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Abstract

This paper is concerned with evaluating the performance of loss
networks. We develop a reduced load approximation that improves
on the famous Erlang fixed point approximation (EFPA) in a variety
of circumstances. We illustrate our results with reference to a line
network for which the EFPA may be expected to perform badly.

1 Introduction

We shall use the standard model for a circuit-switched network. The network
consists of a finite set of links J and the j-th link comprises a group of Cj

circuits. A call on route r seizes ajr circuits from one or more links, and
these are released simultaneously once the call is terminated. For simplicity,
we will assume that ajr = 1 if link j is part of route r; otherwise ajr = 0.
Denote the set of all routes by R, the routing matrix (ajr; j ∈ J, r ∈ R) by A,
and write j ∈ r as an abbreviation for j ∈ {i ∈ J : air > 0}. If a call arrives
to find insufficient capacity on one or more of the links along its route, then
it is blocked and lost. The proportions (Lr; r ∈ R) of calls that are expected
to be lost on the various routes form a natural measure of network efficiency.

The usual state description tracks the number of calls in progress on each
of the routes. Let Y = (Yr; r ∈ R), where Yr is the number of route-r calls
in progress. Due to the capacity constraints, Y takes values in the subset
S = S(C) of NR given by

S(C) =

{
n ∈ NR :

∑
r∈R

ajrnr ≤ Cj, j ∈ J

}
. (1)
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We will suppose that calls on the various routes arrive in independent Poisson
streams, with route-r calls arriving at rate νr, and that call durations are
exponentially distributed with mean 1. Under these assumptions, Y is a
reversible Markov process and its equilibrium distribution has a product
form. Define P to be the probability measure under which (Yr; r ∈ R) are
independent Poisson random variables with means νr, r ∈ R. This would
be the equilibrium measure for the usage on each of the routes were the
system not to have any capacity constraints. The restriction of Y to S is
a truncation of a reversible Markov process and its equilibrium probability
measure is thus given by

π(A) = P (A|Y ∈ S) , for all P -measurable A. (2)

Under π, Y is still reversible (Kelly [1], Corollary 1.10), and thus the form
of π can be easily obtained from the detailed balance equations,

νrπ(Y = n) = (nr + 1)π(Y = n + er) , n, n + er ∈ S. (3)

Here er represents the unit vector with a 1 in the r-th position.
The form of π can also be derived directly from definition (2). For in-

stance, if K ⊆ J and RK = {r ∈ R :
∑

j∈K ajr > 0} is the set of routes that
use at least one link in K, then the marginal distribution of the numbers of
calls on routes in RK is

π (Y RK
= nRK

) = P (Y ∈ S|Y RK
= nRK

) P (Y RK
= nRK

)/P (Y ∈ S) ,

where Y RK
= nRK

is shorthand for ∩r∈RK
{Yr = nr}. Noticing that

P (Y ∈ S|Y RK
= nRK

) = P


 ∑

r/∈RK

ajrYr ≤ Cj −
∑

r∈RK

ajrnr, j ∈ J




is a function, θK , only of n∂RK
= (nr : r ∈ RK ∩RJ\K), we are lead to

π (Y RK
= nRK

) =
θK (n∂RK

)

G(C)

∏
r∈RK

νnr
r

nr!
, (4)

where G(C) is a normalising constant chosen so that the distribution π sums
to unity. Expression (4) is due to Zachary and Ziedins [6]; it implies that the
equilibrium distribution for the loss network is a Markov random field.

The loss probability on a route can be calculated from π: it can be shown
that, for any route r ∈ RK ,

Lr = 1−
∑
nRK

∈SRK
θK(n∂RK

)P (Y RK
= nRK

− er)∑
nRK

∈SRK
θK(n∂RK

)P (Y RK
= nRK

)
, (5)
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where, for any R0 ⊆ R, SR0 =
{
nR0 ∈ NR0 :

∑
r∈R0

ajrnr ≤ Cj, j ∈ J
}

is
the projection of S onto NR0 . In the case K = J , equation (5) has the
concise form Lr = 1 − G(C − Aer)/G(C). Unfortunately, calculating the
loss probabilities using G(C) is often intractable. In fact, the problem is
#P -complete (Louth et al. [4]).

