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Abstract

Let Q be a stable and conservative Q-matrix over a countable state space S consist-
ing of an irreducible class C and a single absorbing state 0 that is accessible from C.
Suppose that Q admits a finite µ-subinvariant measure m on C. We derive necessary
and sufficient conditions for there to exist a Q-process for which m is µ-invariant on C,
as well as a necessary condition for the uniqueness of such a process.
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1 Introduction

We begin with a totally stable Q-matrix over a countable set S, that is, a collection Q =
(qij, i, j ∈ S) of real numbers that satisfies 0 ≤ qij <∞, j 6= i, qi := −qii <∞ and∑

i6=j

qij ≤ qi, i ∈ S. (1)

The Q-matrix is said to be conservative if equality holds in (1) for all i ∈ S. For simplicity,
we shall assume that Q is conservative. A set of real-valued functions P (·) = (pij(·), i, j ∈ S)
defined on [0,∞) is called a standard transition function or process if

pij(t) ≥ 0, i, j ∈ S, t > 0, (2)∑
j∈S

pij(t) ≤ 1, i ∈ S, t > 0, (3)

pij(s+ t) =
∑
k∈S

pik(s)pkj(t), i, j ∈ S, s, t > 0,

lim
t↓0

pij(t) = δij, i, j ∈ S. (4)
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P is then honest if equality holds in (3) for some (and then all) t > 0, and it is called a
Q-transition function (or Q-process) if p ′ij(0+) = qij for each i, j ∈ S.

Under the conditions we have imposed, every Q-process P satisfies the backward differ-
ential equations ,

p ′ij(t) =
∑
k∈S

qikpkj(t), t > 0, (BE ij)

for all i, j ∈ S, but might not satisfy the forward differential equations ,

p ′ij(t) =
∑
k∈S

pik(t)qkj, t > 0, (FE ij)

for all i, j ∈ S. The classical construction problem is to find one and then all Q-processes.
Feller’s recursion [2] provides for the existence of a minimal solution F (·) = (fij(·), i, j ∈ S)
to the backward equations (which also satisfies the forward equations); see also Feller [3]
and Reuter [14]. This process is the unique Q-process if and only if the system of equations∑

j∈S

qijxj = νxi, i ∈ S, (5)

has no bounded, non-trivial solution (equivalently, non-negative solution) x = (xj, j ∈ S)
for some (and then all) ν > 0 (Reuter [14]); for the non-conservative case, see Hou [4] and
Reuter [18]. When this condition fails, there are infinitely many Q-processes, including
infinitely many honest ones (Reuter [14]), and the dimension η of the space of bounded
sequences x on S satisfying (5) (a quantity that does not depend on ν) determines the
number of “escape routes to infinity” available to the process. A construction of all Q-
processes was given by Reuter [15, 16] under the assumption that η = 1 (the single-exit
case), and this was later extended to the finite-exit case (η <∞) by Williams [22].

In the case when (5) has infinitely many bounded non-trivial solutions, the problem
of constructing all Q-processes remains unsolved; it seems that there are simply too many
solutions of the backward equations to characterize. For this reason, variants of the classical
construction have been considered in which various side conditions are imposed. The most
recent work centres on an assumption that one is given an invariant measure for the Q-
matrix, that is, a collection of positive numbers m = (mi, i ∈ S) that satisfy∑

i∈S

miqij = 0, j ∈ S. (6)

The problem is then to identify Q-processes with m as their invariant measure, that is,∑
i∈Smipij(t) = mj, j ∈ S, t > 0. When does there exist such a Q-process, and, when

is it the unique Q-process with the given invariant measure? This variant of the classical
construction problem has particular significance when m is finite (

