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ABSTRACT

In this paper we provide a complete quasistationary analysis for the class

of level-dependent, discrete-time quasi-birth-and-death processes (QBDs) for

which level zero has been collapsed into an absorbing state.

We show that the form of a quasistationary distribution depends upon

whether the eigenvalue of a certain matrix is equal to one or less than one.

Furthermore, we show how to calculate the convergence norm α of such a

QBD and observe that the QBD is α-recurrent in the first case mentioned above

and α-transient in the second case. The further classification of an α-recurrent

QBD as α-positive or α-null depends on whether the convergence radius α2

of the modified QBD in which level one is collapsed into an absorbing state

is strictly greater than, or equal to, α. In the first of these cases the QBD is

α-positive, while in the second case the QBD may be α-positive or α-null.

Key words: Quasi-birth-and-death process, Quasistationary distributions,

Limiting conditional distributions, β-invariant measures.

1 INTRODUCTION

Suppose that we are given a discrete-time Markov chain (X(n); n ∈ Z+) with a countable

state space consisting of a single absorbing state 0 and an irreducible class C from which

state 0 can be reached.



The communicating class C of (X(n)) is, of course, transient. However, in many phys-

ical systems well-modelled by such Markov chains, the absorbing state is reached at an

extremely slow rate and it is observed that the system appears to settle down into an

equilibrium over the states of C. Examples occur in the modelling of wildlife population

processes (see [15, 19]), the modelling of autocatalytic chemical reactions (see [7, 8, 22])

and in reliability theory (see [10, 23]). In such applications we often observe that a physical

system cannot recover if all the individuals have died, all reactant has disappeared or a

system of machines has completely broken down, and yet the system does appear to exist

in a state of equilibrium before such an event occurs.

The notion of a quasistationary distribution has proved to be a potent tool in modelling

this behaviour. It is a distribution over the transient communicating class of an absorbing

Markov chain defined as follows. Let P be the transition matrix of (X(n)) and 1P be the

restriction of P to C. A probability distribution π = (πx, x ∈ C) is a quasistationary

distribution if, for all x ∈ C and n ≥ 1, the state probabilities px(n) = Pr(X(n) = x)

of the chain with initial distribution px(0) = πx satisfy px(n)/(1− p0(n)) = πx. Thus, if

the initial distribution is a quasistationary distribution π, the state probabilities of the

chain conditioned on non-absorption by time n are also given by π (see van Doorn and

Schrijner [31]).

It follows immediately that π is a quasistationary distribution if and only if π is a

solution of

m = βm1P (1.1)

where β−1 = 1−
∑

x∈C πxPx0.

For any real number β > 0, a nontrivial, nonnegative vector m that satisfies (1.1)

is called a β-invariant measure (on C for 1P ). Under appropriate conditions (see, for

example, Kesten [14] and Seneta and Vere-Jones [28]) a normalised β-invariant measure

is a quasistationary distribution, and the most obvious method for finding quasistationary

distributions is to attempt to solve equation (1.1) and then check these conditions. This

is essentially the approach that we take in this paper.

Let α be the common radius of convergence of the series
∑∞

n=0 δ
nP

(n)
ij , i, j ∈ C, taken

as a function of δ. When
∑∞

n=0 α
nP

(n)
ij converges, the chain is called α-transient; otherwise

it is called α-recurrent. The α-recurrent case can further be split into the α-null and α-

positive cases according to whether limn→∞ α
nP

(n)
ij is equal to zero or greater than zero. It

is known that no β-invariant measure can exist for β > α and, for many Markov chains,



there exist β-invariant measures for all β ∈ [1, α].

An α-invariant measure m may admit a limiting-conditional interpretation in the sense

that, for all z ∈ C,

lim
n→∞

Pr(X(n) = x|X(n) ∈ C, X(0) = z) =
mx∑
y∈Cmy

, x ∈ C. (1.2)

This limit exists under a variety of conditions (see, for example, Kesten [14] and Seneta

and Vere-Jones [28]). When it does exist, for any atomic initial distribution p = (pz(0))

(that is one concentrated on a single state z ∈ C), the distribution px(n)/(1− p0(n)) of the

Markov chain X(n) at time n, conditional on non-absorption, converges to mx/
∑

y∈Cmy.

In this paper we shall investigate the characterisation of quasistationary distributions

for discrete-time Markov chains (X(n)) which are level-dependent quasi-birth-and-death

processes (QBDs) with level 0 collapsed into an absorbing state. For such chains, C can be

written in the form {(k, j) : k ≥ 1, 1 ≤ j ≤Mk} and P takes the block-partitioned form

P =



1 0 0 0 0 · · ·
A

(1)
2 e A

(1)
1 A

(1)
0 0 0 · · ·

0 A
(2)
2 A

(2)
1 A

(2)
0 0 · · ·

0 0 A
(3)
2 A

(3)
1 A

(3)
0 · · ·

0 0 0 A
(4)
2 A

(4)
1 · · ·

...
...

...
...

...
. . .


. (1.3)

In (1.3), and throughout, e denotes a column vector of ones of the appropriate size.

A level-dependent QBD can thus be regarded as a two-dimensional Markov chain, with

one dimension corresponding to subsets of states called levels, with level k defined by

l(k) = {(k, j) : 1 ≤ j ≤ Mk} for k ≥ 1 and level 0 being the absorbing state, and the

second (finite) dimension corresponding to the phase in each level. The only transitions

from states in level k which have non-zero probability are those which move to states in

level k + 1 (whose transition probabilities are recorded in A
(k)
0 ), level k (whose transition

probabilities are recorded inA
(k)
1 ) and level k−1 (whose transition probabilities are recorded

in A
(k)
2 )

The scalar special case of a QBD occurs when there is only one phase at each level. The

quasistationary properties of this Markov chain, the discrete-time birth-and-death process

on Z+, have been studied extensively by van Doorn and Schrijner (see [31]). The class of

QBDs has far greater modelling power than does the class of birth-and-death processes.



In a queueing context the phase dimension is often used to denote the stage of arrival and

service processes, information about the queueing discipline or information about other

customers in the system. In models of other systems, it can be used to track the state of

an environment, of other interfering processes or of modulating processes. Thus, many more

real systems can be accurately modelled with QBDs than with birth-and-death processes.

This motivates the need for tractable methods of analysis for QBDs.

In Bean et al. [2], we studied the level-independent case where the matrices Ai = A
(k)
i

are the same for all k. We proved that the limiting-conditional distribution exists under

certain natural conditions. We were also able to characterize the convergence norm α in

terms of the maximal eigenvalue χ(z) of the matrix A(z) = A0 + zA1 + z2A2 for 0 < z ≤ 1.

More recently in Bean, Pollett and Taylor [3], again in the level-independent case, we found

finite β-invariant measures for all β ≤ α. These are all quasistationary distributions.

The level-dependent case is considerably more complicated than the level-independent

case, and different techniques are needed to characterize the convergence norm α and to

identify the β-invariant measures for all β ≤ α. We approach the problem using a south-

east-corner truncation procedure, in which we consider the QBD truncated to levels ` and

above. In the context of continuous-time birth-and-death processes, such truncations have

been used previously by Karlin and McGregor [13]. The alternative, north-west-corner

truncation approach has also been used by many authors (for recent developments see

Tweedie [30]).

Specifically, we define a family of (substochastic) matrices (`P, ` ≥ 1) with `P obtained

by deleting rows and columns of P corresponding to the levels up to and including `− 1.

That is,

`P =


A

(`)
1 A

(`)
0 0 0 · · ·

A
(`+1)
2 A

(`+1)
1 A

(`+1)
0 0 · · ·

0 A
(`+2)
2 A

(`+2)
1 A

(`+2)
0 · · ·

...
...

...
...

. . .

 ,

and, in particular,

1P =



A
(1)
1 A

(1)
0 0 0 · · ·

A
(2)
2 A

(2)
1 A

(2)
0 0 · · ·

0 A
(3)
2 A

(3)
1 A

(3)
0 · · ·

0 0 A
(4)
2 A

(4)
1 · · ·

...
...

...
...

. . .


.



We shall denote the convergence norm of `P by α`, for ` = 1, 2, . . . . In this notation

α1 = α.

We establish two intriguing dichotomies:

1. the Perron-Frobenius eigenvalue η1(α) of the matrix U (1)(α), defined in equation (3.4)

below, is either less than one or equal to one, and

2. the sequence α` is either constant or α1 < α2.