2 The Erlang fixed point approximation

In the EFPA the loss probability for route r is estimated to be

Lr = 1−
∏
i∈r

(1−Bi) , (6)

with B1, B2, . . . , BJ a solution to the system of equations

Bj = E(ρj, Cj), ρj =
∑
r∈Rj

νr

∏

i∈r\{j}
(1−Bi) , j ∈ J, (7)

where

E(ν, C) =
νC

C!

(
C∑

n=0

νn

n!

)−1

is Erlang’s formula for the blocking probability on a single isolated link with
Poisson traffic offered at rate ν. The rationale of “independent blocking”
that leads to the EFPA is well understood, and explained simply in Kelly [3].
Kelly [2] proved that, for the model under consideration, there is unique fixed
point (B1, . . . , BJ) ∈ [0, 1]J for the system (7).

The EFPA is known to be effective under a variety of limiting regimes.
Kelly [3] proved that the estimates for a network with fixed routing and no
controls tend towards the exact probabilities when (i) the link capacities and
arrival rates are increased at the same rate, keeping the network topology
fixed (Kelly limiting regime), and (ii) the number of links and routes are
increased while the link loads are held constant (diverse routing limit [7]).
The EFPA performs least well in highly linear networks and in circumstances
where the offered traffic loads are roughly equal to the capacities (critically
loaded).

3 A two-link approximation

An estimate of the route loss probabilities, which is more accurate than those
in (6), can be obtained by taking into account the link interdependencies.
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This two-link approximation is achieved by approximating the joint distri-
bution of the usage on pairs of links (the EFPA effectively estimates this
distribution on single links). The approximation is as follows. For each pair
of links i, j, let

hij(ui|j, uij, uj|i) =

∏ui|j−1

m=0 ρi|j(m)

ui|j!

∏uij−1
m=0 ρij(m)

uij!

∏uj|i−1

m=0 ρj|i(m)

uj|i!
,

for (ui|j, uij, uj|i) ∈ N3 such that ui|j + uij ≤ Ci, uj|i + uij ≤ Cj, where

ρi|j(u)=
∑

r∈Ri\Rj

νr

min(Ci−u,Cj)∑
uij=0

∏

k∈r

(
1−Bk|i(u + uij)

) ∑Cj−uij

v=0 hij(u, uij, v)∑Ci−u−1
w=0

∑Cj−w
v=0 hij(u,w, v)

, (8)

ρij(u)=
∑

r∈Ri∩Rj

νr

Ci−u−1∑
ui|j=0

∏

k∈r

(
1−Bk|i(ui|j + u)

) ∑Cj−u−1
v=0 hij(ui|j, u, v)

∑Ci−u−1
w=0

∑Cj−u−1
v=0 hij(w, u, v)

, (9)

and

Bk|i(ui) =





Pmin(Ck,ui)
uik=0 hki(Ck−uik,uik,ui−uik)PCk

uk=0

Pmin(uk,ui)
uik=0 hki(uk−uik,uik,ui−uik)

, if k 6= i,

1{ui=Ci} , if k = i.

(10)

These equations will be derived in Section 5. They form a set of equations in
the unknowns B = (Bk|i; i, k ∈ J), where Bk|i = (Bk|i(m); m ≤ Ci) ∈ RCi .
Existence of a fixed point is guaranteed by Brouwer’s Fixed Point Theorem.
To see this, let Ωk = {xk ∈

∏
i∈J RCi : 0 ≤ xk ≤ 1}, and observe that

fui

k|i(B) =





Pmin(Ck,ui)
uik=0 hki(Ck−uik,uik,ui−uik)PCk

uk=0

Pmin(uk,ui)
uik=0 hki(uk−uik,uik,ui−uik)

, if k 6= i,

1{ui=Ci}, if k = i,

defines a continuous mapping from Ω =
∏

k∈J Ωk into [0, 1]. Thus, with f =
(fui

k|i; ui = 0, . . . , Ci, k, i ∈ J), we have f(Ω) ⊆ Ω, and therefore f has at least
one fixed point in Ω.

