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Abstract

This paper is concerned with evaluating the performance of loss networks.
Accurate determination of loss network performance can assist in the design
and dimensioning of telecommunications networks. However, exact deter-
mination can be difficult and generally cannot be done in reasonable time.
For these reasons there is much interest in developing fast and accurate ap-
proximations. We develop a reduced load approximation that improves on
the famous Erlang fixed point approximation (EFPA) in a variety of circum-
stances. We illustrate our results with reference to a range of networks for
which the EFPA may be expected to perform badly.

1 Introduction

We shall use the standard model for a circuit-switched teletraffic network. The
network consists of a finite set of links J and the j-th link comprises a co-operative
group of Cj circuits. Upon connection of a call an end-to-end route is established
such that a call initiated on route r seizes ajr circuits from one or more of the
links in J . For simplicity, we will assume that ajr = 1 if link j is part of route r;
otherwise ajr = 0. More general models may allow ajr ∈ {0, 1, 2, . . . , Cj}. The
(ajr; j ∈ J) circuits remain exclusively dedicated to the connection as long as it
is maintained, even when no information is being transferred. When the call is
terminated, all of the circuits are released simultaneously and are then available to
be used by future calls. Denote the set of all routes by R, the routing matrix (ajr; j ∈
J, r ∈ R) by A, and write j ∈ r as an abbreviation for j ∈ {i ∈ J : air > 0}. Rather
than identifying a call by its origin and destination points, a call is identified by
its route, and we assume that arriving calls are requesting to be connected along
a particular route. There are no waiting arrangements for calls that cannot be
connected immediately; a call that arrives to find insufficient capacity on one or
more of the links along its route is blocked from service and is then lost. The
proportions (Lr; r ∈ R) of calls that are expected to be lost on the various routes
form a natural measure of network efficiency.
The usual state description tracks the number of calls in progress on each of the

routes. Let Y = (Yr; r ∈ R), where Yr is the number of route-r calls in progress.
Due to the capacity constraints, Y takes values in the subset S = S(C) of NR given



by

S(C) =

{

n ∈ NR :
∑

r∈R

ajrnr ≤ Cj, j ∈ J

}

. (1)

We will suppose that calls for each route arrive in independent Poisson streams,
with route-r calls arriving at rate ψr. Further, we will suppose that calls have an
exponentially distributed duration after being connected. Under these assumptions,
Y is a reversible Markov process and its equilibrium distribution has a product form.
Let the mean holding time of calls on route r be φ−1

r . Define P to be the probability
measure under which (Yr; r ∈ R) are independent Poisson random variables with
means νr = ψr/φr, r ∈ R. This would be the equilibrium measure for the usage
on each of the routes were the system not to have any capacity constraints. The
restriction Y to S is a truncation of a reversible Markov process and its equilibrium
probability measure is thus given by

π(A) = P (A|Y ∈ S), for all P -measurable A. (2)

Under π, Y is still reversible (Kelly (1979), Corollary 1.10), and thus the form of π
can be easily obtained from the detailed balance equations,

ψrπ(Y = n) = (nr + 1)φrπ(Y = n+ er), n,n+ er ∈ S. (3)

(Here er represents the unit vector with a 1 in the r-th position.) In the present
context, there is no need to distinguish between the traffic load νr and the arrival
rate ψr, for replacing ψr by νr and φr by 1 does not alter (3). Thus, without loss of
generality, it may be assumed that the mean holding time for all call types is 1.
The form of π can also be derived directly from definition (2). For instance,

if K ⊆ J and RK = {r ∈ R :
∑

j∈K ajr > 0} is the set of routes that use at least one
link in K, then the marginal distribution of the numbers of calls on routes in RK is

π (Y RK
= nRK

) =
P (Y ∈ S|Y RK

= nRK
)P (Y RK

= nRK
)

P (Y ∈ S)
,

where Y RK
= nRK

is shorthand for the event ∩r∈RK
{Yr = nr}. Noticing that

P (Y ∈ S|Y RK
= nRK

) = P





∑

r/∈RK

ajrYr ≤ Cj −
∑

r∈RK

ajrnr, j ∈ J





is a function (call it θK) only of n∂RK
= (nr : r ∈ RK ∩RJ\K), we are lead to

π (Y RK
= nRK

) =
θK (n∂RK

)

G(C)

∏

r∈RK

νnrr
nr!

, (4)

where G(C) is a normalising constant chosen so that the distribution π sums to
unity. Expression (4) is due to Zachary and Ziedins (1999). It implies that the
equilibrium distribution for the loss network is a Markov random field.
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The loss probability on a route can be calculated from π: for any route r ∈ RK ,

π (Y + er ∈ S) = P (Y ∈ S)−1
∑

nRK
∈SRK

P (Y + er ∈ S|YRK
= nRK

)P (YRK
= nRK

)

= P (Y ∈ S)−1
∑

nRK
∈SRK

P (Y ∈ S|YRK
= nRK

+ er)P (YRK
= nRK

)

= P (Y ∈ S)−1
∑

nRK
∈SRK

P (Y ∈ S|YRK
= nRK

)P (YRK
= nRK

− er) ,

where, for any R ⊆ R, SR = SR(C) =
{

nR ∈ NR :
∑

r∈R ajrnr ≤ Cj, j ∈ J
}

is the
projection of S onto NR. Thus, the probability a call requesting route r arrives to
find one or more of the links in r full is

Lr = 1−

∑

nRK
∈SRK

θK(n∂RK
)P (Y RK

= nRK
− er)

∑

nRK
∈SRK

θK(n∂RK
)P (Y RK

= nRK
)

. (5)

In the case K = J , equation (5) has the concise form Lr = 1−G(C −Aer)/G(C).
Unfortunately, calculating the loss probabilities using G(C) is often intractable.

Direct normalisation of the distribution π in (2) entails summing over the space S,
and, even for moderately sized networks, it is apparent from (1) that the number of
distinct states in S is large and grows rapidly with the number of routes, and also
with the link capacities. In fact, the problem of evaluating π in this way is #P -
complete (Louth, Mitzenmacher and Kelly (1994)). Thus, there is strong evidence
to suggest that an algorithm for finding the loss probabilities in polynomial time
using G does not exist.
An alternative to evaluating G is to find θK and then use (5) to calculate Lr.