The first dichotomy enables us to distinguish the form of the α-invariant measure from

a choice of two. One of these forms is β-invariant for β = α in α-recurrent QBDs. The

second of these forms is β-invariant for β < α in all QBDs and for β = α in α-transient

QBDs. The first dichotomy also tells us whether the QBD is α-recurrent or α-transient.

The second dichotomy helps us to distinguish an α-positive process from an α-null process.

These results will be proved in Section 7. Our main theorem, Theorem 16, gives the form

of the α-invariant measure in each of the possible cases.

Preliminary results are given in Sections 5 and 6. In Section 5 we present the two families

of β-invariant measures. In Section 6, we investigate the relationship between the sequence

{α`} and the eigenvalues of a sequence of matrices {U (`)(δ)}. In Section 4 we present three

examples which motivate our approach and which highlight the salient features of QBDs

with lower-truncated transition matrices, while in Sections 2 and 3 we present background

results on β-invariant measures and level-dependent QBDs, respectively.

As mentioned above, a discrete-time birth-and-death process is a special case of a quasi-

birth-and-death process. Our results therefore apply to level-dependent birth-and-death

processes. The calculation of β-invariant measures for these processes was studied in van

Doorn and Schrijner [31] and Schrijner [26] using a method analogous to that used in

continuous-time by Karlin and McGregor [11, 12] (see also Anderson [1]).

This method involves the derivation of a set of orthogonal polynomials, called birth-

and-death polynomials, and the analysis of their orthogonalising measure. The supremum

of the support of the orthogonalising measure is equal to 1/α, and for 1/α ≤ 1/β < 1, the

β-invariant measure can be written in terms of the birth-and-death polynomials evaluated

at 1/β. This method works well if the birth-and-death polynomials are a standard set of

orthogonal polynomials whose orthogonalising measure is known, but can be more difficult

to apply in other cases.



Our method, applied to the scalar case, works in a different manner. The convergence

norm α is characterised as the supremum over δ such that U (0)(δ), defined in equation (3.4)

below, is less than or equal to one. This can be calculated using the numerical method

discussed in Section 6. For β ≤ α a β-invariant measure can be expressed in terms of the

functions R(k)(β) and G(k)(β) defined in equations (3.1) and (3.2). These are analogues

of the familiar matrices R and G used in the analysis of QBDs (see Neuts [20, 21]) and

can be calculated using similar algorithms. Combining these features, we have a numerical

method which can be used to calculate the quasistationary distributions of an arbitrary

birth-and-death process.

2 β-INVARIANT MEASURES

In order to make the statement of our results concise, we shall assume that `P is irreducible

for all ` ≥ 0, a property which we shall call total irreducibility. The transitions between

states in the transient class of a level-dependent QBD are recorded in the matrix 1P . Hence

the transient class of a totally irreducible process is irreducible. On the other hand, an

irreducible process can be rendered reducible by truncation, and so the class of totally

irreducible processes is a proper subset of the class of processes for which 1P is irreducible.

With suitably redefined concepts, our results can be generalised to the case where `P

may be reducible for ` ≥ 2.

For δ ∈ R+, let `Nij(δ) be defined by

`Nij(δ) =
∞∑
n=0

δn`P
(n)
ij , (2.1)

where `P
(n)
ij is the (i, j)th entry of the n-step transition matrix generated from `P .

Theorem 6.1 of Seneta [27] states that, for each `, and a given value of δ, either `Nij(δ)

is finite for all (i, j) or `Nij(δ) is infinite for all (i, j). Thus we can define the convergence

radius associated with `P as

α` = sup{δ : `Nij(δ) is finite}. (2.2)

There are two possibilities for the behaviour of `Nij(δ) at δ = α`. In the case where (2.1)

diverges for δ = α`, `P is said to be α`-recurrent (either positive or null), while in the case

where (2.1) converges for z = α`, `P is said to be α`-transient (see Vere-Jones [32]). Denote



the intersection of the interval of convergence of the series `Nij(δ) and R+ by I` ⊂ R+ and

observe that I` = [0, α`) if `P is α`-recurrent and I` = [0, α`] if `P is α`-transient.

A β-invariant measure for `P is a nontrivial, nonnegative vector m such that m =

βm`P . For a level-dependent QBD, this can be written

m` = β
[
m`A

(`)
1 +m`+1A

(`+1)
2

]
, (2.3)

and, for k ≥ `,

mk+1 = β
[
mkA

(k)
0 +mk+1A

(k+1)
1 +mk+2A

(k+2)
2

]
, (2.4)

where the Mk-vector mk is the restriction of m to level k.

3 THE MATRICES N (k)(δ), R(k)(δ) AND G(k)(δ)

Let N (k)(δ) denote the Mk × Mk matrix whose (s, t)th entry is kN(k,s)(k,t)(δ) as defined

in (2.1). Further, define the Mk−1 ×Mk matrix

R(k)(δ) = δA
(k−1)
0 N (k)(δ) (3.1)

and the Mk ×Mk−1 matrix

G(k)(δ) = δN (k)(δ)A
(k)
2 . (3.2)

The families of matrices {R(k)(δ)} and {G(k)(δ)} were discussed in Ramaswami [24].

They have a physical interpretation in terms of taboo probabilities which we give below.

Let
[
R

(k)
i,j

](n)
be the probability that the process visits (k, j) at time point n with level

k − 1 taboo at the time points 1, 2, . . . , n, given that it starts in state (k − 1, i) at time

point 0. Then, the (i, j)th entry of R(k)(δ) is
∞∑
n=1

[
R

(k)
i,j

](n)
δn. Also, let

[
G

(k)
i,j

](n)
be the

probability that the process first visits level k − 1 in state (k − 1, j) at time point n,

given that it starts in state (k, i) at time point 0. Then, the (i, j)th entry of G(k)(δ) is
∞∑
n=1

[
G

(k)
i,j

](n)
δn.

The matrix N (k)(δ) can be written as

N (k)(δ) =
∞∑
n=0

[
U (k)(δ)

]n
, (3.3)



where U (k)(δ) is given by (see Ramaswami [24, equation (3.31)])

U (k)(δ) = δ
[
A

(k)
1 +R(k+1)(δ)A

(k+1)
2

]
, (3.4)

= δ
[
A

(k)
1 + A

(k)
0 G(k+1)(δ)

]
. (3.5)

Let
[
U

(k)
i,j

](n)
be the probability that the process visits (k, j) at its next visit to level k

with level k− 1 taboo, given that it starts in state (k, i), and that this visit occurs at time

point n. Then, the (i, j)th entry of U (k)(δ) is
∞∑
n=0

[
U

(k)
i,j

](n)
δn.

The property of total irreducibility implies that U (k)(δ) is irreducible for all k ≥ 1.

This implies that N (k)(δ) is elementwise positive. Also, from equations (2.1), (3.1), (3.2)

and (3.4) it is clear that, for all k ≥ 1, N (k)(δ), R(k)(δ), G(k)(δ) and U (k)(δ) are increasing

in δ.

In Lemma 1 below, and throughout, we say that a matrix is finite if all its entries are

finite.

Lemma 1

(i) For all k ≥ 1, N (k)(δ) is finite iff δ ∈ Ik.

(ii) For all k ≥ 2, R(k)(δ) is finite iff δ ∈ Ik.

(iii) For all k ≥ 1, G(k)(δ) is finite iff δ ∈ Ik.

Proof: These results are a simple consequence of the definitions of Ik, N (k)(δ), R(k)(δ)

and G(k)(δ).

By total irreducibility and the definition of the convergence radius, either all entries of

N (k)(δ) are finite, or they are all infinite. It follows from equations (3.1) and (3.2) that if

R(k)(δ) or G(k)(δ) are not finite, then each element is either zero or infinite.

Lemma 2 If δ ∈ I` then N (k)(δ) is finite for all k ≥ `.

Proof: Assume, for a given value of δ and k ≥ `, that N (k)(δ) is not finite. Then,

if k ≥ `, N
(`)
ij (δ) consists of a sum of nonnegative terms, including a term of the form∑∞

m=0

∑∞
n=0

∑
s∈l(k)

∑
t∈l(k) `P

(m)
(`,i)(k,s) N

(k)
st (δ) `P

(n)
(k,t)(`,j)δ

m+n, which, by total irreducibility,

must be nonzero for each pair (i, j). Therefore, N (`)(δ) is not finite and so by Lemma 1

δ /∈ I`.



