrast, the expected arrival rates
can be evaluated explicitly only in special cases. For the open network, if φj(n) = φj for n ≥ 1
(φj(0) = 0), then

∑

n πj(n)φj(n+1) = φj , while if φj(n) = φjn, then
∑

n πj(n)φj(n+1) = αj+φj .
Thus if φj(n) = φj for every j, ak = (ν2

k +
∑

j φjαjλ
2
jk)/αk, while if φj(n) = φjn for every j, then

ak = (ν2
k +

∑

j αj(αj + φj)λ
2
jk)/αk. For the closed network, if φj(n) = φj for every j, then

ak(m) = (
∑

j φjαjλ
2
jk)/αk, while if φj(n) = φjn for every j, then

ak(m) =
1

αk





∑

j

φjαjλ
2
jk +

φkC(N − 1−m)

φk − Cαk

∑

j

α2
jλ

2
jk



 ,

where C−1 =
∑

j(αj/φj).

Example 2 In order to assess the accuracy of our method, we shall examine a network for which
there are explicit results for describing time-dependent behaviour. The network we shall consider
has φj(n) = φjn for every j, so that each queue has infinitely many servers, with the servers
at queue j operating at rate φj . Explicit results exist, provided we assume that the network is
completely empty at time 0. Kingman [14] showed that if nj(0) = 0 for all j, then, for every
t > 0, n1(t), n2(t), . . . , nJ (t) are independent Poisson random variables with nj(t) having mean

µβj(t), where µ =
∑

j νj is the total exogenous arrival rate, and βj(t) =
∫ t

0
pj(t)dt, where pj(t) is

the probability that an individual, entering the network at time 0, is in queue j after time t. For
details, see Theorem 4.2 of Kelly [9]. (Note that, by Fubini’s theorem, βj(t) is the expected total
time the single individual spends in queue j up to time t.) Kingman’s result holds in much greater
generality than might be indicated by the present context. For the particular Markovian network
in question, pj(t) can be evaluated further.

If an individual arrives at the network at time t = 0, then he will enter queue j with probability
pj(0) = νj/µ. Define p0(t) = 1 −

∑

j pj(t) to be the probability that the individual has left the
network by time t, and note that p0(0) = 0. The movement of the individual through the network
can be thought of as a random walk in continuous time on the set of indices {0, 1, 2, . . . , J},
recording his present location, with 0 (an absorbing state) indicating that he has left the network.
Note that, under the conditions we have imposed, {1, 2, . . . , J} is an irreducible class for the random



walk. Since service times are exponentially distributed with mean 1 and the service rate at queue j
is φj , the rate at which the individual moves from queue i to queue j is rij = φiλij , and, from
queue i to the outside, the rate is ri0 = φiλi0. Therefore pj(t), j = 0, 1, . . . , J , satisfies a set of

forward equations pj
′(t) =

∑J
i=0 pi(t)rij , j = 0, 1, . . . , J , where, for j = 1, 2, . . . , J , rjj = −φj and

r0j = r00 = 0. These integrate to give

µpj(t) = νje
−φjt +

J
∑

i=1

∫ t

0

µpi(u)e
−φj(t−u)duφiλij , j = 1, . . . , J,

remembering that λjj = 0, and p0(t) =
∑J

i=1

∫ t

0
pi(u)duφiλi0. Recall that nj(t), j = 1, 2, . . . , J ,

are independent Poisson random variables with E(nj(t)) =
∫ t

0
µpj(s)ds.

The expected rates approximation has each queue isolated, with queue k being an infinite-server
queue having arrival rate ak = (ν2

k +
∑

j αj(αj + φj)λ
2
jk)/αk, and each of its servers operating at

rate bk = dkφk, where dk = λ2
k0 +

∑

j λ
2
kj . Thus nk(t) is a Poisson random variable with mean

(ak/bk)(1− exp(−bkt)). The expected rates approximation is given explicitly, but how accurate is
it?