Choose a collection of links H disjoint from K. Then,

P (Y ∈ S|Y RK
= nRK

) =
∑

mRK∪H
∈SRK∪H

:
mRK

=nRK

P (Y ∈ S|Y RK∪H
=mRK∪H

)P (Y RH
=mRH

|Y RK
= nRK

) ,

(recall that mRK
= nRK

is shorthand for ∩r∈RK
mr = nr). Thus, θK satisfies the

recurrence

θK (n∂RK
) =

∑

mRH
∈SRH

:
mRK∩RH

=nRK∩RH

θK∪H (m∂RK∪H
)

∏

r∈RH\RK

νmr
r

mr!
e−νr , (6)

where m∂RK∪H
, the argument of θK∪H , is actually the vector (mr : r ∈ ∂RH \RK)

joined with (nr : r ∈ ∂RK \RH). The functions θK often have a natural factorisa-
tion, which refines (6) and sometimes reduces the complexity of the problem to the
point where exact calculation of the loss probabilities is tractable. If the problem is
still too large, Zachary and Ziedins (1999) suggest imposing a product form on θK
and then using (6) as the basis of an approximation scheme. This approach, which
is very accurate for a wide range of networks, is reviewed in Section 3.
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2 Link interactions

Instead of Y , it is frequently convenient to work in terms of the link utilisations.
Overlapping routes are, in some sense, competing for usage of the circuits on the
links that they share. It is this competitiveness between routes that cause the
volumes of carried traffic on the links to affect one another and makes analysing the
process so interesting and challenging.
For each link j, let Uj =

∑

r∈Rj
Yr be the capacity used on link j. Only in

exceptional circumstances is there sufficient information encapsulated in a state
description that lists only the links’ utilisation for the process U = (Uj; j ∈ J) to be
Markovian. While transitions U → U+Aer are made at a rate

∑

r∈R νr 1{U+Aer≤C}

that only depends on the state U , the rate at which transitions of the form U →
U − Aer occur is Yr, a quantity that cannot always be determined from U .
Under P , Uj is the superposition of independent Poisson streams and is therefore

marginally distributed as a Poisson random variable with mean ρj =
∑

r∈Rj
νr. The

joint probability generating function of Ui and Uj is

EP

(

sUitUj
)

= exp

[

∑

r∈R

νr (s
airtajr − 1)

]

.

Clearly, if there is at least one route that uses both links i and j then, even un-
der P , the links will not operate independently. With capacity constraints the link
interactions become complicated, and, the effects of link blocking not only influence
the behaviour of neighbouring links but tend to propagate throughout the network.
Owing to this complexity a useful explicit expression for π(U = u) does not usually
exist. However, these probabilities do form the unique solution to the equations

uj π(U = An) =
∑

r∈Rj

νr π(U = An− Aer), j ∈ J, n ∈ S, (7)

where uj =
∑

r∈Rj
nr. Recurrence (7) was established by Dziong and Roberts (1987);

a neat derivation is given in Zachary (1991).
We have described the classical loss network model, similar to that of Kelly

(1986). It also arises in variety of different contexts. Appropriate choices of A and C

for the linear constraints will lead to simple models for fixed-line networks (Ross
and Tsang 1990, Girard 1990, Kelly 1991), cellular mobile networks (Everitt and
Macfadyen 1983, Boucherie and Mandjes 1998), computer database access prob-
lems (Mitra and Weinberger 1984), and other kinds of telecommunications net-
works (Whitt 1985, Ross 1995). Part of the model’s appeal is that it can easily be ex-
tended to include call acceptance criteria that cannot necessarily be expressed using
a linear constraint AY ≤ C. Provided those controls preserve the reversibility of the
process Y , even the product-form distribution π in (4) applies. Unfortunately, this
is not the case for admission policies such as trunk reservation (Key 1990, Hunt and
Laws 1997) or virtual partitioning (Borst and Mitra 1998, Mitra and Ziedins 1996).
Nor does the product-form result hold for networks allowing alternative routing.
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3 The Markov field method

Sometimes the network has special structure that allows quicker determination of
the loss probabilities. Again fix some K ⊆ J . For each link j ∈ J \ K, let Xj =
∑

r/∈RK
ajrYr denote the capacity used on link j due to calls on routes not in RK .

Under P , the Xj and Xk corresponding to two links j and k for which there does
not exist a common route (/∈ RK) are independent random variables. That is to
say, if ajr > 0 only for the routes in the set {r /∈ RK : akr = 0}, then Xj and Xk are
independent. This means that θK can be factorised as

θK (n∂RK
) =

∏

i

θK,Hi
(nRK∩RHi

), (8)

where ∪iHi = J \K and each Hi is a group of links satisfying
∑

r/∈RK
ajrakr > 0 if

and only if j and k belong to the same group. Furthermore,

θK,Hi
(nRK∩RHi

) = P

(

Xj ≤ Cj −
∑

r∈RK

ajrnr, j ∈ Hi

)

. (9)

Expression (8) separates the calculation of θK into the smaller calculations of θK,Hi
,

which may then be conducted in parallel.
The factorisation of θK substantially simplifies the recurrence (6). LetK1, . . . , Kd

be collections of links that form a complete covering of J and let ∼ be the relation
on pairs of link groups α and β in K = {K1, . . . , Kd} defined by α ∼ β if and only
if Rα ∩Rβ 6= ∅. Now suppose that the collections of links K are chosen so that

θα (n∂Rα
) =

∏

β∼α

θαβ
(

nRα∩Rβ

)

, for each α ∈ K. (10)

This choice is always possible: at worst, d = 1 and K1 = J . In a network that has
been decomposed this way, recurrence (6) implies that, for each α ∈ K and β ∼ α,

θαβ
(

nRα∩Rβ

)

=
∑

mRβ
∈SRβ

:

mRα∩Rβ
=nRα∩Rβ

∏

γ∼β

γ 6=α

θβγ
(

mRβ∩Rγ

)

∏

r∈Rβ\Rα

νmr
r

mr!
e−νr . (11)

This finer recursion relates θαβ to only those θβγ for which α ∼ β and β ∼ γ
and suggests that it may be solved efficiently using block iterative methods. Then,
using (8) and (5), the loss probabilities can be determined from

Lr = 1−
∑

nRα∩Rβ
∈SRα∩Rβ

θ
(C−Aer)
αβ

(

nRα∩Rβ

)

θ
(C−Aer)
βα

(

nRα∩Rβ

)

P

(

Y Rα∩Rβ
=nRα∩Rβ

)

∑

nRα∩Rβ
∈SRα∩Rβ

θαβ

(

nRα∩Rβ

)

θβα

(

nRα∩Rβ

)

P

(

Y Rα∩Rβ
=nRα∩Rβ

) , (12)

where

θ
(C−Aer)
αβ

(

nRα∩Rβ

)

= P





∑

ρ/∈Rα

ajρYρ ≤ Cj − ajr −
∑

ρ∈Rα

ajρnρ, j ∈ β



 .
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When r ∈ Rα \Rβ,

θ
(C−Aer)
αβ (nRα∩Rβ

) = θαβ(nRα∩Rβ
), for all nRα∩Rβ

∈ SRα∩Rβ
,

and if r ∈ Rα ∩Rβ,

θ
(C−Aer)
αβ (nRα∩Rβ

) = θαβ(nRα∩Rβ
+ er), for all nRα∩Rβ

∈ SRα∩Rβ
,

in either case, and otherwise θ
(C−Aer)
αβ satisfies relations (8) and (11) with S replaced

by S(C − Aer).
The factorisation (10) holds if the graph (K,∼) contains no 3-cycles. Thus, the

extent to which J may be separated into the subsets K is limited. This might present
a problem. If Rβ contains more than a few routes, the space SRβ

might be too large
to sum over, and evaluation of θαβ in (11) might still prove to be a formidable task.
In this case, imposing a product form on θK may lead to a good approximation. This
is the approach that Zachary and Ziedins (1999) take in developing their Markov
field approximation (MFA) method. It is a general approximation scheme of which
the Erlang fixed point approximation (EFPA) is a special case.

4 The Erlang fixed point approximation

In the EFPA the loss probability for route r is estimated to be

Lr = 1−
∏

i∈r

(1−Bi), (13)

with B1, B2, . . . , BJ a solution to the system of equations

Bj = E(ρj, Cj), j ∈ J, (14)

ρj =
∑

r∈Rj

νr
∏

i∈r\{j}

(1−Bi), j ∈ J, (15)

where

E(ν, C) =
νC

C!