Corollary 3 If k ≥ ` then αk ≥ α`.

Proof: By the above lemma, δ ∈ I` implies finiteness of N (k)(δ) for all k ≥ `. Therefore,

I` ⊂ Ik and so αk ≥ α` for all k ≥ `.

A particular consequence of Lemmas 1 and 2 is the following corollary.

Corollary 4 If δ ∈ I` then R(k)(δ) is finite for k ≥ `+ 1 and G(k)(δ) is finite for k ≥ `.

Ramaswami [24, Corollary 3.4 and Theorem 4.3] stated the following results (with a

typographical error that does not restrict the value of δ when it should).

Theorem 5 If δ ∈ I` then

(i) the family of matrices
{
R(k)(δ), k ≥ `+ 1

}
is the minimal nonnegative solution to

the family of equations

R(k)(δ) = δ
[
A

(k−1)
0 +R(k)(δ)A

(k)
1 +R(k)(δ)R(k+1)(δ)A

(k+1)
2

]
. (3.6)

(ii) the family of matrices
{
G(k)(δ), k ≥ `

}
is the minimal nonnegative solution to the

family of equations

G(k)(δ) = δ
[
A

(k)
2 + A

(k)
1 G(k)(δ) + A

(k)
0 G(k+1)(δ)G(k)(δ)

]
. (3.7)

In Bean et al. [2], for the level-independent case, we presented an extension of the

algorithm in Latouche and Ramaswami [18] to evaluate the matrix R(δ) ≡ R(k)(δ). In

Bright and Taylor [5] an extension of the algorithm in [18] was presented to evaluate the

family
{
R(k)(1), k ≥ `+ 1

}
. Using very similar techniques to those in [2] we can similarly

extend the algorithm in [5] to find the family
{
R(k)(δ), k ≥ `+ 1

}
for δ ∈ I`. We give the

details below where we define the empty matrix product to be the identity matrix and

tacitly assume in any matrix product that the matrices are ordered with the first instance

of the dummy variable on the left and the last instance on the right.

The matrices in the family
{
R(k)(δ), k ≥ `+ 1

}
are given by

R(k)(δ) =
∞∑
ν=0

Hν
k

ν−1∏
µ=0

Lν−1−µk+2ν−µ , k ≥ `+ 1, (3.8)



where Hν
k and Lνk are Mk ×Mk+2ν and Mk ×Mk−2ν matrices, defined recursively by

H0
k = δA

(k)
0

∞∑
n=0

(
δA

(k+1)
1

)n
, (3.9)

L0
k = δA

(k)
2

∞∑
n=0

(
δA

(k−1)
1

)n
, (3.10)

Hν+1
k = Hν

kH
ν
k+2ν

∞∑
n=0

[
Hν
k+2ν+1Lνk+3.2ν + Lνk+2ν+1Hν

k+2ν

]n
, (3.11)

Lν+1
k = LνkL

ν
k−2ν

∞∑
n=0

[
Hν
k−2ν+1Lνk−2ν + Lνk−2ν+1Hν

k−3.2ν
]n
. (3.12)

It is a consequence of the fact that δ ∈ I`, that the infinite series in (3.9) to (3.12)

converge, and so (3.9) to (3.12) can be written

H0
k = δA

(k)
0

[
I − δA(k+1)

1

]−1
, (3.13)

L0
k = δA

(k)
2

[
I − δA(k−1)

1

]−1
, (3.14)

Hν+1
k = Hν

kH
ν
k+2ν

[
I −

(
Hν
k+2ν+1Lνk+3.2ν + Lνk+2ν+1Hν

k+2ν

)]−1
, (3.15)

Lν+1
k = LνkL

ν
k−2ν

[
I −

(
Hν
k−2ν+1Lνk−2ν + Lνk−2ν+1Hν

k−3.2ν
)]−1

(3.16)

which is more suitable for computational purposes.

An algorithm based on equations (3.8) and (3.13) to (3.16) is computationally efficient

and easily implemented along the lines presented in Bright and Taylor [5], or as slightly

improved in Thorne [29].

As noted in [5], if we require the family
{
R(k)(δ), N ≥ k ≥ `+ 1

}
then it is most efficient

to determine R(N)(δ) first and then, by using one matrix inversion per step, recursively

generate each of the remaining matrices.

A similar expression for the matrices
{
G(k)(1), k ≥ `

}
was given in Ramaswami and

Taylor [25]. Thorne [29] showed how this expression can be used as the basis for a com-

putationally efficient algorithm. This algorithm can also be extended, as above, to an

algorithm for
{
G(k)(δ), k ≥ `

}
for all δ ∈ I`.

4 BIRTH-AND-DEATH PROCESS EXAMPLES

In Corollary 3 we proved that the sequence {α`, ` ≥ 1} is an increasing sequence. However,

it is easy to construct examples where it is not strictly increasing.



In this section we provide some birth-and-death process examples which serve to illus-

trate the types of behaviour that can occur.

For each of these cases the transition matrix P is of the form of equation (1.3), where

• the 1× 1 matrices A
(k)
0 are given by pk for all k ≥ 1,

• the 1× 1 matrices A
(k)
1 are 0 for all k ≥ 1,

• the 1× 1 matrices A
(k)
2 are given by qk ≡ 1− pk for all k ≥ 1.

Example 1 Consider the level-independent birth-and-death process with pk = p < 1/2

and qk = 1− p for all k ≥ 1. Truncating this process at any level gives a process identical

to the original which, of course, has an identical convergence radius. Thus αk = α` for all

k and `.

Example 2 Consider a birth-and-death process in which 0 ≤ p1 ≤ p2 ≤ · · · ≤ p`−1 ≤ p <

1/2 and pk = p for all k ≥ `. Let kX(t) be the state of the process at time t, with the levels

up to and including k− 1 removed. Then stochastic comparison arguments (see Daley [6])

show that if m′ ≥ m and

P (m′X(0) > m′ + k) ≥ P (mX(0) > m+ k) for all k ≥ 0

then

P (m′X(n) > m′ + k) ≥ P (mX(n) > m+ k) for all k ≥ 0, n ≥ 0. (4.1)

Inequality (4.1) implies that

lim
n→∞

P (m′X(n) > m′ + k)−1/n ≤ lim
n→∞

P (mX(n) > m+ k)−1/n (4.2)

so that, if we can apply Corollary 18 in Appendix A, we have αm′ ≤ αm. Corollary 3 shows

that if m′ ≥ m then αm′ ≥ αm and so it must be the case that αm′ = αm for all m′,m ≥ 1.

To justify application of Corollary 18 in Appendix A, we need to show that αm′ > 1

and αm > 1. This can be done as follows.

The process `X(n) is the homogeneous birth-and-death process with pk,k+1 = p and

pk,k−1 = 1 − p. By Anderson [1, page 170], α` = 1/(2
√
p(1− p)) which, since p < 1/2, is

strictly greater than 1 and so, by Corollary 18, for all k ≥ 0, α` = lim
n→∞

[P (`X(n) > `+ k)]−1/n.

Then equation (4.2) implies, for all 1 ≤ m ≤ `, that

lim
n→∞

P (mX(n) > m+ k)−1/n ≥ lim
n→∞

[P (`X(n) > `+ k)]−1/n = α` > 1. (4.3)



By equation (A.2) it is always true that

αm ≥ lim
n→∞

P (mX(n) > m+ k)−1/n (4.4)

and so αm ≥ α` > 1. This justifies the application of Corollary 18 for any m ≥ 1. Thus,

we can use equation (4.2) and Corollary 18 to show that if m′ ≥ m then αm′ ≤ αm.

Example 3 In contrast to Example 2, if we take 1 ≥ p1 ≥ p2 ≥ · · · ≥ p`−1 ≥ p and pj = p

for all j > `, it is possible that there may be an m < m′ for which αm < αm′ . It is easy to

construct numerical examples where this is true. For example, if we choose ` = 2, p = 0.2

and p1 = 0.5, then α1 = 1.2247 and α2 = 1.25.

In summary, we have identified the following kinds of behaviour:

(i) for a level-independent birth-and-death process the sequence {α`} is constant,

(ii) it is possible for the sequence {α`} to be constant even if the birth-and-death process

is level-dependent, and

(iii) it is also possible that α1 < α2 in a level-dependent birth-and-death process.

