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Abstract

This paper is concerned with evaluating the performance of loss networks.
Accurate determination of loss network performance can assist in the design
and dimensioning of telecommunications networks. However, exact deter-
mination can be difficult and generally cannot be done in reasonable time.
For these reasons there is much interest in developing fast and accurate ap-
proximations. We develop a reduced load approximation that improves on
the famous Erlang fixed point approximation (EFPA) in a variety of circum-
stances. We illustrate our results with reference to a range of networks for
which the EFPA may be expected to perform badly.

1 Introduction

We shall use the standard model for a circuit-switched teletraffic network. The
network consists of a finite set of links J and the j-th link comprises a co-operative
group of Cj circuits. Upon connection of a call an end-to-end route is established
such that a call initiated on route r seizes a number, aj,r, of circuits from one or
more of the links in J . For simplicity, we will assume that aj,r = 1 if link j is part of
route r; otherwise aj,r = 0. More general models may allow aj,r ∈ {0, 1, 2, . . . , Cj}.
The (aj,r; j ∈ J) circuits remain exclusively dedicated to the connection as long as
it is maintained, even when no information is being transferred. When the call is
terminated, all of the circuits are released simultaneously and are then available to
be used by future calls. Denote the set of all routes by R, the routing matrix (aj,r; j ∈
J, r ∈ R) by A, and write j ∈ r as an abbreviation for j ∈ {i ∈ J : ai,r > 0}. Rather
than identifying a call type by its originating and destination points, a call type is
identified by its route. To this end, the model assumes arriving calls are requesting
to be connected along a particular route. There are no waiting arrangements for
calls that cannot be connected immediately; a call that arrives to find insufficient
capacity on one or more of the links along its route is blocked from service and is
then lost. The proportions (Lr; r ∈ R) of calls that are expected to be lost on each
respective route r form a natural measure of network efficiency.

The usual state description tracks the numbers of calls in progress on each of
the routes. Let Y = (Yr; r ∈ R), where Yr is the random number of route-r calls in
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progress. Due to the capacity constraints, Y takes values in the subset S = S(C)
of NR given by

S(C) =

{
n ∈ NR :

∑
r∈R

aj,rnr ≤ Cj, j ∈ J

}
. (1)

We will suppose that calls for each route arrive in independent Poisson streams,
with route-r calls arriving at rate ψr. Further suppose that calls have an exponen-
tially distributed duration after being accepted. Under these assumptions, Y is a
reversible Markov process and its equilibrium distribution has a product form. Let
the mean holding time of calls on route r be φ−1

r . Define P to be the probability
measure under which (Yr; r ∈ R) are independent Poisson random variables with
means νr = ψr/φr, r ∈ R. This would be the equilibrium measure for the usage
on each of the routes were the system not to have any capacity constraints. The
restriction Y to S is a truncation of a reversible Markov process and its equilibrium
probability measure is thus given by

π(A) = P (A|Y ∈ S), for all P -measurable A. (2)

Under π, Y is still reversible (Kelly [8], Corollary 1.10), and thus the form of π can
be easily obtained from the detailed balance equations,

ψrπ(Y = n) = (nr + 1)φrπ(Y = n + er), n,n + er ∈ S. (3)

(Here er represents the unit vector with a 1 in the r-th position.) In the present
context, there is no need to distinguish between the traffic load νr and the arrival
rate ψr, for replacing ψr by νr and φr by 1 does not alter (3). Thus, without loss of
generality, it may be assumed that the mean holding times of all call types are 1.

The form of π can also be derived directly from definition (2). For instance,
if K ⊆ J and RK = {r ∈ R :

∑
j∈K aj,r > 0} is the set of routes that use at least one

link in K, then the marginal distribution of the numbers of calls on routes in RK is

π (Y RK
= nRK

) =
P (Y ∈ S|Y RK

= nRK
) P (Y RK

= nRK
)

P (Y ∈ S)
,

where Y RK
= nRK

is shorthand for the event ∩r∈RK
{Yr = nr}. Noticing that

P (Y ∈ S|Y RK
= nRK

) = P


 ∑

r/∈RK

aj,rYr ≤ Cj −
∑

r∈RK

aj,rnr, j ∈ J




is a function (call it θK) only of n∂RK
= (nr : r ∈ RK ∩RJ\K), we are lead to

π (Y RK
= nRK

) =
θK (n∂RK

)