(

C
∑

n=0

νn

n!

)−1

is Erlang’s formula for the blocking probability on a single isolated link with Poisson
traffic offered at rate ν. The EFPA has the effect of replacing the true probability
measure π by a more amenable measure P . Under P , each link j is assumed to be
offered a stream of traffic at a constant rate ρj. If indeed this were the case, the
equilibrium probability distribution for U would be P(U = u) =

∏

j∈J P(Uj = uj),
where

P(Uj = u) =
ρuj
u!

(

C
∑

n=0

ρnj
n!

)−1

.

This amounts to the assumption that the links operate independently. Under P ,
the probability that link j is full is Bj in equation (14).
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Except in the most trivial of circumstances, calls on routes that use link j do
not arrive at a constant rate. In state Y with U = AY , calls requesting link j
as part of their route actually arrive at rate aj(U ) =

∑

r∈Rj
νr 1{U+Aer≤C}. When-

ever
∑

r∈Ri
Yr < Ci, for all i, the arrivals seen by link j form a Poisson stream

with rate
∑

r∈Rj
νr. In states Y for which one or more links i are full (that is,

∑

r∈Ri
Yr = Ci), the arrival stream for link j only includes calls that can be ac-

cepted without violating the capacity constraints. When j is full, aj(U ) = 0.
The quantity ρj given in expression (15) can be interpreted as an expected arrival

rate under the distribution P :

ρj(uj) = EP(aj(U )|Uj = uj)

=
∑

r∈Rj

νrP (U + Aer ≤ C|Uj = uj)

=
∑

r∈Rj

νrP (∩i∈r{Ui + 1 ≤ Ci}|Uj = uj)

=
∑

r∈Rj

νr
∏

i∈r\{j}

(1−Bi) 1{uj<Cj}. (16)

(For a more general description of the idea of expected rates, see Pollett and Thomp-
son (2001).) The system comprising (14) and (15) is simply stating that, for each
link j ∈ J , the likelihood of congestion and the intensity of offered traffic should be
consistent. Kelly (1986) proved that, for the model under consideration, there is a
unique fixed point (B1, . . . , BJ) ∈ [0, 1]

J of the system.
The EFPA fits the MFA framework described in Section 3. Specifically, the

EFPA can be realised by assuming

P
(

Y Rj
= nRj

)

∝
∏

i∼j

θji
(

nRj∩Ri

)

∏

r∈Rj

νnrr
nr!

,

along with

θji
(

nRj∩Ri

)

=
∏

r∈Ri∩Rj

(1−Bi)
nr ,

for individual links i and j in J .
The EFPA is known to be effective under a variety of limiting regimes. Kelly

(1991) proved that the estimates for a network with fixed routing and no controls
tend towards the exact probabilities when (i) the link capacities and arrival rates
are increased at the same rate, keeping the network topology fixed (Kelly limiting
regime), and (ii) (Ziedins and Kelly 1989) the number of links and routes are in-
creased while the link loads are held constant (diverse routing limit). The EFPA
performs least well in highly linear networks and in circumstances where the offered
traffic loads are roughly equal to the capacities (critically loaded).
The relationships between P and the probability measures P and π are inter-

esting enough to mention. If there were no capacity constraints, then all three
would imply that Uj is a Poisson random variable with mean

∑

r∈Rj
νr, but only

under P do the links operate independently. When the constraints AY ≤ C are
added, π and P bear little resemblance. They may not even be equivalent measures.
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The true distribution π restricts U to the set {u ∈ NJ : ∃n ∈ S : An = u},
whereas the approximate distribution P assigns non-zero probability mass to all of
the states {u ∈ NJ : u ≤ C}. Only if the routing matrix A has rank J will the two
sets coincide. Some extra care should be taken when applying the EFPA to net-
works with rank(A) < J (Kelly 1991). One thing that the two measures π and P
do share, is a common expression for the expected utilisation of link j:

Eπ(Uj) =

Cj
∑

k=0

∑

u:uj=k

k π(U = u)

=

Cj
∑

k=0

∑

u:uj=k

∑

r∈Rj

νr π(U = u− Aer) (from (7))

=
∑

r∈Rj

νr(1− Lr). (17)

The construction of P using reduced load rates ρj, as given by (16), ensures that
EP (Uj) is also equal to

∑

r∈Rj
νr(1−Lr), but this time Lr is only an estimate of the

loss probability of calls on route r as calculated from (13). The marginal distribution
of Uj under both P and P is (ρ

u
j /u!, u = 0, 1, . . . , Cj) appropriately normalised. It

appears as though P(Uj = uj) has adopted the exact form of P (Uj = uj) with
the transition rate

∑

r∈Rj
νr of Uj → Uj + 1 replaced by the reduced rates (15),

so that EP (Uj) is consistent with (17). This observation is the motivation for our
two-link approximation.

5 A two-link approximation

An estimate of the route loss probabilities, which is more accurate than those in (13),
can be obtained by taking into account the link interdependencies. This two-link

approximation is achieved by approximating the joint distribution of the usage on
pairs of links (the EFPA effectively estimates this distribution on single links). The
approximation is as follows. For each pair of links i, j, let

hij(ui|j, uij , uj|i) =

∏ui|j−1

m=0 ρi|j(m)

ui|j !

∏uij−1
m=0 ρij(m)

uij!

∏uj|i−1

m=0 ρj|i(m)

uj|i!
, (18)

for (ui|j , uij, uj|i) ∈ N3 : ui|j + uij ≤ Ci, uj|i + uij ≤ Cj, where

ρi|j(u) =
∑

r∈Ri\Rj

νr

min(Ci−u,Cj)
∑

uij=0

∏

k∈r

(

1−Bk|i(u+ uij)
)

∑Cj−uij
v=0 hij(u, uij , v)

∑Ci−u−1
w=0

∑Cj−w
v=0 hij(u,w, v)

, (19)

ρij(u) =
∑

r∈Ri∩Rj

νr

Ci−u−1
∑

ui|j=0

∏

k∈r

(

1−Bk|i(ui|j + u)
)

∑Cj−u−1
v=0 hij(ui|j , u, v)

∑Ci−u−1
w=0

∑Cj−u−1
v=0 hij(w, u, v)

, (20)
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and

Bk|i(ui) =







∑min(Ck,ui)
uik=0 hki(Ck−uik,uik,ui−uik)

∑Ck
uk=0

∑min(uk,ui)
uik=0 hki(uk−uik,uik,ui−uik)

, if k 6= i,

1{ui=Ci}, if k = i.