We shall see in the next sections that similar results hold true for quasi-birth-and-death

processes.

5 TWO FAMILIES OF β-INVARIANT MEASURES

By total irreducibility, the matrix U (k)(δ) defined in (3.4) is irreducible. Therefore, by

Seneta [27, Theorem 1.5], for δ ∈ Ik+1 there is a real, simple eigenvalue ηk(δ) of U (k)(δ)

which is equal to its spectral radius. This is the Perron-Frobenius eigenvalue of U (k)(δ).

In this section we shall present two families of β-invariant measures for `P . One of these

satisfies equations (2.3) and (2.4) when η`(β) = 1. In the next section we shall see that

this occurs when β = α` and the QBD is α`-recurrent, that is I` is of the form [0, α`). The

second family of β-invariant measures satisfies equations (2.3) and (2.4) for all β ∈ I`. In

Section 6, we shall see that η`(β) < 1 for all such β. We shall also see that when η`(β) > 1,

β > α`, and so the two previously-mentioned cases when η`(β) = 1 and η`(β) < 1 are the

only two cases in which a β-invariant measure can exist.



Lemma 6 Assume that β ≥ 1 is such that η`(β) = 1 and let x be the left eigenvector of

U (`)(β) associated with the eigenvalue 1. Then m = (m`,m`+1, . . .) defined by

mk = x
k∏

n=`+1

R(n)(β) (5.1)

is a β-invariant measure for `P .

Proof: The proof follows by direct substitution of equation (5.1) into equations (2.3)

and (2.4), bearing in mind equations (3.4) and (3.6).

If η`(β) < 1 then a β-invariant measure is more difficult to find. We first need the

following lemma.

Lemma 7 If β ∈ I` then there exists a sequence of stochastic vectors {xk, k ≥ `} and a

sequence of positive numbers {ρk, k ≥ `} such that, for all k ≥ `,

xk+1G
(k+1)(β) = ρkxk. (5.2)

Proof: The proof of this lemma follows in an identical way to that of Theorem 3.1 of La-

touche, Pearce and Taylor [17] except that we consider the family of matrices
{
Gk(β), k ≥ `

}
instead of

{
Ĝk(1), k ≥ 1

}
. The requirement that β ∈ I`, together with Corollary 4, is suf-

ficient to guarantee that G(k)(β) is finite for all k ≥ `.

Theorem 8 If β ∈ I` then a β-invariant measure for `P is given by

m = (m`,m`+1, . . .)

where for all k ≥ `

mk = xk

(
k−1∏
n=`

ρ−1n

)
k∑
ν=`

([
k−ν−1∏
µ=0

G(k−µ)(β)

]
N (ν)(β)

[
k−ν−1∏
µ=0

R(ν+1+µ)(β)

])
, (5.3)

and xk and the ρn satisfy (5.2).

Proof: In order to simplify the proof, let us first write out explicitly mk+1, mk and mk−1,



for a particular value of k > `. Thus we have, by appropriate applications of equation (5.2),

mk+1 = xk+1

(
k∏
n=`

ρ−1n

)
k+1∑
ν=`

([
k+1−ν−1∏
µ=0

G(k+1−µ)(β)

]
N (ν)(β)

[
k+1−ν−1∏
µ=0

R(ν+1+µ)(β)

])
,

mk = xk+1

(
k∏
n=`

ρ−1n

)
k∑
ν=`

([
k+1−ν−1∏
µ=0

G(k+1−µ)(β)

]
N (ν)(β)

[
k−ν−1∏
µ=0

R(ν+1+µ)(β)

])
,

mk−1 = xk+1

(
k∏
n=`

ρ−1n

)
k−1∑
ν=`

([
k+1−ν−1∏
µ=0

G(k+1−µ)(β)

]
N (ν)(β)

[
k−1−ν−1∏
µ=0

R(ν+1+µ)(β)

])
.

Substitute these expressions into equation (2.4) with k > `. The right-hand side is then

xk+1

(
k∏
n=`

ρ−1n

)
k−1∑
ν=`

([
k+1−ν−1∏
µ=0

G(k+1−µ)(β)

]
N (ν)(β)

[
k−1−ν−1∏
µ=0

R(ν+1+µ)(β)

])
×β
[
A

(k−1)
0 +R(k)(β)A

(k)
1 +R(k)(β)R(k+1)(β)A

(k+1)
2

]
+xk+1

(
k∏
n=`

ρ−1n

)
G(k+1)(β)N (k)(β)βA

(k)
1

+xk+1

(
k∏
n=`

ρ−1n

)
G(k+1)(β)N (k)(β)R(k+1)(β)βA

(k+1)
2

+xk+1

(
k∏
n=`

ρ−1n

)
N (k+1)(β)βA

(k+1)
2 ,

which, by equations (3.6) and (3.2), can be written as

xk+1

(
k∏
n=`

ρ−1n

)
k−1∑
ν=`

([
k+1−ν−1∏
µ=0

G(k+1−µ)(β)

]
N (ν)(β)

[
k−ν−1∏
µ=0

R(ν+1+µ)(β)

])

+xk+1

(
k∏
n=`

ρ−1n

)
G(k+1)(β)N (k)(β)

[
βA

(k)
1 + βR(k+1)(β)A

(k+1)
2 +

(
N (k)(β)

)−1]
,

= xk+1

(
k∏
n=`

ρ−1n

)
k−1∑
ν=`

([
k+1−ν−1∏
µ=0

G(k+1−µ)(β)

]
N (ν)(β)

[
k−ν−1∏
µ=0

R(ν+1+µ)(β)

])

+xk+1

(
k∏
n=`

ρ−1n

)
G(k+1)(β)N (k)(β),

= xk+1

(
k∏
n=`

ρ−1n

)
k∑
ν=`

([
k+1−ν−1∏
µ=0

G(k+1−µ)(β)

]
N (ν)(β)

[
k−ν−1∏
µ=0

R(ν+1+µ)(β)

])
= mk.



Here the first equality holds by applying equations (3.4) and (3.3), since β ∈ I` implies

that N (k)(β) is finite and equal to
(
I − U (k)(β)

)−1
.

Now assume that k = `. Then m` and m`+1 are given by,

m`+1 = x`+1ρ
−1
`

`+1∑
ν=`

(
G(`+1)(β)N (`)(β)R(`+1)(β) +N (`+1)(β)

)
,

m` = x`+1ρ
−1
` G(`+1)(β)N (`)(β)

Substitute these expressions into equation (2.3). The right-hand side is then given by

x`+1ρ
−1
`

[
G(`+1)(β)N (`)(β)βA

(`)
1 +G(`+1)(β)N (`)(β)R(`+1)(β)βA

(`+1)
2 +N (`+1)(β)βA

(`+1)
2

]
,

= x`+1ρ
−1
` G(`+1)(β)N (`)(β)

[
βA

(`)
1 + βR(`+1)(β)A

(`+1)
2 +

(
N (`)(β)

)−1]
,

= x`+1ρ
−1
` G(`+1)(β)N (`)(β),

= m`.

Again the first equality holds by applying equation (3.2) and reorganising the expression

and the second equality holds by applying equations (3.4) and (3.3) in the same way as

above.

The question of whether the β-invariant measures given in equations (5.1) and (5.3) are

actually computable is relevant. As mentioned in Section 3, the families of matrices R(k)(β)

and G(k)(β) can be calculated using a modification of the algorithms in [2, 18, 5, 29], so

that the expression (5.1) can be computed and the question as to whether (5.3) can be

computed reduces to the question of whether we can evaluate the N (k)(β), xk and the ρk.

Since β ∈ I`, we know that the matrix N (k)(β) is finite for all k ≥ ` and so equation (3.3)

can be rewritten as

N (k)(β) =
[
I − U (k)(β)

]−1
,

=
[
I − βA(k)

1 − βR(k+1)(β)A
(k+1)
2

]−1
,

=
[
I − βA(k)

1 − βA
(k)
0 G(k+1)(β)

]−1
,

which is easily evaluated from R(k+1)(β) or G(k+1)(β).

In practice, we will only ever calculate the β-invariant measure on a finite number of

levels, say K levels. Therefore, we only need a single vector xK and the family of scalars

{ρk, ` ≤ k ≤ K}. To see this, repeatedly apply equation (5.2) to the expression for mk in

order to replace xk by xK .