The loss probabilities are estimated using h = (hij; i, j ∈ J). Losses on
two-link routes, for example, have

Lr = 1− Φij(Ci − 1, Cj − 1)

Φij(Ci, Cj)
, if r = {i, j}, (11)

where Φij(Ci, Cj) =
∑Ci

ui=0

∑Cj

uj=0

∑min(ui,uj)
k=0 hij(ui− k, k, uj − k). Calls that

use the single link r = {i} are lost with probability

Bi = 1− Φij(Ci − 1, Cj)

Φij(Ci, Cj)
, (12)
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where j is any link with a route common to i.
The rationale for the approximation is as follows. The traffic offered to a

subsystem consisting of two arbitrary links, i and j, can be classified as either
(i) link i only, (ii) link j only, or (iii) common to both links. Correspond-
ingly, let Ui|j =

∑
r∈Ri\Rj

Yr, Uj|i =
∑

r∈Rj\Ri
Yr and Uij =

∑
r∈Ri∩Rj

Yr be,
respectively, the number of calls using link i, the number using link j, and
the number on routes using both i and j. This is a natural way to classify
the traffic offered to the subsystem. Without capacity constraints, the joint
distribution of the link utilisations Ui = Ui|j + Uij and Uj = Uj|i + Uij is

P (Ui = ui, Uj = uj) =

min(ui,uj)∑

k=0

P (Ui|j = ui − k, Uij = k, Uj|i = uj − k) ,

where

P (Ui|j = ui|j, Uij = uij, Uj|i = uj|i) =
ρ

ui|j
i|j

ui|j!

ρ
uij

ij

uij!

ρ
uj|i
j|i

uj|i!
e−(ρi|j+ρij+ρj|i), (13)

with ρij =
∑

r∈Ri∩Rj
νr, ρi|j =

∑
r∈Ri\Rj

νr and ρj|i =
∑

r∈Rj\Ri
νr. To con-

struct the approximation, we replace the aggregate rates ρij, ρi|j and ρj|i
in (13) by “reduced load” rates, and we isolate the subsystem composed
of traffic offered to links i and j. Motivated by the form of (13), let us
suppose for the moment that π(Ui|j = ui|j, Uij = uij, Uj|i = uj|i) has the
form hij(ui|j, uij, uj|i)/Φij(Ci, Cj). If this were the case, then questions con-
cerning call blocking could be answered easily. For instance, the probability
that link i is full would be Bi in expression (12), the probability that either
link i or link j are full would be Lr in expression (11), and the conditional
probability that link k is full given link i carries ui calls would be Bk|i(ui) in
expression (10). To ensure that the traffic offered to the subsystem is con-
sistent with blocking in other parts of the network, the rates ρij, ρi|j and ρj|i
are replaced by state-dependent reduced rates. For example, expression (8)
for ρi|j(ui|j) is just ρi|j =

∑
r∈Ri\Rj

νr, but reduced by an estimate of the

expected blocking on the other links k ∈ r such that r ∈ Ri \Rj when link i
is carrying ui|j calls that are not also carried by link j.

4 A line network

In order to assess the accuracy of the two-link approximation, we shall con-
sider a network in which l links, labelled 1, . . . , l, are joined end-to-end.
Suppose that each link is offered a stream of single-link traffic, and that each
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of the links i ∈ {2, . . . , l − 1} share two-link routes {i− 1, i} and {i, i + 1},
with each of their neighbouring links. Thus, there are l single-link routes
and l − 1 two-link routes. For simplicity, assume that calls on single-link
routes arrive at a common rate ν1, and that calls on each two-link route
arrive at rate ν2.

The EFPA for the route loss probabilities is Li = Bi, i = 1, . . . , l, and
Li,i+1 = 1 − (1−Bi) (1−Bi+1), i = 1, . . . , l − 1, where (Bi; i = 1, . . . , l) is
the solution to

B1 = ν1 + ν2 (1−B2) ,

Bi = ν1 + ν2 (1−Bi−1) + ν2 (1−Bi+1) , i = 2, . . . , l − 1,

Bl = ν1 + ν2 (1−Bl−1) .