(21)

These equations will be derived in Section 7. They form a set of equations in the
unknowns B = (Bk|i; i, k ∈ J), where Bk|i = (Bk|i(m);m ≤ Ci) ∈ RCi . Existence
of a fixed point is guaranteed by Brouwer’s Fixed Point Theorem. To see this,
let Ωk = {xk ∈

∏

i∈J RCi : 0 ≤ xk ≤ 1}, and observe that

fuik|i(B) =







∑min(Ck,ui)
uik=0 hki(Ck−uik,uik,ui−uik)

∑Ck
uk=0

∑min(uk,ui)
uik=0 hki(uk−uik,uik,ui−uik)

, if k 6= i,

1{ui=Ci}, if k = i,

is a continuous mapping from Ω =
∏

k∈J Ωk into [0, 1]. Thus with f = (fuik|i;ui =

0, . . . , Ci, k, i ∈ J), we have f(Ω) ⊆ Ω, and therefore f has at least one fixed point
in Ω.
The loss probabilities can be estimated using h = (hij; i, j ∈ J). Losses on

two-link routes, for example, have

Lr = 1−
Φij(Ci − 1, Cj − 1)

Φij(Ci, Cj)
, if r = {i, j}, (22)

where

Φij(Ci, Cj) =

Ci
∑

ui=0

Cj
∑

uj=0

min(ui,uj)
∑

k=0

hij(ui − k, k, uj − k) .

Calls that use the single link r = {i} are lost with probability

Bi = 1−
Φij(Ci − 1, Cj)

Φij(Ci, Cj)
, (23)

where j is any link with a route common to i.
The rationale for the approximation is as follows. The traffic offered to a

subsystem consisting of two arbitrary links, i and j, can be classified as either
(i) link i only, (ii) link j only, or (iii) common to both links. Correspondingly,
let Ui|j =

∑

r∈Ri\Rj
Yr, Uj|i =

∑

r∈Rj\Ri
Yr and Uij =

∑

r∈Ri∩Rj
Yr be, respectively,

the number of calls using link i, the number using link j, and the number on routes
using both i and j. This is a natural way to classify the traffic offered to the
subsystem. Without capacity constraints, the joint distribution of the link utilisa-
tions Ui = Ui|j + Uij and Uj = Uj|i + Uij is

P (Ui = ui, Uj = uj) =

min(ui,uj)
∑

k=0

P (Ui|j = ui − k, Uij = k, Uj|i = uj − k) ,
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where

P (Ui|j = ui|j, Uij = uij, Uj|i = uj|i) =
ρ
ui|j
i|j

ui|j !

ρ
uij
ij

uij!

ρ
uj|i
j|i

uj|i!
e−(ρi|j+ρij+ρj|i) , (24)

with ρij =
∑

r∈Ri∩Rj
νr, ρi|j =

∑

r∈Ri\Rj
νr and ρj|i =

∑

r∈Rj\Ri
νr. To construct

a reduced load approximation we shall replace the aggregate rates ρij, ρi|j and ρj|i
in (24) with reduced load rates, and we isolate the subsystem composed of traffic
offered to links i and j. Motivated by the form of (24), let us suppose for the moment
that π(Ui|j = ui|j , Uij = uij, Uj|i = uj|i) has the form hij(ui|j , uij, uj|i)/Φij(Ci, Cj). If
this were the case then questions concerning call blocking could be answered easily.
For instance, the probability that link i is full would be Bi in expression (23), the
probability that either link i or link j are full would be Lr in expression (22), and the
conditional probability that link k is full given link i carries ui calls would be Bk|i(ui)
in expression (21). To ensure that the traffic offered to the subsystem is consistent
with blocking in other parts of the network, the rates ρij, ρi|j and ρj|i are replaced
by state-dependent reduced load rates. For example, expression (19) for ρi|j(ui|j) is
just ρi|j =

∑

r∈Ri\Rj
νr, but reduced by an estimate of the expected blocking on the

other links k ∈ r such that r ∈ Ri \Rj when link i is carrying ui|j calls that are not
also carried by link j.

6 Examples

In this section we examine the performance of the two-link reduced load approxi-
mation when applied to a suite of simple networks. To compare its accuracy with
that of other approximations, we have used relative errors: specifically, the differ-
ence between the approximate value and the exact loss probability, expressed as
a proportion of the exact value. These exact values were calculated using expres-
sion (5). In Section 6.5 we compare the computation times of the EFPA, the MFA,
and our two-link approximation with the time it takes to compute the exact loss
probabilities.

6.1 A star network

Consider a private computing network consisting of a number of workstations linked
to a central mainframe in a star configuration. Each workstation is linked directly
to the central processor. Any exchange of information between workstations must
be via the central mainframe. This structure is quite common and in the past it
was a popular design for computing environments. As such, the backbone of many
networks in existence today is a number of star configurations with a few additional
links to improve resilience (Lloyd-Evans 1996).
In a star network, each link carries a single-link traffic as well as sharing two-

link traffic with each of the other links. For simplicity, we will assume that the
network is completely symmetric: the link capacities are the same (Cj = C for
all j ∈ J = {1, 2, . . . , l}), each link is offered single-link traffic at the same rate ν1

and the l − 1 streams of two-link traffic are each offered at rate ν2.
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6.1.1 The Erlang fixed point approximation

When considered in isolation, the arrivals at any given link consist of l − 1 streams
at rate ν2, each thinned by a factor (1−B), and, one traffic stream at rate ν1. Thus,
the EFPA for the loss of single-link and two-link calls, respectively, are given by

L1 = B and L2 = 1− (1−B)2,

where B is the solution to

B = E
(

ν1 + (l − 1)ν2(1−B), C
)

.

6.1.2 The two-link approximation

The two-link reduced load approximation is obtained by solving the system com-
prising (25) and (26) below. By the symmetry of the network, Bk|i(u) = B(u)
and ρi|j(u) = ρ(u) are independent of i and j. Since the longest route consists of
only two links, ρij(u) = ν2. The parameters B(u) and ρ(u) satisfy

ρ(u) = ν1 + (J − 2)ν2

C−u−1
∑

w=0

(

1−B(w + u)
)

∑C−w
v=0

∏u−1
m=0 ρ(m)

u!

νw2
w!

∏v−1
m=0 ρ(m)

v!
∑C−u−1

k=0

∑C−k
v=0

∏u−1
m=0 ρ(m)

u!

νk2
k!

∏v−1
m=0 ρ(m)

v!

,

(25)

and

B(u) =

∑min(C,u)
w=0

∏C−w−1
m=0 ρ(m)

(C−w)!

νw2
w!

∏u−w−1
m=0 ρ(m)

(u−w)!

∑C
v=0

∑min(v,u)
w=0

∏v−w−1
m=0 ρ(m)

(C−w)!

νw2
w!

∏u−w−1
m=0 ρ(m)

(u−w)!

, for u = 0, . . . , C − 1. (26)

Under this scheme, the loss probabilities are estimated to be

L1 = 1−
Φ(C − 1, C)

Φ(C,C)
and L2 = 1−

Φ(C − 1, C − 1)

Φ(C,C)
, (27)

with

Φ(ui, uj) =

ui
∑

x=0

uj
∑

y=0

min(x,y)
∑

k=0

∏x−k−1
m=0 ρ(m)

(x− k)!

νk2
k!

∏y−k−1
m=0 ρ(m)

(y − k)!
.

6.1.3 Zachary and Ziedins’ method

In Section 4 of their paper, Zachary and Ziedins (1999) describe a generic approxi-
mation for networks that exhibit a certain degree of symmetry. For the star model,
the approximation is achieved by replacing the existing probability measure π under
which

π
(

Y Rj
= nRj

)

=
θ
(

n∂Rj

)

G(C)

∏

r∈Rj

νnrr
nr!

, for all j ∈ J,
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by P with

P
(

Y Rj
= nRj

)

∝
l−1
∏

k=1

λ
(

nRj∩Rk

)

∏

r∈Rj

νnrr
nr!