The proof of Lemma 7 in Latouche, Pearce and Taylor [17] suggests a numerical scheme

for the calculation of xK and the ρk. Choose an integer, say J > K, and any stochas-

tic vector x
(J)
J and recursively apply equation (5.2) to determine a family of vectors{

x
(J)
k , K ≤ k ≤ J

}
that satisfies equation (5.2). By increasing the value of J we cre-

ate a sequence of stochastic vectors x
(J)
K which must have a convergent subsequence with

limit xK . This vector can then be used to generate the family of scalars {ρk, ` ≤ k ≤ K},
as required.

6 THE SPECTRAL RADIUS OF U (k)(δ)

In this section we shall investigate the relationship between ηk(δ) and the values of αk

and αk+1. This relationship is fundamental to our major results, which will be given in

Section 7.

Lemma 9 The function ηk(·) is a well defined, continuous and strictly increasing function

on Ik+1.

Proof: If δ ∈ Ik+1 then R(k+1)(δ) is finite by Lemma 1 and so, by its definition (3.4),

U (k)(δ) is also finite. Since U (k)(δ) is irreducible its Perron-Frobenius eigenvalue, ηk(δ), is

well defined.

By its definition (3.1), it is clear that R(k+1)(δ) is nonnegative and increasing in δ

with at least one entry strictly increasing in δ. Therefore, A
(k)
1 + R(k+1)(δ)A

(k+1)
2 is also

nonnegative and strictly increasing in δ. This implies that its maximal eigenvalue is strictly

increasing [27, Theorem 1.5(e)]. Therefore, ηk(δ), the maximal eigenvalue of U (k)(δ) =

δ
[
A

(k)
1 +R(k+1)(δ)A

(k+1)
2

]
, must be strictly increasing.

To prove continuity, note that ηk(δ) is the maximal root of a polynomial whose coef-

ficients are polynomials in δ. Since it is known that the Perron-Frobenius eigenvalue is

a simple root (see, for example, Seneta [27, Theorem 1.5]), the implicit function theorem

gives that ηk(δ) is continuous.

Theorem 10 Assume δ ∈ Ik+1, then,

(i) If ηk(δ) < 1 then δ ≤ αk.



(ii) If ηk(δ) ≥ 1 then δ ≥ αk.

(iii) If ηk(δ) = 1 then δ = αk.

Proof:

(i) If ηk(δ) < 1 then lim
n→∞

[
U (k)(δ)

]n → 0 and so the series
∞∑
n=0

[
U (k)(δ)

]n
converges [27,

Lemma B.1]. Consequently, by equation (3.3), N (k)(δ) is finite and so δ ≤ αk.

(ii) If ηk(δ) ≥ 1 then the series
∑∞

n=0

[
U (k)(δ)

]n
does not converge. Consequently, N (k)(δ)

is not finite and so δ ≥ αk.

(iii) If δ is such that ηk(δ) = 1 then δ ≥ αk, as shown in (ii).

Since δ ∈ Ik+1, R
(k+1)(δ) is finite and, because ηk(δ) = 1, Lemma 6 applies and we

can construct a δ-invariant measure for kP . Anderson [1, Lemma 5.2.4 (3)] states

that if there exists a δ-(sub)invariant measure for kP then δ ≤ αk. This implies that

δ = αk.

Theorem 11

(i) If δ < αk then ηk(δ) < 1.

(ii) If αk < δ < αk+1 then ηk(δ) > 1.

(iii) If αk = δ < αk+1 then ηk(δ) = 1.

Proof:

(i) If δ < αk, then N (k)(δ) is finite and so
∞∑
n=0

[
U (k)(δ)

]n
converges which implies that

ηk(δ) < 1.

(ii) If αk < δ < αk+1 then N (k)(δ) is not finite. Therefore, the series
∞∑
n=0

[
U (k)(δ)

]n
does

not converge and so ηk(δ) ≥ 1. Theorem 10(iii) then implies that ηk(δ) 6= 1 and so

ηk(δ) > 1.



(iii) This is a simple consequence of the continuity of ηk and parts (i) and (ii) of this

theorem.

Remark 1 Theorem 11 does not tell us anything about the value of ηk(δ) when αk = δ =

αk+1. In fact, since N (k+1)(δ), and hence R(k+1)(δ) and U (k)(δ), might diverge at δ = αk

(they would if the process were αk-recurrent), we cannot yet say whether ηk(αk) is well-

defined in this case. In the theorem below, we show that ηk(αk) is well-defined and less

than or equal to one.

Theorem 12

(i) lim
δ↑αk

ηk(δ) ≤ 1.

(ii) If αk = αk+1 then lim
δ↑αk+1

ηk+1(δ) < 1.

(iii) If αk = αk+1 then N (k+1)(αk+1) is finite and so αk+1 ∈ Ik+1.

(iv) If αk = αk+1 then ηk(αk) is well-defined and ηk(αk) ≤ 1.

Proof: See Appendix B.

To illustrate the three possible types of behaviour of α1, α2 and η1(α1), consider the

following birth-and-death-process examples.

Example 4 Within the setting of Example 2, consider the case when ` = 2, that is a

birth-and-death process with pk = p for k ≥ 2 and where p1 may not be equal to p. It is

easy to show the following:

(i) If p1 > 2p then α1 < α2 and η1(α1) = 1.

(ii) If p1 < 2p then α1 = α2 and η1(α1) < 1.

(iii) If p1 = 2p then α1 = α2 and η1(α1) = 1.

The details of this section can be summarised in the following theorem which gives a

simple expression for the convergence radius α` of the process `P .



Theorem 13 The convergence radius α` of the process `P is given by

α` = sup {δ ≤ α`+1 : η`(δ) ≤ 1} . (6.1)

Proof: Corollary 3 states that α` ≤ α`+1 and so the only two cases we need to consider

are α` < α`+1 and α` = α`+1.

Theorem 11(iii) shows that if α` < α`+1 then η`(α`) = 1. Since Lemma 9 states that

η`(·) is a strictly increasing function on I`+1, equation (6.1) must hold in this case.

Theorem 12(iv) shows that if α` = α`+1 then η`(α`) ≤ 1. Moreover, from Lemma 1

the matrix R(`+1)(δ), and hence U`(δ) and η`(δ), are not finite for δ > α` = α`+1. Hence

equation (6.1) holds in this case as well.

We now present some ideas on how the results of this section can be used to identify the

value of αk. Since we are searching for a single value on the real number line, a bisection

search is very attractive. It turns out that there are three conditions we need to understand

to develop the search. All decisions are based on the value of ηk(δ) which involves calcu-

lation of the matrix R(k+1)(δ) via the explicit expression (3.8) and the algorithm discussed

in Section 3, and then calculation of the matrix U (k)(δ) via expression (3.4).

1. If ηk(δ) < 1 then δ ≤ αk by Theorem 10 (ii).

2. If ηk(δ) > 1 then αk < δ ≤ αk+1 by Theorem 10 (iii) and (iv).

3. If ηk(δ) does not exist (equivalently R(k+1)(δ) is not finite) then δ ≥ αk+1 ≥ αk by

Lemma 9. In the above algorithm this can manifest itself in one of two ways: either

at least one of the terms in the summation in equation (3.8) is divergent or all terms

are convergent but the summation is itself divergent.

If one of the terms is divergent, then this must be caused by the series
∑∞

n=0X
n, in

either equation (3.11) or (3.12), being divergent. This can occur only if the Perron-

Frobenius eigenvalue of X is at least 1. This is easy to detect. In this case we can

conclude that ηk(δ) does not exist, and δ ≥ αk.

If, instead, all terms are convergent but the series itself is divergent then the above

test will not work. However, consider the partial sums

S
(k)
K =

K∑
ν=0

Hν
k

ν−1∏
µ=0

Lν−1−µk+2ν−µ , K = 1, 2, . . . .



These partial sums are increasing in K (as all terms are nonnegative) and tending

to ∞. Let

V k
K = δ

[
A

(k)
1 + S

(k+1)
K A

(k+1)
2

]
.

Now the sequence V
(k)
K is increasing in K without bound. Hence, we know that there

must exist K0 such that the Perron-Frobenius eigenvalue of V
(k)
K is greater than 1 for

all K > K0. This is again easy to detect. In this case we can again conclude that

ηk(δ) does not exist and δ ≥ αk. In fact, an efficient implementation of this search

algorithm will use this test in the case discussed in 2 above as well.