The two-link approximation for this network is as follows. For u =
0, . . . , C − 1, set ρij(u) = ν2 for all i, j = 1, . . . , l such that j = i − 1 or
j = i + 1, ρ1|2(u) = ν1, ρl|l−1(u) = ν1, and let (Bj|i(u); i, j = 1, . . . , l, j =
i− 1 or j = i + 1) be a solution to the system of equations

Bj|i(u) =

∑min(C,u)
uij=0 hji(C − uij, uij, u− uij)

∑C
uj=0

∑min(uj ,u)
uij=0 hji(uj − uij, uij, u− uij)

,

i, j = 1, . . . , l, j = i− 1 or j = i + 1,

ρi|i−1(u) = ν1 + ν2

C−u−1∑

k=0

(
1−Bi+1|i(u + k)

) ∑C−k
w=0 hi−1,i(w, k, u)∑C−u−1

v=0

∑C−v
w=0 hi−1,i(w, v, u)

,

i = 2, . . . , l − 1,

ρi|i+1(u) = ν1 + ν2

C−u−1∑

k=0

(
1−Bi−1|i(u + k)

) ∑C−k
w=0 hi,i+1(u, k, w)∑C−u−1

v=0

∑C−v
w=0 hi,i+1(u, v, w)

,

i = 2, . . . , l − 1,

where

hij(ui|j, uij, uj|i) =

∏ui|j−1

m=0 ρi|j(m)

ui|j!
ν

uij

2

uij!

∏uj|i−1

m=0 ρj|i(m)

uj|i!
,

for i, j = 1, . . . , l, j = i− 1 or j = i + 1. Estimates for the loss probabilities
on single-link routes are

Li = 1− Φi,i+1(C − 1, C)

Φi,i+1(C, C)
, for i = 1, . . . , l − 1, and

Li = 1− Φi,i−1(C − 1, C)

Φi,i−1(C, C)
, for i = 2, . . . , l,
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where

Φij(Ci, Cj) =

Ci∑
ui=0

Cj∑
uj=0

min(ui,uj)∑

k=0

∏ui−k−1
m=0 ρi|j(m)

(ui − k)!

νk
2

k!

∏uj−k−1
m=0 ρj|i(m)

(uj − k)!
,

for i = 1, . . . , l and j a link adjacent to i. For certain links there may be
more than one possible estimate for the loss probability. For example, this
scheme produces two estimates for the loss probability on link 2:

L2 = 1− Φ12(C,C − 1)

Φ12(C,C)
and L2 = 1− Φ23(C − 1, C)

Φ23(C,C)
.

In practice there is no way of knowing which estimate will be the most accu-
rate. Both estimates achieved greater precision than the EFPA for the net-
work tested here. There is no ambiguity in estimating the two-link loss prob-
abilities; for i = 1, . . . , l − 1, Li,i+1 = 1− Φi,i+1(C − 1, C − 1)/Φi,i+1(C, C).

In Figures 1, 2 and 3, the relative errors in the loss probability estimates
for the EFPA and the two-link approximation are compared. The network
tested had 5 links, each with a carrying capacity of 5 calls. The single-link
route arrival rate ν1 was varied over [0, 10] and ν2 was set at ν1/2. By sym-
metry, there are only three single-link routes and two two-link routes to
distinguish. In this test case, the two-link approximation provided a signifi-
cant improvement in accuracy over the EFPA for each of the two-link routes
(Figure 3), the single-link route using an end link (top pane of Figure 1)
and the single-link route that uses the centre link (bottom pane of Figure 1).
The single-link route that uses a link second from the end was the only one
with multiple loss estimates. In Figure 2 the relative errors of the estimates
of L2, using the Φ12 and Φ23, are compared with the EFPA. Both two-link
estimates show a significant improvement over the EFPA.

5 Derivation of the two-link approximation

In this section we derive the fixed-point equations for the two-link approx-
imation of Section 3. Recall the way that we classified traffic offered to
links i and j. We had introduced Ui|j =

∑
r∈Ri\Rj

Yr, Uj|i =
∑

r∈Rj\Ri
Yr

and Uij =
∑

r∈Ri∩Rj
Yr. When capacity constraints are present, questions

concerning U ij = (Ui|j, Uij, Uj|i) are generally not easily answered. Let us

now introduce new, independent processes Ũ ij = (Ũi|j, Ũij, Ũj|i), for each pair

of links i, j ∈ J . We shall suppose Ũ ij is a continuous-time Markov chain
that approximates the π-behaviour of U ij in the space Sij = Sij(Ci, Cj) =
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Figure 1: Accuracy for a line network (5 links, C = 5, ν2 = ν1/2)
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Figure 3: Accuracy for a line network (5 links, C = 5, ν2 = ν1/2)