, for all j ∈ J,

where λ is given by

λ
(

nRj∩Rk

)

∝
∑

mRk
∈SRk

:

mRj∩Rk
=nRj∩Rk

l−2
∏

i=1

λ (mRk∩Ri
)
∏

r∈Rk\Rj

νmr
r

mr!
.

Under P , instances of blocking of single-link and two-link routes have the respective
likelihoods

L1 =

∑C−1
k=0 λ(k)λ(k + 1)

νk2
k!

∑C
k=0 λ(k)λ(k)

νk2
k!

and L2 =

∑C−1
k=0 λ(k + 1)λ(k + 1)

νk2
k!

∑C
k=0 λ(k)λ(k)

νk2
k!

.

This scheme is labelled MFA.
Figure 1 compares the relative errors in the MFA, EFPA, and two-link reduced

load approximation schemes. The network considered had five links and five circuits
per link. The x-axes have the single-link arrival rate ν1 varying over [0, 10]. We have
chosen ν2 = ν1/4, so that each link is offered roughly equal proportions of single-
link and two-link traffic. It is apparent that the two-link approximation compares
favourably with the EFPA over most of the region tested. The accuracy of the
two-link scheme is only marginally worse than the MFA.

6.2 A ring network

Reduced load approximations such as the EFPA tend to perform least well in net-
works of linear structure, with the links joined end-to-end or in a cycle. A popular
test case is the ring network, where the links are arranged in a loop with adjacent
pairs of links sharing routes.
As with the star network, we assume a high degree of symmetry in the model.

Suppose that all links have the same capacity C and that there are only two types
of traffic. Single-link traffic is offered to each link, 1, 2, . . . , l, at a common rate ν1

and two-link traffic is offered to each pair of adjacent links, {1, 2} , {2, 3} , . . . , {l, 1},
at rate ν2.
The MFA is applicable to the star network. Indeed, successive applications of

recurrence (6) provides a means of exact analysis in reasonable time; see Zachary
and Ziedins (1999) for details.

6.2.1 The Erlang fixed point approximation

Arguing that every link sees one traffic stream at rate ν1 and two streams at ν2

thinned by a factor (1−B), representing the proportion of calls accepted on neigh-
bouring links, the reduced load rate for the EFPA is ν1 + 2ν2(1 − B). The EFPAs
for the loss of single-link and two-link calls, respectively, are given by

L1 = B and L2 = 1− (1−B)2,

12
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Figure 1: Accuracy for a star network (J = 5, C = 5, ν2 = ν1/2)
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where B is the solution to

B = E
(

ν1 + 2ν2(1−B), C
)

.

6.2.2 The two-link approximation

The EFPA is accurate when links are blocked almost independently of one another.
Unfortunately, the link utilisations are sometimes significantly dependent. This
is particularly true of linear and cyclic networks, such as the ring. The two-link
approximation is an attempt to account for the link interactions. The approximation
used for the star network requires only minor modification for the ring network. In
fact, the only change is that

ρ(u) = ν1 + ν2

C−u−1
∑

w=0

(

1−B(w + u)
)

∑C−w
v=0

∏u−1
m=0 ρ(m)

u!

νw2
w!

∏v−1
m=0 ρ(m)

v!
∑C−u−1

k=0

∑C−k
v=0

∏u−1
m=0 ρ(m)

u!

νk2
k!

∏v−1
m=0 ρ(m)

v!

,

instead of (25) (in the ring network each link i carries a single two-link route {i, i+1},
not shared with an adjacent link i−1). Expression (26) for B(u) and expressions (27)
for the loss probabilities remain unaltered.

6.2.3 The method of Bebbington, Pollett and Ziedins

A similar approximation for the ring network was previously devised by Bebbington,
Pollett and Ziedins (1997) (here labelled BPZ). In both their Approximation II and
our two-link approximation, the rates are reduced by a usage-dependent factor (1−
B(m)). Link i is offered three streams of traffic. Let Yi, Yi,i+1 and Yi−1,i be the
numbers currently carried on the respective streams. Taking into account the cyclic
structure of the network, we write i = 1 for i = l + 1. For m = 0, . . . , C − 1, they
define

B(m) = P (Yi + Yi,i+1 + Yi−1,i = C |Yi−1 + Yi−1,i = m) ,

whereas our approximation requires

B(m) = P (Yi + Yi,i+1 + Yi−1,i = C |Yi−1 + Yi−1,i + Yi−2,i−1 = m) .

Aside from this, the schemes are the same. The event {Yi−1 + Yi−1,i = m} yields
more information than does {Yi−1 + Yi−1,i + Yi−2,i−1 = m} in determining the like-
lihood of {Yi + Yi,i+1 + Yi−1,i = C}.
Figure 2 shows that the relative errors in the estimates from the BPZ scheme

are negligible when compared with our two-link approximation and the EFPA. Both
two-link approximations improve on the EFPA.

6.3 A linear network

In this and the following section the accuracy of the two-link approximation is
compared with the EFPA on a network in which the links are joined end-to-end.
Typically, reduced load approximations perform poorly in linear networks.
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Figure 2: Accuracy for a ring network (J = 5, C = 5, ν2 = ν1/2)
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Consider a network of l links labelled 1, . . . , l. Suppose that each link is offered
a stream of single-link traffic, and that each of the links i ∈ {2, . . . , l − 1} share
two-link routes {i− 1, i} and {i, i+ 1}, with each of their neighbouring links. Thus,
there are l single-link routes and l − 1 two-link routes. For simplicity, assume that
calls on single-link routes arrive at a common rate ν1, and that calls on each two-link
route arrive at rate ν2.

6.3.1 The Erlang fixed point approximation

The EFPA for the route loss probabilities is

Li = Bi, i = 1, . . . , l,

Li,i+1 = 1− (1−Bi) (1−Bi+1) , i = 1, . . . , l − 1,

where (Bi; i = 1, . . . , l) is the solution to

B1 = ν1 + ν2 (1−B2) ,

Bi = ν1 + ν2 (1−Bi−1) + ν2 (1−Bi+1) , i = 2, . . . , l − 1,

Bl = ν1 + ν2 (1−Bl−1) .

6.3.2 The two-link approximation

The two-link reduced load approximation for this network is as follows. For u =
0, . . . , C − 1, set ρij(u) = ν2 for all i, j = 1, . . . , l such that j = i − 1 or j = i + 1,
ρ1|2(u) = ν1, ρl|l−1(u) = ν1, and let (Bj|i(u); i, j = 1, . . . , l, j = i− 1 or j = i + 1) be
a solution to the system of equations

Bj|i(u) =

∑min(C,u)
uij=0 hji(C − uij, uij, u− uij)

∑C
uj=0

∑min(uj ,u)
uij=0 hji(uj − uij, uij, u− uij)

,

i, j = 1, . . . , l, j = i− 1 or j = i+ 1,

ρi|i−1(u) = ν1 + ν2

C−u−1
∑

k=0

(

1−Bi+1|i(u+ k)
)

∑C−k
w=0 hi−1,i(w, k, u)

∑C−u−1
v=0

∑C−v
w=0 hi−1,i(w, v, u)

,

i = 2, . . . , l − 1,

ρi|i+1(u) = ν1 + ν2

C−u−1
∑

k=0

(

1−Bi−1|i(u+ k)
)

∑C−k
w=0 hi,i+1(u, k, w)

∑C−u−1
v=0

∑C−v
w=0 hi,i+1(u, v, w)

,

i = 2, . . . , l − 1,

where

hij(ui|j , uij, uj|i) =

∏ui|j−1

m=0 ρi|j(m)

ui|j !