7 THE MAIN THEOREM

The examples of Section 4 motivate us to investigate the possible relationships within the

set {αk}.

Theorem 14

(i) If αk < αk+1 then αk−1 < αk.

(ii) Either α1 < α2 or α1 = αk for all k ≥ 1.

Proof:

(i) If αk < αk+1 then, by Theorem 11(iii), ηk(αk) = 1. Theorem 12 (ii) and continuity

of ηk(·) then implies (under a shift in the index) that αk−1 < αk.

(ii) By recursively applying part (i), if there exists k for which αk < αk+1, then α1 < α2.

The only other possibility occurs when αk = αk+1 for all k and so α1 = αk for all

k ≥ 1.

Definition 1

(i) If α1 = αk for all k ≥ 1, we say that the process is interior determined.

(ii) If α1 < α2 we say that the process is boundary determined.



The terminology in Definition 1 is motivated by the fact that, roughly speaking, the

convergence radius of an interior determined process is given by the transition probabilities

at high levels of the process, whilst the convergence radius of a boundary determined

process is given by the transition probabilities at low levels of the process. The birth-and-

death processes discussed in Examples 1 and 2 are interior determined, whilst the one in

Example 3 is boundary determined.

Lemma 15 If η1(α) = 1 then the process 1P is α-recurrent. Further, the process 1P is

α-positive if
dN (2)(α)

dα
is finite and α-null otherwise.

Proof: See Appendix B.

We can now present the main theorem of this paper. It gives an expression for the

α-invariant measure and states the α-classification for the process.

Theorem 16

(1) If η1(α) = 1 then the α-invariant measure is given by m = (m1,m2, . . .) as in

equation (5.1) with ` = 1. The process is α-recurrent.

(a) If the process is boundary determined, then it is α-positive and the α-invariant

measure also has a limiting-conditional interpretation in the sense of equa-

tion (1.2).

(b) If the process is interior determined, then it is

(i) α-positive if
dN (2)(α)

dα
is finite, and

(ii) α-null otherwise.

(2) If η1(α) < 1, then the process is interior determined and an α-invariant measure

is given by m = (m1,m2, . . .) as in equation (5.3) with ` = 1. The process is

α-transient.

Proof:

(1) Since η1(α) = 1, Lemma 6 shows that the α-invariant measure is as stated in equa-

tion (5.1) and Lemma 15 implies that the process is α-recurrent.



(a) Since the process is boundary determined, that is, α = α1 < α2, we have that

α ∈ I2. Therefore, Corollary 4 implies that R(k)(α) is finite for all k ≥ 2 and so

the α-invariant measure in equation (5.1) is finite.

Further, it is clear that
dN (2)(α)

dα
is finite and so the process is α-positive by

Lemma 15. The fact that the α-invariant measure then has a limiting conditional

interpretation follows from basic theory, for example Seneta and Vere-Jones [28].

(b) Since the process is interior determined, we have that α = α2. Theorem 12(iii)

then implies that α ∈ I2. Therefore, Corollary 4 implies that R(k)(α) is finite

for all k ≥ 2 and so the α-invariant measure in equation (5.1) is finite.

The process 2P is α-transient because α ∈ I2 and so N (2)(α) is finite. The

α-classification follows from Lemma 15.

(2) Since η1(α) < 1, Theorem 11(iii) shows that α1 = α2 and so the process is interior

determined.

The argument in the proof of Theorem 10(ii) shows that the matrix N (1)(α) is finite.

Therefore, by definition, the process is α-transient. Consequently, we know that

α ∈ I1 and so Lemma 2, Corollary 4 and Theorem 8 show that an α-invariant

measure is as stated in equation (5.3) and is finite.

Remark 2

(i) With respect to the classification in (1)(b) of Theorem 16, two examples of α-null

interior-determined birth-and-death processes are given in Section 8. Therefore there

certainly exist QBDs of the type defined in (1)(b)(ii).

The authors have been unable to construct a QBD of the type defined in (1)(b)(i),

and do not know whether such a process exists. Such a process would have to have

an α-transient truncation 2P with
dN (2)(α)

dα
finite. We approached the construction

problem by trying to find such a truncation, and found that, although we could cer-

tainly construct a non-QBD Markov chain that is α-transient and has finite
dN(α)

dα
we were unable to construct a QBD example with these properties. Whether such a

process exists is an open question.



(ii) The general issue of how Theorem 16 compares with the classical orthogonal poly-

nomial analysis applied in the birth-and-death process special case is non-trivial. It

will be discussed in a forthcoming paper [4]. We can note here that Theorem 2.6 of

Schrijner [26, page 34] states that the process is α-positive if and only if 1/α is a

point of positive mass of the corresponding orthogonalising measure. This observa-

tion may prove useful in distinguishing between the cases in (1)(b)(i) and (1)(b)(ii)

of Theorem 16.

(iii) The α-invariant measures for processes that are α-null or α-transient may or may

not have a limiting-conditional interpretation in the sense of equation (1.2). The

best way to answer this question is to use the results in Kesten [14]. Theorem 2

of [14] showed that an α-invariant measure is a limiting-conditional distribution for

a discrete-time Markov chain provided that jumps satisfy a boundedness condition and

that the chain is uniformly irreducible and uniformly aperiodic. These conditions are

defined in detail in [14].

The conditions are not always satisfied in our context: counter examples in which

the number of phases increase with the level are easy to find. To obtain a limiting-

conditional interpretation for an α-invariant measure, Kesten’s conditions will need

to be checked in each particular case.

(iv) In Section 1 we stated that, under certain conditions, a normalised α-invariant mea-

sure has the limiting conditional interpretation equation (1.2). One of the necessary

conditions for this is that absorption must occur with probability 1 from any starting

state in C. If this is not the case, it is possible that an alternative limiting conditional

interpretation

lim
n→∞

Pr(X(n) = x|X(n) ∈ C, X(0) = z,X(n+r) = 0 for some r ≥ 1) =
mxax∑
y∈Cmyay

,

(7.1)

may hold, in which ax is the probability that X(n) ever reaches the absorbing state

given that X(0) = x. In order to evaluate the right hand side of (7.1), in addition to

m, we require a knowledge of the vector ak of absorption probabilities from level k.

It follows easily from the discussion after equation (3.2) that these are given by

ak =
k−1∏
n=0

G(k−n)(1). (7.2)



The sequence of matrices G(k)(1) can be calculated using the algorithm mentioned at

the end of Section 3.

8 BIRTH-AND-DEATH PROCESS EXAMPLE

In this section we present the full analysis of a birth-and-death process example. We choose

the example of van Doorn and Schrijner [31, page 140] and modify the notation to suit the

notation of this paper. In a similar manner to the examples that we considered in Section

4, we take the transition matrix P to be of the form of equation (1.3), where

• the 1× 1 matrices A
(j)
0 are given by p for all j ≥ 2,

• the 1× 1 matrices A
(j)
1 are 0 for all j ≥ 2,

• the 1× 1 matrices A
(j)
2 are given by q ≡ 1− p for all j ≥ 2,

• A(1)
0 = p1 and A

(1)
1 = r1 are arbitrary,

• and A
(1)
2 = 1− p1 − r1.

We observe that the process 2P is level-independent and so by the methods in [2, 3] we

have that

α2 =
1

2
√
pq

. (8.1)

We can therefore deduce that

R(3)(δ) =
1−

√
1− 4δ2pq

2δq
for δ ≤ α2.

Now let us turn our attention to 1P . Using the above expression for R(3)(δ) we can

deduce from equation (3.6) that

R(2)(δ) =
δp1

1
2

+ 1
2

√
1− 4δ2pq

for δ ≤ α2. (8.2)

Since

U (1)(δ) = δ
(
r1 +R(2)(δ)q

)
(8.3)

is a 1× 1 matrix, U (1)(δ) is equal to η1(δ). Theorem 13 then says that we can identify α1

as

α1 = sup
{
δ ≤ α2 : U (1)(δ) ≤ 1

}
. (8.4)



Substitution of (8.2) and (8.1) into equation (8.3) gives us

U (1)(α2) =
r1

2
√
pq

+
p1
2p

.

Corollary 3 and Theorem 10 can be used to show that

• if U (1)(α2) > 1 then α2 > α1,

• if U (1)(α2) = 1 then α2 = α1, and

• if U (1)(α2) < 1 then α2 = α1.