{(ui|j, uij, uj|i) : ui|j + uij ≤ Ci, uj|i + uij ≤ Cj}. Suppose that Ũ ij makes
transitions from state (ui|j, uij, uj|i) to the following states at the rates spec-
ified:

(ui|j − 1, uij, uj|i) at rate ui|j,

(ui|j, uij − 1, uj|i) at rate uij,

(ui|j, uij, uj|i − 1) at rate uj|i,

(ui|j + 1, uij, uj|i) at rate ρi|j(ui|j)1{ui|j+uij≤Ci},

(ui|j, uij + 1, uj|i) at rate ρij(uij)1{ui|j+uij≤Ci,uj|i+uij≤Cj},

(ui|j, uij, uj|i + 1) at rate ρj|i(uj|i)1{uj|i+uij≤Cj},

and no other transitions are possible. The stationary distribution for Ũ ij is

P (
ui|j, uij, uj|i

)
= Φ−1

ij

∏ui|j−1

m=0 ρi|j(m)

ui|j!

∏uij−1
m=0 ρij(m)

uij!

∏uj|i−1

m=0 ρj|i(m)

uj|i!
,

where Φij = Φij(Ci, Cj) is chosen so that P sums to 1 over the set Sij:

Φij(Ci, Cj) =

Ci∑
ui=0

Cj∑
uj=0

min(ui,uj)∑

k=0

∏ui−k−1
m=0 ρi|j(m)

(ui − k)!

∏k−1
m=0 ρij(m)

k!

∏uj−k−1
m=0 ρj|i(m)

(uj − k)!
.
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Our aim is to choose ρi|j(·), ρij(·) and ρj|i(·) such that the behaviour of Ũ ij,
with its assumed transition structure, best approximates that of U ij. We
assign to these quantities expected rates, in the following sense (see [5]).
Denote the space

∏
i,j∈J Sij by S̃. Let Λi|j(u) = {(u,v) ∈ S̃ × S̃ : ui|j =

u, vi|j = u+1}, for u = 0, 1, . . . , Ci−1. Then define ρi|j(u) to be the expected
rate (under P) of transitions in Λi|j(u):

ρi|j(u) = EP
(
q(Ũ ,Λi|j(u, Ũ ))

∣∣ Ũi|j = u, Ũi|j + Ũij < Ci

)
,

where q(u,Λi|j(u, u)) =
∑

r∈Ri\Rj
νr

∏
k∈r\{i} 1{uk|i+uki<Ck}1{u+uij<Ci}. This

expression can be evaluated partially as follows:

E
(
q(Ũ ,Λi|j(u, Ũ ))

∣∣∣Ũi|j = u, Ũi|j + Ũij < Ci

)
=

E
(
αi|j(Ũi|j + Ũij, Ũj|i + Ũij)

∣∣∣Ũi|j = u, Ũi|j + Ũij < Ci

)
,

where αi|j(ui, uj) = E(q(Ũ ,Λi|j(u, Ũ ))|E(ui, uj)) and

E(ui, uj) =
{

Ũi|k + Ũik = ui, k ∈ J \ {i}
}
∩

{
Ũj|k + Ũjk = uj, k ∈ J \ {j}

}

is the event that links i and j have utilisations ui and uj respectively. The
function αi|j(ui, uj) is the expected rate of transitions in the set {(u,v) ∈
S̃ × S̃ : ui|j + uij = ui, uj|i + uij = uj, vi|j = ui|j + 1}. It simplifies to
αi|j(ui, uj) = 0 if ui = Ci, and otherwise

αi|j(ui, uj) =
∑

r∈Ri\Rj

νrP
(
Ũk|i + Ũik < Ck, k ∈ r \ {i}

∣∣∣E(ui, uj)
)

.