G(C)

∏
r∈RK

νnr
r

nr!
, (4)

where G(C) is a normalising constant chosen so that the distribution π sums to unity.
Expression (4) is due to Zachary and Ziedins [20]. It implies that the equilibrium
distribution for the loss network is a Markov random field.
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The loss probability on a route can be calculated from π: for any route r ∈ RK ,

π (Y + er ∈ S) = P (Y ∈ S)−1
∑

nRK
∈SRK

P (Y + er ∈ S|YRK
= nRK

) P (YRK
= nRK

)

= P (Y ∈ S)−1
∑

nRK
∈SRK

P (Y ∈ S|YRK
= nRK

+ er) P (YRK
= nRK

)

= P (Y ∈ S)−1
∑

nRK
∈SRK

P (Y ∈ S|YRK
= nRK

) P (YRK
= nRK

− er) ,

where, for any R ⊆ R, SR = SR(C) =
{
nR ∈ NR :

∑
r∈R aj,rnr ≤ Cj, j ∈ J

}
is

the projection of S onto NR. Thus, the probability a call requesting route r arrives
to find one or more of the links in r full is

Lr = 1−
∑
nRK

∈SRK
θK(n∂RK

)P (Y RK
= nRK

− er)∑
nRK

∈SRK
θK(n∂RK

)P (Y RK
= nRK

)
. (5)

In the case K = J , equation (5) has the concise form Lr = 1−G(C −Aer)/G(C).
Unfortunately, calculating the loss probabilities using G(C) is often intractable.

Direct normalisation of the distribution π in (2) entails summing over the space S,
and, even for moderately sized networks, it is apparent from (1) that the number of
distinct states in S is large and grows rapidly with the number of routes and also
with the link capacities. Louth et al. [13] prove that the problem of evaluating π in
this way is #P -complete. Thus, there is evidence to suggest that an algorithm for
finding the loss probabilities in polynomial time using G does not exist.

An alternative to evaluating G is to find θK and then use (5) to calculate Lr.
Choose a collection of links H disjoint from K. Then,

P (Y ∈ S|Y RK
= nRK

) =∑
mRK∪H

∈SRK∪H
:

mRK
=nRK

P (Y ∈ S|Y RK∪H
= mRK∪H

) P (Y RH
= mRH

|Y RK
= nRK

) ,

(recall that mRK
= nRK

is short for ∩r∈RK
mr = nr). Thus, θK satisfies the recur-

rence

θK (n∂RK
) =

∑
mRH

∈SRH
:

mRK∩RH
=nRK∩RH

θK∪H (m∂RK∪H
)

∏

r∈RH\RK

νmr
r

mr!
e−νr , (6)

where m∂RK∪H
indexing θK∪H is actually the vector (mr : r ∈ ∂RH \RK) joined

with (nr : r ∈ ∂RK \RH). The functions θK often have a natural factorisation,
which refines (6) and sometimes reduces the complexity of the problem to the point
where exact calculation of the loss probabilities is tractable. If the problem is still
too large, Zachary and Ziedins [20] suggest imposing a product form on θK and then
using (6) as the basis for an approximation scheme. This approach, which is very
accurate for a wide range of networks, is reviewed in Section 3.
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2 Link interactions

Instead of Y , it is frequently convenient to work in terms of the link utilisations.
Overlapping routes are, in some sense, competing for usage of the circuits on the
links that they share. It is this competitiveness between routes that cause the
volumes of carried traffic on the links to affect one another and makes analysing the
process so interesting and challenging.

For each link j, let Uj =
∑

r∈Rj
Yr be the random amount of capacity being

used on link j. Only in exceptional circumstances is there sufficient information
encapsulated in a state description that lists only the links’ utilisation for the pro-
cess U = (Uj; j ∈ J) to be Markovian. While transitions U → U + Aer are made
at a rate

∑
r∈R νr 1{U+Aer≤C} that only depends on the state U , the rate at which

transitions of the form U → U −Aer occur is Yr, a quantity that cannot always be
extracted from U .