ν
uij
2

uij!

∏uj|i−1

m=0 ρj|i(m)

uj|i!
,

16



for i, j = 1, . . . , l, j = i − 1 or j = i + 1. Estimates for the loss probabilities on
single-link routes are

Li = 1−
Φi,i+1(C − 1, C)

Φi,i+1(C,C)
, for i = 1, . . . , l − 1, and

Li = 1−
Φi,i−1(C − 1, C)

Φi,i−1(C,C)
, for i = 2, . . . , l,

where

Φij(Ci, Cj) =

Ci
∑

ui=0

Cj
∑

uj=0

min(ui,uj)
∑

k=0

∏ui−k−1
m=0 ρi|j(m)

(ui − k)!

νk2
k!

∏uj−k−1
m=0 ρj|i(m)

(uj − k)!
,

for i = 1, . . . , l and j a link adjacent to i. For certain links there may be more than
one possible estimate for the loss probability. For example, this scheme produces
two estimates for the loss probability on link 2:

L2 = 1−
Φ12(C,C − 1)

Φ12(C,C)
and L2 = 1−

Φ23(C − 1, C)

Φ23(C,C)
.

In practice there is no way of knowing which estimate will be the most accurate.
Both estimates achieved greater precision than the EFPA for the network tested
here. There is no ambiguity in estimating the loss probabilities on two-link routes.
For i = 1, . . . , l − 1,

Li,i+1 = 1−
Φi,i+1(C − 1, C − 1)

Φi,i+1(C,C)
.

In Figures 3, 4 and 5, the relative errors in the loss probability estimates for the
EFPA and the two-link approximation are compared. The network tested had 5
links, each with a carrying capacity of 5 calls. The single-link route arrival rate ν1

was varied over [0, 10] and ν2 was set at ν1/2. By symmetry, there are only three
single-link routes and two two-link routes to distinguish. In this test case, the two-
link approximation provided a significant improvement in accuracy over the EFPA
for each of the two-link routes (Figure 5), the single-link route using an end link (top
pane of Figure 3) and the single-link route that uses the centre link (bottom pane of
Figure 3). The single-link route that uses a link second from the end was the only
one with multiple loss estimates. In Figure 4 the relative errors of the estimates
of L2, using Φ12 and Φ23, are compared with the EFPA. Both two-link estimates
show a significant improvement over the EFPA.

6.4 A linear network with three-link routes

As a final example, we will analyse a linear network, which is the same as the one
in the previous example, except that there are additional traffic streams spanning
groups of three adjacent links. The presence of these three-link routes increases the
difficulty of accurately approximating the loss probabilities, because of the need to
account for an increase in the amount interaction between links. Furthermore, their
presence destroys the simple structure needed for the Zachary and Ziedins (1999)
recursion to work.
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Figure 3: Accuracy for a line network (5 links, C = 5, ν2 = ν1/2)
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6.4.1 The Erlang fixed point

Assume that traffic for each of the three-link routes arrives at common rate ν3. The
EFPA for the route loss probabilities is

Li = Bi, i = 1, . . . , l,

Li,i+1 = 1− (1−Bi) (1−Bi+1) , i = 1, . . . , l − 1,

Li,i+1,i+2 = 1− (1−Bi) (1−Bi+1) (1−Bi+2) , i = 1, . . . , l − 2,

where (Bi; i = 1, . . . , l) is the solution to

B1 = E (ν1 + ν2 (1−B2) + ν3 (1−B2) (1−B3) , C) ,

B2 = E
(

ν1 + ν2 (1−B1) + ν2 (1−B3) + ν3 (1−B1) (1−B3)

+ν3 (1−B3) (1−B4) , C
)

,

Bi = E
(

ν1 + ν2 (1−Bi−1) + ν2 (1−Bi+1) +

ν3 (1−Bi−2) (1−Bi−1) + ν3 (1−Bi−1) (1−Bi+1)

+ν3 (1−Bi+1) (1−Bi+2) , C
)

, i = 3, . . . , l − 2,

Bl−1 = E
(

ν1 + ν2 (1−Bl) + ν2 (1−Bl−2)

+ν3 (1−Bl) (1−Bl−2) + ν3 (1−Bl−2) (1−Bl−3) , C
)

,

Bl = E (ν1 + ν2 (1−Bl−1) + ν3 (1−Bl−1) (1−Bl−2) , C) .

6.4.2 The two-link approximation

For i, j = 1, . . . , l, let

hi,j(ui|j, ui,j , uj|i) =

∏ui|j−1

m=0 ρi|j(m)

ui|j !

∏ui,j−1
m=0 ρi,j(m)

ui,j !

∏uj|i−1

m=0 ρj|i(m)

uj|i!
,

and Φi,j(C,C) =
∑C

ui=0

∑C
uj=0

∑min(ui,uj)
ui,j=0 hi,j(ui−ui,j , ui,j , uj−ui,j). We propose to

estimate the loss probabilities on single and two-link routes as

Li = 1−
Φi,i+1(C − 1, C)

Φi,i+1(C,C)
, for i = 1, . . . , l − 1, or

Li = 1−
Φi,i−1(C − 1, C)

Φi,i−1(C,C)
, for i = 2, . . . , l,

and Li,i+1 = 1 − Φi,i+1(C − 1, C − 1)/Φi,i+1(C,C), for i = 1, . . . , l − 1. Loss
probabilities on three-link routes {i, i + 1, i + 2} are then estimated as Li,i+1,i+2 =
1− (1− Li,i+1) (1− Li+2).
Applying our technique to this network requires us to estimate (Bi|j(u), u =

0, . . . , C) for each ordered pair of links (i, j) such that |i − j| ≤ 2. Although there
is no difficulty implementing the procedure for this network, it exposes a potential
problem with the procedure: that, for large networks with routes spanning many
links, the number of parameters needing to be estimated may be large and this may
lead to excessive demands on memory. One possible solution is to have the analyst
identify links i for which Bi|j(u) is expected be approximately constant with respect
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to u. An algorithmic approach might then treat as constant all those Bi|j(u)’s for
which the correlation between blocking events on the two links was relatively weak.
In the present context, let us make the simplifying assumption that Bi|j(u) = Bi

whenever |i − j| ≥ 2. Under this assumption, estimates of the marginal reduced
load rates are