∑
i∈Smi <∞), for then

one is looking for a Q-process whose stationary distribution has been specified. The problem
of existence and uniqueness in the single-exit case was solved by Hou and Chen [5] under
the assumption that Q is m-symmetrizable, that is, miqij = mjqji, i, j ∈ S. Their results
were extended to the non-conservative case by Chen and Zhang [1] and to the general case,
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where only (6) is assumed, by Pollett [10, 12]. Recently, Zhang, Lin and Hou solved the
existence problem in, respectively, the totally stable case (qi < ∞ for all i ∈ S) [24], and
the single instantaneous case (qi =∞ for a particular i ∈ S and qj <∞ for all j 6= i) [25].
Since these papers are written in Chinese, and may not be readily accessible, we summarise
their results here:

Theorem 1 Let S be a countable set and let Q = (qij, i, j ∈ S) be a matrix over S that
satisfies qij ≥ 0, j 6= i, and

∑
k 6=i qik = −qii ≤ +∞. Let m = (mj, j ∈ S) be a strictly

positive probability measure that satisfies
∑

i6=jmiqij = −mjqjj. If either Q is totally stable
or Q is single instantaneous, then there exists a Q-process P for which m is an invariant
measure (and hence a stationary distribution) for P .

This result partly answers an open problem of Williams [23].
In the present paper we look at a slightly different kind of construction problem, where

the state space can be decomposed into an irreducible class C and a single absorbing state,
and we suppose, rather than an invariant measure, a µ-invariant measure on C is specified
through Q. We seek to determine Q-processes for which m is a µ-invariant measure on C.
Since we will not require these processes satisfy the forward equations, we shall relax the
µ-invariance for Q to µ-subinvariance for Q.

2 Interlude

Many years before the words to “Twinkle Twinkle, Little Star” were written1, children across
France sang the words to “Ah! vous dirai-je, maman” to a tune similar to the one used
by the seventeen year old Wolfgang Amadeus Mozart in his piano variations K265/300e.
Much later, Daryl Daley produced a third set of lyrics: on the day of the traditional musical
concert at the 1998 Oberwolfach Applied Probability Meeting, Daryl penned the following
in summary of the day’s talks.

Twinkle, twinkle, little dot,
Poisson, Gauss and all that rot,
Placed at random without thought,
Spectral analysed for nought.
Musing while I waited long,
Now I’ll tell it all in song.

Twinkle, twinkle, abstract queue,
Studied by a chosen few,
Feedback network, bufferless,
Inputs, outputs, what a mess!
Is it stable while I’m there?
If I prove it, who will care?

Twinkle, twinkle, sample path,
Simulated on a graph,
Optimised at Markov time.
When there’s just a single line,
Only with a heavy tail, I’ll
Prove it with a martingale.

Asymptotics of the tail
Hardly ever seem to fail.
Minus cust’mers are okay,
They’ll be served without delay.
Philip Pollett’s Markov chain,
Subinvariant shall remain.

1Ann and Jane Taylor, Rhymes for the Nursery , 1806.
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Several of the contributors to this volume attended the 1998 Oberwolfach Meeting and
remember fondly Daryl’s rendition of his poem and his expert playing of the Mozart Varia-
tions. One of us (PKP) has enjoyed many musical encounters with Daryl, and has benefited
for many years from his friendship, his generosity of spirit and his guidance. It is therefore
with some considerable pleasure that I dedicate this note to him.

Subinvariant shall remain? Not always. As we shall see, a measure m can be strictly µ-
subinvariant for Q, yet it may be possible to identify a process P for which m is µ-invariant.

3 Preliminaries

Suppose that S = {0} ∪C, where C is an irreducible class (for the minimal Q-process, and
hence for any Q-process) and 0 is an absorbing state which is accessible from C, that is,
q0 = 0 and qi0 > 0 for at least one i ∈ C. Then, if µ is some fixed non-negative real number,
a collection of strictly positive numbers m = (mj, j ∈ C) is called a µ-subinvariant measure
(on C) for Q if ∑

i∈C

miqij ≤ −µmj, j ∈ C, (7)

and µ-invariant if equality holds for all j ∈ C. We shall suppose that Q admits a µ-
subinvariant measure on C, and then identify Q-processes P such that m is a µ-invariant
(on C) for P , that is, ∑

i∈C

mipij = e−µtmj, j ∈ C, t > 0. (8)