We shall specialize to the case of a symmetric network, for which the mean of nj(t) can be
evaluated explicitly. Suppose that νj = ν and λj0 = λ0 for each j, and that λij = (1−λ0)/(J − 1)
for j 6= i, so that traffic equations have the solution αj = ν/λ0 (which does not depend on J).
Suppose that φj = φ is also the same for all j. Then, p0(t) = 1 − e−φλ0t and, for j = 1, 2, . . . , J ,
pj(t) = (1/J)e−φλ0t, so that nj(t) is a Poisson random variable with

E(nj(t)) =
ν

φλ0
(1− exp(−φλ0t)) .

This should be compared with the expected rates approximation, which gives

E(nj(t)) '

(

ν

φλ0
+

(1− λ0)
2

(J − 1)λ2
0 + (1− λ0)2

)(

1− exp

(

−φ

(

λ2
0 +

(1− λ0)
2

J − 1

)

t

))

.

We would expect this approximation to be accurate only in cases there the network is large, or
when λ0 is close to 1. This is illustrated in Figure 1, where the relative error in approximating
E(nj(10)) is plotted for a network with ν = 1.0 and φ = 2.0. The top pane has J = 10 and λ0

varying from 0.1 to 1.0, while the bottom pane has λ0 = 0.9 and J varying from 2 to 100.

4 An alternative approach

One of the drawbacks of defining expected rates in terms of transitions (ordered pairs of states) is
that the expectation is evaluated with respect to the equilibrium distribution of the jump chain.
We now describe an alternative approach, based on the equilibrium distribution π. Returning to
the notation of Section 2, define A(x) = {y ∈ S : (x, y) ∈ A}, x ∈ S, for any particular set A ⊆ S̃
of transitions, let A = {x ∈ S : (x, y) ∈ A for some y ∈ S}, and, in place of (1), let

r(A) = Eπ
(

q
(

X(t), A(X(t))
)

∣

∣

∣X(t) ∈ A
)

=
∑

x∈A

q(x,A(x))
π(x)

π(A)
,

where, for B ⊆ S, q(x,B) =
∑

y∈B q(x, y) and π(B) =
∑

y∈B π(y). Note that, in contrast to (1),
the expectation here is taken with respect to π.

For the Markovian networks studied in the previous section, this approach does not yield
anything new. For example, using the transitions defined by (4), and the notation ak(m) =
r(Ak(m)) and dk(m) = r(Dk(m)), we find that

ak(m) =
∑

n∈S:nk=m

(

νk +
∑

i

φi(ni)λik

)

π(n)

πk(m)

= νk +
∑

i6=k

(

∑

n∈S:nk=m

φi(ni)
∏

l 6=k

πl(nl)

)

λik = νk +
∑

i6=k

αiλik = αk ,
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Figure 1: Accuracy of the expected rates approximation for a network of infinite-server queues.

and dk(m) = φk(m). Hence, a proposal to approximate the behaviour of the network by a system
of isolated queues, with each queue j modelled as a birth-death process with birth rates αj and
death rates φj(n), would result in a system whose equilibrium behaviour is the same as the original
model; only in exceptional circumstances (Example 2) would the transient behaviour be the same.
This is a natural approach to analyzing queueing networks; see Kühn [15] for an extension to
networks with general service time distributions, which involves the additional matching of higher
order moments of the arrival and service processes.

Using a slight variation of this new rationale, we can apply the technique to cases where there
is no appropriate product form. The idea is to impose a product form π for the equilibrium
distribution (or some set of marginal distributions), to evaluate the expected rates using this
distribution, and then to use these rates to update π. By doing this repeatedly, we would hope
to find the product form which best approximates the behaviour of the original model (or some
particular quantity of interest, such as a performance measure). We shall illustrate this by looking
at an important class of models called loss networks.

The basic model describes a circuit-switching network with fixed routing, such as a telephone
network, but it also arises in the study of local area networks, multi-processing architectures, data-
base management systems, mobile/cellular radio and broadband packet networks (see Kelly [13]
for an excellent review).