ρ1|2(u) = ν1,

ρ2|1(u) = ν1 + (ν2 + ν3(1−B4))
C−u−1
∑

k=0

(1−B3|2(u+ k))H
(1)
2,1 (k, u),

ρ2|3(u) = ν1 + ν2

C−u−1
∑

k=0

(1−B1|2(u+ k))H
(1)
2,3 (k, u),

ρi|i−1(u) = ν1 + (ν2 + ν3(1−Bi+2)
C−u−1
∑

k=0

(1−Bi+1|i(u+ k))H
(1)
i,i−1(k, u),

for i = 3, . . . , l − 3,

ρi|i+1(u) = ν1 + (ν2 + ν3(1−Bi−2))
C−u−1
∑

k=0

(1−Bi−1|i(u+ k))H
(1)
i,i+1(k, u),

for i = 3, . . . , l − 3,

ρl−1|l−2(u) = ν1 + ν2

C−u−1
∑

k=0

(1−Bl|l−1(u+ k))H
(1)
l−1,l−2(k, u),

ρl−1|l(u) = ν1 + (ν2 + ν3(1−Bl−3))
C−u−1
∑

k=0

(1−Bl−2|l−1(u+ k))H
(1)
l−1,l(k, u),

ρl|l−1(u) = ν1,

where H
(1)
i,j (k, u) =

∑C−k
w=0 hi,j(u, k, w)/

∑C−u−1
v=0

∑C−v
w=0 hi,j(u, v, w). And, the joint

reduced load rates are

ρ1,2(u) = ν2 + ν3

C−u−1
∑

k=0

(1−B3|2(k + u))H
(2)
2,1 (k, u),

ρi,i+1(u) = ν2 + ν3

C−u−1
∑

k=0

(1−Bi−1|i(k + u))H
(2)
i,i+1(k, u)

+ν3

C−u−1
∑

k=0

(1−Bi+2|i+1(k + u))H
(2)
i+1,i(k, u),

for i = 2, . . . , l − 2,
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Figure 6: Accuracy for a line network (5 links, C = 5, ν2 = ν1/2)

ρi,i−1(u) = ν2 + ν3

C−u−1
∑

k=0

(1−Bi+1|i(k + u))H
(2)
i,i−1(k, u)

+ν3

C−u−1
∑

k=0

(1−Bi−2|i−1(k + u))H
(2)
i−1,i(k, u),

for i = 3, . . . , l − 1,

ρl,l−1(u) = ν2 + ν3

C−u−1
∑

k=0

(1−Bl−2|l−1(k + u))H
(2)
l−1,l(k, u),

where H
(2)
i,j (k, u) =

∑C−u−1
w=0 hi,j(k, u, w)/

∑C−u−1
v=0

∑C−u−1
w=0 hi,j(v, u, w).

We compare the relative errors in the proposed two-link approximation with
those of the Erlang fixed point approximation in Figures 6, 7, 8, and 9. Our ap-
proximation shows an improvement for all of the single-link routes. On the routes
where multiple approximations are possible, it may be beneficial to take an average
of the approximations. Since we cannot be sure which approximation will be the
more accurate beforehand, this would make the results more robust. Interestingly,
neither of the two-link approximations are consistently better than the other (see
Figure 7). Significant improvements over the EFPA are also observed in Figure 8
for the two-link routes. On the three-link routes, our proposed approximation again
improves on the EFPA (see Figure 9).
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Figure 7: Accuracy for a line network (5 links, C = 7, ν2 = ν1/2, ν3 = ν1/3)
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Figure 8: Accuracy for a line network (5 links, C = 7, ν2 = ν1/2, ν3 = ν1/3)
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Figure 9: Accuracy for a line network (5 links, C = 7, ν2 = ν1/2, ν3 = ν1/3)
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6.5 Computation times

There is a clear trade off between the effort required to calculate an approximation
and the accuracy of the approximation. In general, the calculation of the exact loss
probabilities for teletraffic networks of realistic size is too computationally expensive.
On the other hand, the Erlang fixed point approximation provides a means by which
one may estimate losses very quickly. The use of this method on large capacity
networks with heavy traffic or with diverse routing is justified by the limit theorems
of Kelly (1991) and of Ziedins and Kelly (1989). Considering its simplicity, the
EFPA is impressively accurate, even when these limiting regimes are not in force.
In terms of computational effort, our two-link approximation is situated somewhere
between the EFPA and the exact calculations. In return for this extra effort we
would expect the two-link approximation to provide estimates that are closer to the
exact values than the EFPA estimates. Interestingly, though, this is not necessarily
the case (see Figure 4).
To numerically solve the fixed point equations of the EFPA, MFA, and the two-

link approximation, typically one would make an initial guess and then, using the
relevant equations, compute successive refinements until a desired rate of change cri-
terion is met. Therefore, the computation times of these fixed point approximations
depend on the initial guess, the speed at which the successive estimates converge to
a fixed point, and, on the time to compute each refinement. The last component
would be the most affected by increases in network size.
The computation times for each of the methods are compared in Figure 10.

The test network used was the star network described in Section 6.1. For each
level of capacity we have run our programs several times over a range of rates and
recorded the execution times. Plotted are the averages of these trials. What we
can gauge from this graph are the rates at which the computation times increase
with the addition of extra capacity. Clearly, the time taken to compute the exact
values increases most rapidly with network size. As expected, the Erlang fixed
point approximation has the shallowest slope and is therefore the least taxing of all
the methods. The EFPA’s variability in observed clock times is probably due to
the sharing of processor time with unrelated background processes, but may also
be due to slight variations in clock speed over time. The MFA and the two-link
approximation have comparable slopes. In this example, the MFA starts with a
better absolute computation time but this increases at a faster rate than that of
the two-link approximation. This effect may be implementation specific or network
specific.
The two-link approximation is the result of an attempt to achieve greater ac-

curacy than the Erlang fixed point approximation. The trade off, as seen clearly
in Figure 10, is an increase in computational effort. The two-link approximation
is comparable to the Zachary and Ziedins’ Markov Field method in the sense that
both have computation times which are greater than the Erlang fixed point meth-
ods, while begin significantly faster than algorithms for calculating loss probabilities
exactly.
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7 Derivation of the two-link approximation

In this section we derive the fixed-point equations for the two-link reduced load
approximation of Section 5. Recall the way that we classified traffic offered to
links i and j. We had introduced Ui|j =

∑

r∈Ri\Rj
Yr, Uj|i =

∑

r∈Rj\Ri
Yr and Uij =

∑

r∈Ri∩Rj
Yr. When capacity constraints are present, questions concerning U ij =

(Ui|j , Uij, Uj|i) are generally not easily answered. Let us now introduce new, inde-

pendent processes Ũ ij = (Ũi|j , Ũij, Ũj|i), for each pair of links i, j ∈ J . We shall

suppose Ũ ij is a continuous-time Markov chain that approximates the π-behaviour
ofU ij in the space Sij = Sij(Ci, Cj) = {(ui|j , uij , uj|i) : ui|j+uij ≤ Ci, uj|i+uij ≤ Cj}.

Suppose that Ũ ij makes transitions

(ui|j , uij, uj|i) → (ui|j − 1, uij, uj|i), at rate ui|j ,

(ui|j , uij, uj|i) → (ui|j, uij − 1, uj|i), at rate uij,

(ui|j , uij, uj|i) → (ui|j, uij , uj|i − 1), at rate uj|i,

(ui|j , uij, uj|i) → (ui|j + 1, uij , uj|i), at rate ρi|j(ui|j)1{ui|j+uij≤Ci},

(ui|j , uij, uj|i) → (ui|j, uij + 1, uj|i), at rate ρij(uij)1{ui|j+uij≤Ci,uj|i+uij≤Cj},

(ui|j , uij, uj|i) → (ui|j, uij , uj|i + 1), at rate ρj|i(uj|i)1{uj|i+uij≤Cj},

and no other transitions are possible. Then, the stationary distribution for Ũ ij is

P
(

Ũ ij = (ui|j , uij, uj|i)
)

=

Φij(Ci, Cj)
−1

∏ui|j−1

m=0 ρi|j(m)

ui|j !