The relationship between (7) and (8) has been divined completely for the minimal Q-
process F . It was shown by Tweedie [19] that if m is a µ-invariant measure for F , then it
is µ-invariant for Q. Conversely (Pollett [8, 9]), if m is a µ-invariant measure for Q, then it
is µ-invariant for F if and only if the equations∑

i∈C

yiqij = −νyj, 0 ≤ yj ≤ mj, j ∈ C, (9)

have no non-trivial solution for some (and then all) ν < µ. If µ > 0 and the measure m is
assumed to be finite, that is

∑
i∈Cmi < ∞, then much simpler conditions obtain (Pollett

and Vere-Jones [13], Nair and Pollett [7]). For example, if F is honest (and hence the unique
Q-process), then a finite µ-subinvariant measure m for Q is µ-invariant for F if and only
if
∑

i∈Cmiqi0 = µ
∑

i∈Cmi. We will see that this condition guarantees, more generally, the
existence and uniqueness a Q-processes P for which the given m is a µ-invariant measure.
We note that, in determining such a P , we are effectively identifying a process with a given
quasi-stationary distribution (van Doorn [20]): a probability distribution π = (πj, j ∈ C)
over C is called a quasi-stationary distribution if pj(t)/

∑
i∈C pi(t) = πj for all t > 0, where

pj(t) =
∑

i∈C πipij(t), t > 0, so that, conditional on non-absorption, the state probabilities
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of the underlying continuous-time Markov chain are stationary. It was shown by Nair and
Pollett [7] that a distribution π = (πj, j ∈ C) is a quasi-stationary distribution if and only
if, for some µ > 0, π is a µ-invariant measure for P , in which case if P is honest, then
aPi = 1, for all i ∈ C, where aPi = limt→∞ pi0(t) (absorption occurs with probability 1).

4 Existence

It will be convenient to specify transitions functions through their Laplace transforms. If P
is a given transition function, then the function Ψ(·) = (ψij(·), i, j ∈ S) given by

ψij(α) =

∫ ∞
0

e−αtpij(t) dt, i, j ∈ S, α > 0, (10)

is called the resolvent of P . If i, j ∈ C, the integral in (10) converges for all α > −λP (C),
where λP (C) is the decay parameter of C (for P ); see Kingman [6]. In particular, since C is
irreducible, the integral (10) has the same abscissa of convergence for each i, j ∈ C. Notice
also that, since 0 is an absorbing state, ψ0j(α) = δ0j/α. Analogous to properties (2)–(4)
of P , the resolvent satisfies

ψij(α) ≥ 0, i, j ∈ S, α > 0, (11)

∑
j∈S

αψij(α) ≤ 1, i ∈ S, α > 0, (12)

ψij(α)− ψij(β) + (α− β)
∑
k∈S

ψik(α)ψkj(β) = 0, i, j ∈ S, α, β > 0, (13)

lim
α→∞

αψij(α) = δij, i, j ∈ S. (14)

(Note that (13) is called the resolvent equation.) Indeed, any Ψ that satisfies (11)–(14) is
the resolvent of a standard transition function P (see Reuter [15, 16]). Furthermore, (12)
is satisfied with equality if and only if P is honest, in which case the resolvent is said to be
honest. Also, the Q-matrix of P can be recovered from Ψ using the following identity:

qij = lim
α→∞

α(αψij(α)− δij). (15)

A resolvent that satisfies (15) is called a Q-resolvent. The resolvent Φ(·) = (φij(·), i, j ∈ S)
of the minimal Q-process has itself a minimal interpretation (see (Reuter [14, 15]); it is the
minimal solution to the equations αψij(α) = δij +