The network is composed of communications links, and any route in the network can be ex-
pressed as a subset of {1, 2, . . . , J}, where J is the number of links. Let R be the set of all routes.
Calls using route r are offered at rate νr as a Poisson stream, and use λjr(≥ 0) circuits from
link j, the total number of circuits on link j being Cj . We assume that R indexes independent
Poisson processes. Calls requesting route r are blocked and lost if, on any link j, there are fewer
than λjr free circuits. Otherwise, the call is connected and simultaneously holds λjr circuits on
each link j for the duration of the call. For simplicity, we shall take λjr ∈ {0, 1}. Call durations
are independent and identically distributed exponential random variables with unit mean, and are



independent of the arrival processes.
Let n = (nr, r ∈ R), where nr is the number of calls in progress using route r, let C = (Cj , j =

1, . . . , J), and let Λ = (λjr, r ∈ R, j = 1, . . . , J). Then, (n(t), t ≥ 0) is a continuous-time Markov
chain taking values in S = S(C) =

{

n ∈ ZR+ : Λn ≤ C
}

, with transition rates given by

q(n,n + er) = νr, if n,n + er ∈ S, (call connected on route r)

q(n,n− er) = nr, if n,n− er ∈ S, (call cleared on route r)

and equal to 0 otherwise; here er is the unit vector indicating just one call in progress on route r.
It can be shown (see for example Kelly [13]) that the equilibrium distribution is given by π(n) =
B
∏

r∈R(ν
nr
r /nr!), where B = B(C) is a normalizing constant chosen so that π sums to 1 over

S(C). Most of the usual measures of performance of the network can be evaluated in terms
of π. For example, the equilibrium probability that a route-r call is blocked is given by 1 −
B(C)/B(C −Λer). However, although one has an explicit expression for the blocking probability
in terms of B, the latter cannot (usually) be computed in polynomial time (see for example
Kelly [12]). Thus, for networks with even moderate capacity, one is forced to use approximation
methods.

Define, for each k ∈ {1, 2, . . . , J}, the following sets of transitions:

Ak(u) = {(m,n) ∈ S̃ : (Λm)k = u, (Λn)k = u+ 1}, u = 0, 1, . . . , Ck − 1,

Dk(u) = {(m,n) ∈ S̃ : (Λm)k = u, (Λn)k = u− 1}, u = 1, 2, . . . , Ck.

These comprise all transitions corresponding to an increase, respectively decrease, in the usage on
link k when there are u circuits in use on that link. Now, for each m ∈ S such that (Λm)k = u,
define Ak(m, u) = {n ∈ S : (m,n) ∈ Ak(u)}, and Dk(m, u) similarly in terms of Dk(u). Then,

q(m, Ak(m, u)) =
∑

r∈R:k∈r

νr
∏

i∈r−{k}

1{ui<Ci}1{uk=u} =
∑

r∈R

λkrνr
∏

i∈r−{k}

1{ui<Ci}1{uk=u}

and q(m, Dk(m, u)) =
∑

r∈R:k∈rmr1{uk=u} =
∑

r∈R λkrmr1{uk=u} = uk1{uk=u}, where here we
have used the notation ui = (Λm)i for the number of circuits in use on link i when the state is m.
Since q(m, Dk(m, u)) = uk1{uk=u}, we shall always have dk(u) := r(Dk(u)) = u. In order to
evaluate ak(u) := r(Ak(u)), we shall impose a product form distribution for u = (u1, u2, . . . , uJ ):

π(u) =

J
∏

j=1

πj(uj), where πj(u) =
auj
u!





Cj
∑

v=0

avj
v!