∏uij−1
m=0 ρij(m)

uij!

∏uj|i−1

m=0 ρj|i(m)

uj|i!
. (28)

The partition function Φij(Ci, Cj) is chosen so that P sums to 1 over the set Sij:

Φij(Ci, Cj) =

Ci
∑

ui=0

Cj
∑

uj=0

min(ui,uj)
∑

k=0

∏ui−k−1
m=0 ρi|j(m)

(ui − k)!

∏k−1
m=0 ρij(m)

k!

∏uj−k−1
m=0 ρj|i(m)

(uj − k)!
.

Our aim is to choose ρi|j(·), ρij(·) and ρj|i(·) such that the behaviour of Ũ ij, with
its assumed transition structure, best approximates that of U ij. We assign these
quantities expected rates.
Let S̃ =

∏

i,j∈J Sij and Λi|j(u) = {(u,v) ∈ S̃ × S̃ : ui|j = u, vi|j = u + 1}, for
u = 0, 1, . . . , Ci − 1. Then ρi|j(u) defined as r(Λi|j(u)):

ρi|j(u) = EP
(

q(Ũ ,Λi|j(u, Ũ ))
∣

∣

∣
Ũi|j = u, Ũi|j + Ũij < Ci

)

, (29)

where
q(u,Λi|j(u,u)) =

∑

r∈Ri\Rj

νr
∏

k∈r\{i}

1{uk|i+uki<Ck}1{u+uij<Ci} .

Expression (29) can be evaluated partially as follows:

E
(

q(Ũ ,Λi|j(u, Ũ ))
∣

∣

∣
Ũi|j = u, Ũi|j + Ũij < Ci

)

=

E
(

αi|j(Ũi|j + Ũij, Ũj|i + Ũij)
∣

∣

∣Ũi|j = u, Ũi|j + Ũij < Ci

)

,
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where αi|j(ui, uj) = E(q(Ũ ,Λi|j(u, Ũ ))|E(ui, uj)), and

E(ui, uj) =
{

Ũi|k + Ũik = ui, k ∈ J \ {i}
}

∩
{

Ũj|k + Ũjk = uj, k ∈ J \ {j}
}

is the event that links i and j have utilisations ui and uj respectively. The func-
tion αi|j(ui, uj) is the expected rate of transitions in the set {(u,v) ∈ S̃ × S̃ :
ui|j + uij = ui, uj|i + uij = uj, vi|j = ui|j + 1}. It simplifies to

αi|j(ui, uj) =











0 , if ui = Ci;
∑

r∈Ri\Rj

νrP
(

Ũk|i + Ũik < Ck, k ∈ r \ {i}
∣

∣

∣
E(ui, uj)

)

, otherwise.

Extending the rationale of independent blocking, characteristic of the EFPA, we
now assume that pairs of links {i, j} ∈ J index independent random processes Ũ ij.
Under this assumption,

αi|j(ui, uj) =
∑

r∈Ri\Rj

νr
∏

k∈r\{i}

P
(

Ũk|i + Ũik < Ck

∣

∣Ũi|k + Ũik = ui
)

1{ui<Ci}

=
∑

r∈Ri\Rj

νr
∏

k∈r

(

1−Bk|i(ui)
)

,

where Bk|i(ui) is the likelihood that link k is full when link i is known to have ui
circuits busy. This quantity is estimated to be

Bk|i(ui) =

∑min(Ck,ui)
uik=0 P

(

Ũk|i = Ck − uik, Ũik = uik, Ũi|k = ui − uik
)

∑Ck

uk=0

∑min(uk,ui)
uik=0 P

(

Ũk|i = uk − uik, Ũik = uik, Ũi|k = ui − uik
)

=







∑min(Ck,ui)
uik=0 hki(Ck−uik,uik,ui−uik)

∑Ck
uk=0

∑min(uk,ui)
uik=0 hki(uk−uik,uik,ui−uik)

, if k 6= i,

1{ui=Ci}, if k = i,

with hki(uk|i, uki, uk|i) ∝ P
(

Ũ ki = (uk|i, uki, uk|i)
)

in Ski. Thus, we have an expres-
sion for the reduced load marginal rate of arrivals to link i that do not use link j:

ρi|j(u) =
∑

r∈Ri\Rj

νr

min(Ci−u,Cj)
∑

v=0

∏

k∈r

(

1−Bk|i(u+ v)
)

P
(

Ũij = v
∣

∣Ũi|j = u, Ũi|j + Ũij < Ci

)

.

Expression (19) results when P
(

Ũij = uij
∣

∣ Ũi|j = u, Ũi|j + Ũij < Ci

)

is estimated by

∑Cj−uij
v=0 hij(u, uij , v)

∑Ci−u−1
w=0

∑Cj−w
v=0 hij(u,w, v)

.

Expression (20) for the reduced load rate ρij(u) of arrivals corresponding to
transitions in Λij(u) = {(u,v) ∈ S̃× S̃ : uij = u, vij = u+1}, u = 0, 1, . . . ,min(Ci−
1, Cj − 1), is derived in a similar way. The quantity αij(ui, uj) representing the
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expected rate at which calls that cause an increase in the utilisation of both resource i
and j are arriving when Ui = ui and Uj = uj, is

αij(ui, uj) = E





∑

r∈Ri∩Rj

νr
∏

k∈r\{i,j}

1{Ũk|i+Ũki<Ck}

∣

∣

∣

∣

E(ui, uj)



 1{ui<Ci,uj<Cj} ,

which leads to

αij(ui, uj) =

{

0, if uj = Cj;
∑

r∈Ri∩Rj
νr
∏

k∈r

(

1−Bk|i(ui)
)

, otherwise.

Setting ρij(u) = r(Λij(u)), we get

ρij(u)= E
(

αij(Ũi|j + Ũij, Ũj|i + Ũij)
∣

∣

∣ Ũij = u, Ũi|j + Ũij < Ci, Ũj|i + Ũij < Cj

)

=
∑

r∈Ri∩Rj

νr

Ci−u−1
∑

ui|j=0

∏

k∈r\{j}

(

1−Bk|i(ui|j + u)
)

P
(

Ũi|j = ui|j

∣

∣

∣
Ũij = u, Ũi|j + Ũij < Ci, Ũj|i + Ũij < Cj

)

.

Expression (20) follows on using
∑Cj−uij−1

v=0 hij(ui|j , u, v)
∑Ci−u−1

w=0

∑Cj−u−1
v=0 hij(w, u, v)

to estimate the latter conditional probability. The loss probabilities may be esti-
mated using Φij. Losses on two-link routes, r = {i, j}, have

Lr = 1− π(Ui < Ci, Uj < Cj) ≈ 1−
Φij(Ci − 1, Cj − 1)

Φij(Ci, Cj)
.

Calls that use the single link i are lost with probability

Bi = 1− π(Ui < Ci) ≈ 1−
Φij(Ci − 1, Cj)

Φij(Ci, Cj)
.

The approximation for Bi depends on j because the distribution of Ũi|j + Ũij is

different from that of Ũi|k + Ũik. As a result, the loss estimated using Φij may be
different from the estimate using Φik.
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