∑
k∈S qikψkj(α), i, j ∈ S, α > 0, which

are analogous to (BE ij), and Φ is called the minimal Q-resolvent.
We can identify µ-invariant measures using resolvents. If P is a Q-process with re-

solvent Ψ and m = (mj, j ∈ C) is a µ-invariant measure for P , where of necessity
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µ ≤ λP (C) (see Lemma 4.1 of Vere-Jones [21]), then, since the integral in (10) converges
for all α > −λP (C), we have, for all j ∈ C and α > 0, that∑

i∈S

miαψij(α− µ) = mj. (16)

We refer to m as being µ-invariant for Ψ if (16) is satisfied. Finally, a simple extension of
Lemma 4.1 of Pollett [11] establishes that m is µ-invariant for Ψ if it is µ-invariant for P ,
and, if µ ≤ λP (C), then m is µ-invariant for P if it is µ-invariant for Ψ.

We are now ready to state our main result.

Theorem 2 Let µ > 0 and suppose that Q admits a finite µ-subinvariant measure m on C.

1. If the minimal Q-process F is honest, then m is a µ-invariant measure on C for F if
and only if ∑

i∈C

miqi0 = µ
∑
i∈C

mi, (17)

in which case m is µ-invariant for Q.

2. If F is dishonest, then there exists a Q-process P for which m is µ-invariant on C if
and only if ∑

i∈C

miqi0 ≤ µ
∑
i∈C

mi. (18)

Proof. Part 1 follows from Theorem 4.1 of Nair and Pollett [7]. The necessity of Part 2
is an immediate consequence of Theorem 3.2 of Nair and Pollett [7]. To complete the proof
we shall show that if (18) holds, then there exists a Q-process P for which m is µ-invariant
on C.

If m is µ-invariant on C for F , there is nothing to prove; indeed, m is µ-invariant
on C for F if and only if

∑
i∈Cmiqi0 = µ

∑
i∈Cmia

F
i , where recall that aFi = limt→∞ fi0(t)

(Theorem 4.1 of [7]), this being consistent with (18). Suppose, then, that m is not µ-
invariant on C for F . We will specify a (non-minimal) Q-resolvent Ψ(·) = (ψij(·), i, j ∈ S)
for which m is µ-invariant measure on C. Let

ψij(α) = φij(α) +
zi(α)dj(α)

(α + µ)
∑

k∈Cmkzk(α)
, i, j ∈ S, (19)

where z(·) = (zi(·), i ∈ S) is given by zi(α) = 1−
∑

j∈S αφij(α), i ∈ S, and d(·) = (di(·), i ∈
S) by

di(α) = mi −
∑
j∈C

mj(α + µ)φji(α), i ∈ C, (20)
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and

d0(α) =
e

α
−
∑
j∈C

mj(α + µ)φj0(α), (21)

where e satisfies ∑
i∈C

miqi0 ≤ e ≤ µ
∑
i∈C

mi. (22)

Note that z0(α) = 0, and, since F is dishonest, zi(α) > 0 for some (and then all) i ∈ C.
Since m is not µ-invariant on C for F , we must have∑

i∈C

mi(α + µ)φij(α) < mj, (23)

for at least one j ∈ C. Since F satisfies (FE ij) over S, we have, in particular, that

αφi0(α) =
∑
j∈C

φij(α)qj0, i ∈ C. (24)

Hence, from (22), (23), (24) and (18), we have∑
i∈C

mi(α + µ)φi0(α) <
1

α

∑
i∈C

miqi0 ≤
e

α
.

Thus, d0(α) > 0 and dj(α) > 0 for at least one j ∈ C.
Next we shall show that Ψ, given by (19), is a Q-resolvent and that the given m is a

µ-invariant measure on C for Ψ. Clearly ψij(α) ≥ 0 for all i, j ∈ S. Since m is finite,
we have, from the definition of d, that α

∑
j∈S dj(α) ≤ (α + µ)