Extending the rationale of independent blocking, characteristic of the EFPA,
we now assume that pairs of links {i, j} ∈ J index independent random
processes Ũ ij. Under this assumption,

αi|j(ui, uj) =
∑

r∈Ri\Rj

νr

∏

k∈r\{i}
P(

Ũk|i + Ũik < Ck

∣∣Ũi|k + Ũik = ui

)
1{ui<Ci}

=
∑

r∈Ri\Rj

νr

∏

k∈r

(
1−Bk|i(ui)

)
,

where Bk|i(ui) is the likelihood that link k is full when link i is known to
have ui circuits in use. This quantity is estimated to be

Bk|i(ui) =
Pmin(Ck,ui)

uik=0 P
(

Ũk|i=Ck−uik,Ũik=uik,Ũi|k=ui−uik

)
PCk

uk=0

Pmin(uk,ui)
uik=0 P

(
Ũk|i=uk−uik,Ũi,k=uik,Ũi|k=ui−uik

)

=





Pmin(Ck,ui)
uik=0 hki(Ck−ui,k,uik,ui−uik)PCk

uk=0

Pmin(uk,ui)
uik=0 hki(uk−uik,uik,ui−uik)

, if k 6= i,

1{ui=Ci}, if k = i,
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with hki(uk|i, uki, uk|i) proportional to P(uk|i, uki, uk|i) in Ski. Thus, we have
an expression for a reduced load marginal rate of arrivals to link i that do
not use link j:

ρi|j(u) =
∑

r∈Ri\Rj

νr

min(Ci−u,Cj)∑
v=0

∏

k∈r

(
1−Bk|i(u + v)

)

P(
Ũij = v

∣∣Ũi|j = u, Ũi|j + Ũij < Ci

)
.

Equation (8) results on setting

P(Ũij = uij|Ũi|j = u, Ũi|j + Ũij < Ci) =

∑Cj−uij

v=0 hij(u, uij, v)∑Ci−u−1
w=0

∑Cj−w
v=0 hij(u,w, v)

.

Expression (9) for the reduced load rate ρij(u) of arrivals corresponding to
transitions in Λij(u) = {(u,v) ∈ S̃ × S̃ : uij = u, vij = u + 1}, u =
0, . . . , min(Ci−1, Cj−1), is derived in a similar way. The quantity αij(ui, uj)
representing the expected rate at which calls that cause an increase in the
utilisation of both links i and j arrive when Ui = ui and Uj = uj, is

αij(ui, uj) = E


 ∑

r∈Ri∩Rj

νr

∏

k∈r\{i,j}
1{Ũk|i+Ũki<Ck}

∣∣∣∣ E(ui, uj)


 1{ui<Ci,uj<Cj},

which leads to αij(ui, uj) =
∑

r∈Ri∩Rj
νr

∏
k∈r(1 − Bk|i(ui)) if uj < Cj and

αij(ui, uj) = 0 if uj = Cj. We set ρij(u) to be the expected rate of transitions
in Λij(u):

E
(
αij(Ũi|j + Ũij, Ũj|i + Ũij)

∣∣∣ Ũij = u, Ũi|j + Ũij < Ci, Ũj|i + Ũij < Cj

)

=
∑

r∈Ri∩Rj

νr

Ci−u−1∑
ui|j=0

∏

k∈r\{j}

(
1−Bk|i(ui|j + u)

)

P
(
Ũi|j = ui|j

∣∣∣ Ũij = u, Ũi|j + Ũij < Ci, Ũj|i + Ũij < Cj

)
.

Expression (9) follows on using
∑Cj−uij−1

v=0 hij(ui|j, u, v)
∑Ci−u−1

w=0

∑Cj−u−1
v=0 hij(w, u, v)

to estimate the latter conditional probability. The loss probabilities may
then be estimated using Φij. Losses on two link routes, r = {i, j}, have

Lr = 1− π(Ui < Ci, Uj < Cj) ≈ 1− Φij(Ci − 1, Cj − 1)

Φij(Ci, Cj)
.

11



Calls that use the single link i are lost with probability

Bi = 1− π(Ui < Ci) ≈ 1− Φij(Ci − 1, Cj)

Φij(Ci, Cj)
.

The approximation for Bi depends on j because the distribution of Ũi|j + Ũij

is different from that of Ũi|k + Ũik. As a result, the loss estimated using Φij

may be different from the estimate Φik.
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