We shall use these facts to investigate the three cases considered in van Doorn and

Schrijner.

• Case 1: r1 = 0

– If p1 < 2p then U (1)(α2) < 1 and so α2 = α1 and the process is interior deter-

mined. Theorem 16(2) implies that the process is α2-transient.

– If p1 = 2p then U (1)(α2) = 1 and so α2 = α1 and the process is interior de-

termined. Theorem 16(1) implies that the process is α2-recurrent. According

to Theorem 16(1)(b) the process could be α2-null or α2-positive. To distin-

guish between these cases, consider the Derman–Vere-Jones transformation [26]

of the process 1P ; that is, the process represented by the matrix T on page 20

of Vere-Jones [32]. This is easily seen to be the birth-and-death process with

probabilities pi,i+1 = pi,i−1 = 1/2, which is null-recurrent. It follows from [32,

page 21] that 1P is α2-null.

– If p1 > 2p then U (1)(α2) > 1 and so α2 > α1 and the process is boundary

determined. Solution of equation (8.4) tells us that α1 =
√

p1−p
p21q

and U (1)(α1) =

1. Theorem 16(1)(a) implies that the process is α1-positive.

• Case 2: p1 = 2p

– If r1 = 0 we have exactly the second case above.

– If r1 > 0, then U (1)(α2) > 1 and so α2 > α1 and the process is boundary

determined. Solution of equation (8.4) tells us that α1 = 1/
√

4pq + r21 and

U (1)(α1) = 1. Theorem 16(1)(a) implies that the process is α1-positive.



• Case 3: p1 = p

– If r1 <
√
pq then U (1)(α2) < 1 and so α2 = α1 and the process is interior

determined. Theorem 16(2) implies that the process is α2-transient.

– If r1 =
√
pq then U (1)(α2) = 1 and so α2 = α1 and the process is interior

determined. Theorem 16(1)(b) implies that the process is α2-recurrent. A

similar argument to that in Case 1 with p1 = 2p can be used to show that the

process is α2-null.

– If r1 >
√
pq then U (1)(α2) > 1 and so α2 > α1 and the process is boundary

determined. Solution of equation (8.4) tells us that α1 = 1/(r1 + pq/r1) and

U (1)(α1) = 1. Theorem 16(1)(a) implies that the process is α1-positive.

9 CONCLUSION

In this paper we have shown how to calculate the convergence radius α for an arbitrary level-

dependent quasi-birth-and-death-process. For all β ≤ α we have also given an expression

for a β-invariant measure. This expression can take one of two forms depending on whether

η(β) < 1 or η(β) = 1. Both the convergence radius and the β-invariant measure are

computable. The results are summarised in our main theorem, Theorem 16.
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APPENDIX A

Theorem 17 Consider a birth-and-death process with a unique absorbing state 0 and an

irreducible communicating class C = {1, 2, . . .}. If the convergence radius α is greater than

1, then it is given by
1

α
= lim

n→∞
[P (X(n) ∈ A)]

1
n , (A.1)

for any set A ⊂ C.



Proof: Schrijner [26, Equation (2.16), page 19] shows that

lim
n→∞

[P (X(n) = j|X(0) = i)]
1
n =

1

α
,

for all i, j ∈ C, since (X(n)) is transient. Clearly, for any A ⊂ C and some j ∈ A,

lim
n→∞

[P (X(n) ∈ A|X(0) = i)]
1
n ≥ lim

n→∞
[P (X(n) = j|X(0) = i)]

1
n =

1

α
.

Therefore,

lim
n→∞

[P (X(n) ∈ A|X(0) = i)]
1
n ≥ 1

α
. (A.2)

Under the hypothesis of this theorem we can always find a finite α-invariant measure

m [26, Corollary 3.1, page 42]. It can be easily shown by induction that, for all n ≥ 1,

αn
∑
i

miP (X(n) = j|X(0) = i) = mj.

Therefore,

P (X(n) = j|X(0) = i) ≤
(

1

α

)n
mj

mi

.

For any A ⊂ C, it follows that

P (X(n) ∈ A|X(0) = i) ≤
(

1

α

)n
1

mi

∑
j∈A

mj ,

and so

[P (X(n) ∈ A|X(0) = i)]
1
n ≤

[(
1

α

)n
1

mi

∑
j∈A

mj

] 1
n

.

Since we know that
∑

j∈Amj <∞ for all A ⊂ C, we have that

lim
n→∞

[P (X(n) ∈ A|X(0) = i)]
1
n ≤ 1

α
,

and the proof is complete.

Corollary 18 In the notation of Example 2 of Section 4, for any m ≥ 1 and k ≥ 0, if

αm > 1 then it is given by

αm = lim
n→∞

[P (mX(n) > m+ k)]−
1
n . (A.3)



APPENDIX B

Theorem 12

(i) lim
δ↑αk

ηk(δ) ≤ 1.

(ii) If αk = αk+1 then lim
δ↑αk+1

ηk+1(δ) < 1.

(iii) If αk = αk+1 then N (k+1)(αk+1) is finite and so αk+1 ∈ Ik+1.

(iv) If αk = αk+1 then ηk(αk) is well-defined and ηk(αk) ≤ 1.

Proof:

(i) We shall assume that lim
δ↑αk

ηk(δ) > 1 (including ∞) and attempt to derive a con-

tradiction. The matrix U (k)(1) is irreducible and strictly substochastic. Therefore

ηk(1) < 1. By Lemma 9, ηk(·) is continuous and strictly increasing on Ik. Therefore,

there exists γ ∈ (1, αk) such that ηk(γ) = 1. However, by Theorem 10(iii) this means

that γ = αk which is a contradiction. Therefore, limδ↑αk ηk(δ) ≤ 1.

(ii) Part (i) of this theorem implies that lim
δ↑αk+1

ηk+1(δ) ≤ 1. Therefore, we need only show

that if αk = αk+1 then lim
δ↑αk+1

ηk+1(δ) 6= 1 to complete the proof. We shall prove this

result by proving the contrapositive, that lim
δ↑αk+1

ηk+1(δ) = 1 implies that αk < αk+1.

Since lim
δ↑αk+1

ηk+1(δ) = 1, for each 0 < ε < 1 there exists a δε < αk+1 such that, for all

δ ∈ (δε, αk+1), ηk+1(δ) > 1− ε. Therefore, for all δ ∈ (δε, αk+1), the Perron-Frobenius

eigenvalue of N (k+1)(δ) =
∑∞

n=0

[
U (k+1)(δ)

]n
is greater than

∞∑
n=0

(1− ε)n =
1

ε
.

Theorem 1.5 of Seneta [27] says that the maximum row sum of N (k+1)(δ) is greater

than or equal to 1/ε and so there must exist an entry (i, j) such that N
(k+1)
i,j (δ) >

1/εMk+1. (Recall that Mk+1 is the number of phases in level k + 1).

Now we shall show that we can choose ε in such a way that there exists a phase l

and an integer N0 ∈ Z+ with [(
U (k)(δ)

)N0+1
]
l,l
> 1



for all δ ∈ (δε, αk+1). This can then be used to show that
[
N (k)(δ)

]
l,l

diverges for all

δ ∈ (δε, αk+1) and hence that αk < αk+1. In order to construct our argument, we will

need to bound δε from below. Since αk+1 could be as low as 1, we shall choose ε so

that δε > 1/2.

Irreducibility implies that there exists a number p1 > 0 and states (k, l) and (k+1, r)

such that
[
A

(k)
0

]
l,r

= p1 and a number p2 > 0 and states (k + 1, s) and (k, t) such that[
A

(k+1)
2

]
s,t

= p2. Total irreducibility implies that there exists N1 ∈ Z+ and p3 > 0

such that [(
U (k+1)(1/2)

)N1
]
r,i

= p3

and N2 ∈ Z+ and p4 > 0 such that[(
U (k+1)(1/2)

)N2
]
j,s

= p4.