−1

, u = 0, 1, . . . , Cj . (5)

This would be the equilibrium distribution for u were the individual links isolated from one another,
with calls offered to link j as a Poisson stream with rate aj , and blocked if they arrive to find Cj
circuits in use. (However, this will not be true, except in trivial cases; indeed, under the inherited
transition structure u → u ± Λer, r ∈ R, the process u(t) taking values in {u ∈ ZJ+ : u ≤ C}
will not generally be Markovian.) Using (5), we find that

ak(u) =
∑

r∈R

λkrνrPrπ

(

ui < Ci, ∀i ∈ r − {k}
∣

∣

∣uk = u
)

,

=
∑

r∈R

λkrνr
∏

i∈r−{k}

(1− Li), (6)

where Li = πi(Ci) is the probability that a call is blocked on link i, and is given by Li = E(ai, Ci),

where E(a,C) = baC/C! with b−1 =
∑C

v=0(a
v/v!) (Erlang’s formula). Notice that ak(u) does

not depend on u, and so both of our expected rates are consistent with (5). The idea now is to
update (5) replacing ak by (6) in the hope that (5) better approximates the marginal distribution
of u for the original model. If the sequence of iterates for ak converges for each k, then the
corresponding limiting values, L1, L2, . . . , LJ , for the link blocking probabilities will satisfy

Lj = E





∑

r∈R

λjrνr
∏

i∈r−{j}

(1− Li) , Cj



 .



These equations do have a fixed point, called the Erlang fixed point (EFP); this follows from the
Brouwer fixed point theorem, for they define a continuous mapping from a compact convex set
[0, 1]J into itself. The uniqueness of the Erlang fixed point, as well as the required convergence,
was established by Kelly [11].

This approximation for the blocking probabilities, which is widely known as the Erlang fixed
point approximation, is one of a wider class of reduced load approximations, named as such, because
in using (5) one is effectively thinning the offered traffic at link j by an amount determined by
the level of blocking at other links. There are several limiting regimes under which the EFP
approximation is asymptotically exact . The first is one in which the topology of the network is
held fixed, while capacities and arrival rates at the links become large (Kelly [11]); this has become
known as the Kelly limiting regime, or (somewhat misleadingly) as the heavy traffic limit . Under
the second limiting regime, called diverse routing , the number of links, and the number of routes
which use those links, become large, while the capacities are held fixed and the arrival rates on
multi-link routes become small (see for example Hunt [7], Whitt [20], and Ziedins and Kelly [23]).

In order to illustrate the accuracy of the method, we shall consider briefly a network with K
links forming a loop and with each link having the same capacity C. Suppose that there are two
types of traffic: one-link routes (type-1 traffic) and two-link routes comprising pairs of adjacent
links (type-2 traffic). Type-t traffic is offered at rate νt on each type-t route. Because of the
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Figure 2: Accuracy of the EFP approximation for a ring network with two types of traffic.

anticipated correlation between the occupancy at adjacent links, we would not expect the EFP
approximation to perform particularly well. However, as we shall see, the approximation is very
accurate. If Lt is the EFP approximation for the loss probability of type-t calls, then L1 = B
and L2 = 1 − (1 − B)2, where the B is the unique solution to B = E(ν1 + 2ν2(1 − B), C).
This is illustrated in Figure 2 for a network with C = 10, K = 10 and ν1 = ν2 =Arrival rate.
The top (respectively bottom) pane shows the relative error in the EFP approximation for type-1
(respectively type-2) calls.

The EFP approximation can be improved in a number of ways. For example, if we were to



suppose that pairs of links or, more generally, subnetworks of links behave independently, then
we could evaluate expected rates for these subnetworks, based on a product-form distribution π
similar to (5) with u partitioned appropriately, and thus produce an iterative scheme for determin-
ing π. Several other reduced-load methods can be viewed in this way, for example the methods of
Bebbington et al. [1, 2, 3], Ciardo and Trivedi [5], Coyle et al. [6], Pallant [16], Thompson [17, 18],
and Thompson and Pollett [19].

5 Concluding remarks

We have presented two approaches to the basic idea of using expected rates in approximating
the behaviour of complex Markovian systems. The first allows one to estimate time-dependent
behaviour, and is useful in analysing queueing networks. The second approach, which is useful
in estimating equilibrium behaviour, encapsulates several approximations for loss networks which
are known to be asymptotically exact. This latter approach offers great promise and warrants
further investigation. We are presently looking at some general formulations, as well as methods
for specific models, including loss networks with admission controls and queueing networks with
blocking.
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