∑
j∈Cmjzj(α), and so∑

j∈S αψij(α) ≤ 1 for all i ∈ S. In order to prove that Ψ is the resolvent of a standard
transition function P , we need only show that Ψ satisfies the resolvent equation (13); see
Theorem 1 of Reuter [17]. We shall use the following identities:

zi(α)− zi(β) + (α− β)
∑
k∈C

φik(α)zk(β) = 0, i ∈ C, (25)

di(α)− di(β) + (α− β)
∑
k∈C

dk(α)φki(β) = 0, i ∈ C, (26)

αd0(α)− βd0(β) + (α− β)
∑
k∈C

dk(α)βφk0(β) = 0 (27)

and

(α + µ)
∑
i∈C

mizi(α)− (β + µ)
∑
i∈C

mizi(β) = (α− β)
∑
i∈C

di(α)zi(β). (28)

7



The first three of these can be verified directly using the fact that Φ satisfies the resolvent
equation and that z0(α) = 0. The fourth identity follows from the first on multiplying by mi

and summing over i. Using (25)–(28), together with the resolvent equation for Φ, it is easy
to verify that Ψ satisfies its own resolvent equation.

Next we need to verify that P is indeed a Q-process, that is p ′ij(0+) = qij for all i, j ∈ S.
We shall use a remark of Reuter on Page 83 of [15] (see also Theorem 3.1 of Feller [3]): if one
is given a standard transition function P , then it is a Q-process if and only if the backward
equations hold, equivalently,

αψij(α) = δij +
∑
k∈S

qikψkj(α), (29)

for all i, j ∈ S and α > 0. But, this follows almost immediately from the identity∑
k∈C

qikzk(α) = αzi(α), i ∈ S, (30)

which can be deduced from the backward equations for Φ.
We have shown that Ψ is the resolvent of a Q-process P . To show that m is a µ-invariant

measure for P , we again use the definition of d: it is elementary to check that∑
i∈S

mi(α + µ)ψij(α) = mj, j ∈ C, (31)

and so the result follows. �

In view of the relationship between quasi-stationary distributions and µ-invariant mea-
sures (Proposition 3.1 of Nair and Pollett [7]), we obtain the following corollary of Theorem 2.

Corollary 1 Let µ > 0, and let m = (mj, j ∈ C) be a µ-subinvariant probability measure
on C for Q.

1. If the minimal Q-process F is honest, then m is a quasi-stationary distribution on C
for F if and only if (17) holds.

2. If the minimal Q-process F is dishonest, then there exists a Q-process P for which m
is a quasi-stationary distribution on C if and only if (18) holds.

5 Uniqueness

Next we shall examine the question of uniqueness. This was considered briefly in the Sec-
tion 5 of Nair and Pollett [7] under the assumption that Q is a single-exit Q-matrix. Here,
in the general case, we give a necessary condition for there to exist uniquely Q-process for
which m is µ-invariant on C. Combining the above results with Corollary 5.2 of Nair and
Pollett [7], we arrive at the following theorem.
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Theorem 3 Let µ > 0 and suppose that Q admits a finite µ-subinvariant measure m on C.

1. If m is µ-invariant for the minimal Q-process F , which is true if and only if

µ
∑
i∈C

mia
F
i =

∑
i∈C

miqi0, (32)

then it is the unique Q-process for which m is µ-invariant on C. When this condition
holds, m is µ-invariant on C for Q.

2. If m is not µ-invariant for the minimal Q-process, there exists uniquely a Q-process
for which m is µ-invariant only if (18) holds.

3. If Q is single-exit, there exists uniquely Q-process for which m is µ-invariant if and
only if (18) holds.

Proof. Part 1 follows directly from Theorem 2 and the fact that the Q-process is unique
in this case. For Part 2, recall that in the proof of Theorem 2 we established that if∑

i∈Cmiqi0 < µ
∑

i∈Cmi, then there are infinitely many Q-processes for which m is µ-
invariant on C. In fact, for each e satisfying (22), we obtain a Q-process, given by (20),(21)
and (19), for which m is µ-invariant on C. The final part of the theorem is a direct
consequence of Corollary 5.2 of [7]. �
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