Therefore, since U (k+1)(δ) is increasing in δ, for all δ ∈ (δε, αk+1),

U
(k)
l,t (δ)

= δ
[
A

(k)
1 + δA

(k)
0 N (k+1)(δ)A

(k+1)
2

]
l,t
,

≥ δ2

[
A

(k)
0

[
∞∑
n=0

(
U (k+1)(δ)

)n]
A

(k+1)
2

]
l,t

,

≥ δ2

[
A

(k)
0

(
U (k+1)(δ)

)N1

[
∞∑
n=0

(
U (k+1)(δ)

)n] (
U (k+1)(δ)

)N2
A

(k+1)
2

]
l,t

,

= δ2
[
A

(k)
0

(
U (k+1)(δ)

)N1
N (k+1)(δ)

(
U (k+1)(δ)

)N2
A

(k+1)
2

]
l,t
,

>

(
1

2

)2 [
A

(k)
0

]
l,r

[(
U (k+1)(

1

2
)

)N1
]
r,i

[
N (k+1)(δ)

]
i,j

[(
U (k+1)(

1

2
)

)N2
]
j,s

[
A

(k+1)
2

]
s,t
,

>

(
1

2

)2

p1p3
1

Mk+1ε
p4p2.

Total irreducibility further implies that there exists an integer N0 > 0 and p5 > 0

such that
[(
U (k)(1/2)

)N0
]
t,l

= p5 and so
[(
U (k)(δ)

)N0
]
t,l
> p5. Therefore,[(

U (k)(δ)
)N0+1

]
l,l
>
p1p2p3p4p5

4Mk+1ε

for all δ ∈ (δε, αk+1).



Now choose ε such that ε <
p1p2p3p4p5

4Mk+1

and so for all δ ∈ (δε, αk+1),

[(
U (k)(δ)

)N0+1
]
l,l
> 1.

Therefore, for all δ ∈ (δε, αk+1),

[
N (k)(δ)

]
l,l
≥

∞∑
n=0

[(
U (k)(δ)

)(N0+1)n
]
l,l

=∞,

so αk ≤ δε and hence αk < αk+1.

(iii) Since lim
δ↑αk+1

ηk+1(δ) = t < 1, the increasing nature of ηk+1(·) (see Lemma 9) implies,

for each δ < αk+1, that ηk+1(δ) < t. Therefore, for all δ < αk+1 the Perron-Frobenius

eigenvalue of N (k+1)(δ) =
∑∞

n=0

[
U (k+1)(δ)

]n
is less than

∞∑
n=0

tn =
1

1− t
= s, say.

Theorem 1.5 of Seneta [27] says that the minimum row sum of N (k+1)(δ) is less than

or equal to s and so there must exist an entry (i, j) such that N
(k+1)
i,j (δ) ≤ s/Mk+1.

Since, for all δ < αk+1, the entry N
(k+1)
i,j (δ) is a power series, with nonnegative

coefficients and radius of convergence αk+1, which is bounded above by the finite

constant
s

Mk+1

, the theorem on page 178 of Knopp [16] implies that N
(k+1)
i,j (αk+1) is

finite. Theorem 6.1 of Seneta then implies that all entries of the matrix N (k+1)(αk)

are finite and so αk+1 ∈ Ik+1.

(iv) By part (iii) of this theorem, αk+1 ∈ Ik+1 and so Lemma 1 shows that R(k+1)(αk+1)

is finite. Therefore, equation (3.4) implies that U (k)(αk+1) = U (k)(αk) is finite and so

its irreducibility is sufficient for ηk(αk) to be well-defined. Part (i) of this theorem

and the continuity of ηk(·) gives ηk(αk) ≤ 1.

Lemma 15 If η1(α) = 1 then the process 1P is α-recurrent. Further, the process 1P is

α-positive if
dN (2)(α)

dα
is finite and α-null otherwise.



Proof: Since η1(α) = 1, it is clear that the series N (1)(α) =
∑∞

n=1

[
U (1)(α)

]n
does not

converge and so N (1)(α) is not finite. Therefore, the process is α-recurrent.

The key relationship in the remainder of this proof is the equation which gives U (1)(α)

in terms of N (2)(α). From equations (3.1) and (3.4), this is

U (1)(α) = αA
(1)
1 + α2A

(1)
0 N (2)(α)A

(2)
2 . (B.1)

If
dN (2)(α)

dα
is finite then

dU (1)(α)

dα
= A

(1)
1 + 2αA

(1)
0 N (2)(α)A

(2)
2 + α2A

(1)
0

dN (2)(α)

dα
A

(2)
2 , (B.2)

and so
dU (1)(α)

dα
is also finite. Otherwise,

dU (1)(α)

dα
is infinite.

Let f
(n)
ii be the probability that, given the process starts in state i, it is in state i at

time n and has not visited state i in between. Seneta [27, Definition 6.2, page 202] states

that an α-recurrent process is α-positive if µi(α) ≡
∑

n nf
(n)
ii α

n <∞, and α-null if not.

If level 1 consists of only one phase, then f
(n)
11 =

[
U (1)

](n)
, as defined after equation (3.5),

and µ1(α) = α
dU (1)(α)

dα
. Thus in this case the result is proved.

The difficulty when there is more than one phase lies in the fact that
[
U

(1)
i,i

](n)
records

the probability that the process visits (1, i) at its next visit to level 1 with level 0 taboo,

given that it starts in state (1, i), and that this visit occurs at time point n. In calculating

f
(n)
(1,i)(1,i) in terms of

[
U

(1)
i,i

](n)
we need to take account of sample paths which first visit level

1 in a phase other than i.

Let Fii(α) =
∑∞

n=0 f
(n)
(1,i)(1,i)α

n and so

µi(α) = α
dFii(α)

dα
. (B.3)

Now Fii(α) can be written as

Fii(α) = U
(1)
i,i (α) +

∑
j 6=i

U
(1)
i,j (α)U

(1)
j,i (α) +

∑
j1 6=i

∑
j2 6=i

U
(1)
i,j1

(α)U
(1)
j1,j2

(α)U
(1)
j2,i

(α) + · · ·

=
∞∑
t=1

∑
j0=i,

jt=i,

js 6=i, s=1,2,...,t−1

t∏
s=1

U
(1)
js−1,js

(α),



and so

dFii(α)

dα
=
∞∑
t=1

∑
j0=i,

jt=i,

js 6=i, s=1,2,...,t−1

t∑
r=1

[
r−1∏
s=1

U
(1)
js−1js

(α)

]
dU

(1)
jr−1jr

(α)

dα

t∏
s=r+1

U
(1)
js−1js

(α) . (B.4)

If
dN (2)(α)

dα
and thus

dU (1)(α)

dα
is not finite, then total irreducibility implies, via equa-

tions (B.2), (B.3) and (B.4), that µi(α) is not finite and so the process is α-null.

Now assume
dN (2)(α)

dα
< ∞ and consider the stochastic matrix Û whose (i, j)th entry

is given by

Ûij =
xjU

(1)
j,i (α)

xi
, (B.5)

where x = (x1, x2, . . . , xM1) is the left-eigenvector of U (1)(α) with eigenvalue 1. This is a

transition matrix on the finite state space {1, 2, . . . ,M1} and so the expected first return

time for state i

E[F̂i] ≡
∞∑
t=1

t
∑
j0=i,

jt=i,

js 6=i, s=1,2,...,t−1

t∏
s=1

Ûjs−1,js <∞. (B.6)

Substitution of equation (B.5) into this expression gives

E[F̂i] =
∞∑
t=1

t
∑
j0=i,

jt=i,

js 6=i, s=1,2,...,t−1

t∏
s=1

U
(1)
js,js−1

(α) <∞. (B.7)

Observe now that, because
dN (2)(α)

dα
<∞, there exists a number K <∞ such that

dU
(1)
ij (α)

dα
≤ KU

(1)
ij (α), (B.8)

uniformly in i and j. This follows because M1 is finite and U
(1)
ij (α) = 0 implies that

dU
(1)
ij (α)

dα
= 0.



Substitution of this inequality into equation (B.3), using equation (B.4), gives

µ1(α) = α
dFii(α)

dα
,

= α

∞∑
t=1

∑
j0=i,

jt=i,

js 6=i, s=1,2,...,t−1

t∑
r=1

r−1∏
s=1

U
(1)
js−1js

(α)
dU

(1)
jr−1jr

(α)

dα

t∏
s=r+1

U
(1)
js−1js

(α),

≤ αK

∞∑
t=1

t
∑
j0=i,

jt=i,

js 6=i, s=1,2,...,t−1

∏
s=1t

U
(1)
js−1js

(α)

= αKE[F̂i],

which is finite by equation (B.7). Therefore, if
dN (2)(α)

dα
is finite, the process 1P is α-

positive.
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