Under P , Uj is the superposition of independent Poisson streams and is therefore
marginally distributed as a Poisson random variable with mean ρj =

∑
r∈Rj

νr. The
joint probability generating function of Ui and Uj is

EP

(
sUitUj

)
= exp

[∑
r∈R

νr (sai,rtaj,r − 1)

]
.

Clearly, if there is at least one route that uses both links i and j then even under P
the links will not operate independently. When capacity constraints are present in
the model the link interactions become complicated. The effects of link blocking not
only influence the behaviour of neighbouring links but tend to propagate throughout
the network. Owing to this complexity a useful explicit expression for π(U = u)
does not usually exist. These probabilities do, however, form the unique solution to
the equations

uj π(U = A.n) =
∑
r∈Rj

νr π(U = A.(n− er)), j ∈ J, n ∈ S, (7)

where uj =
∑

r∈Rj
nr. Recurrence (7) was established by Dziong and Roberts [4].

A neat derivation is given by Zachary [19].
We have described the classical loss network model, similar to that of Kelly [9].

It also arises in variety of different contexts. Appropriate choices of A and C for the
linear constraints will lead to simple models for fixed-line networks [17, 6, 10], cellular
mobile networks [5, 3], computer database access problems [14], and other kinds of
telecommunications networks [18, 16]. Part of the model’s appeal is that it can easily
be extended to include call acceptance criteria that cannot necessarily be expressed
using a linear constraint AY ≤ C. Provided those controls preserve the reversibility
of the process Y , even the product-form distribution π in (4) applies. Unfortunately,
this is not the case for admission policies such as trunk reservation [11, 7] or virtual
partitioning [2, 15]. Nor does the product-form result hold for networks allowing
alternative routing.
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3 The Markov field method

Sometimes the network has special structure that allows quicker determination of
the loss probabilities. Again fix some K ⊆ J . For each link j ∈ J \ K, let Xj =∑

r/∈RK
aj,rYr denote the random amount of capacity used on link j due to calls on

routes not in RK . Under P , the Xj and Xk corresponding to two links j and k
for which there does not exist a common route (/∈ RK) are independent random
variables. That is to say, if aj,r > 0 only for the routes in the set {r /∈ RK : ak,r = 0},
then Xj and Xk are independent. This means that θK can be factorised as

θK (n∂RK
) =

∏
i

θK,Hi
(nRK∩RHi

), (8)

where ∪iHi = J \K and each Hi is a group of links satisfying
∑

r/∈RK
aj,rak,r > 0 if

and only if j and k belong to the same group. Furthermore,

θK,Hi
(nRK∩RHi

) = P

(
Xj ≤ Cj −

∑
r∈RK

aj,rnr, j ∈ Hi

)
. (9)

Expression (8) separates the calculation of θK into the smaller calculations of θK,Hi
,

which may then be attempted in parallel.
The factorisation of θK substantially simplifies the recurrence (6). Let K1, . . . , Kd

be collections of links that form a complete covering of J and let ∼ be the relation
on pairs of link groups α and β in K = {K1, . . . , Kd} defined by α ∼ β if and only
if Rα ∩Rβ 6= ∅. Now suppose that the collections of links K are chosen such that

θα (n∂Rα) =
∏

β∼α

θα,β

(
nRα∩Rβ

)
, for each α ∈ K. (10)

This choice is always possible: at worst, d = 1 and K1 = J . In a network that has
been decomposed this way, recurrence (6) implies that, for each α ∈ K and β ∼ α,

θα,β

(
nRα∩Rβ

)
=

∑
mRβ

∈SRβ
:

mRα∩Rβ
=nRα∩Rβ

∏

γ∼β

γ 6=α

θβ,γ

(
mRβ∩Rγ

) ∏

r∈Rβ\Rα

νmr
r

mr!
e−νr . (11)

This finer recursion relates θα,β to only those θβ,γ for which α ∼ β and β ∼ γ
and suggests that it may be solved efficiently using block iterative methods. Then,
using (8) and (5), the loss probabilities can be determined from

Lr = 1−
P
nRα∩Rβ

∈SRα∩Rβ
θ
(C−Aer)
α,β

�
nRα∩Rβ

�
θ
(C−Aer)
β,α

�
nRα∩Rβ

�
P

�
Y Rα∩Rβ

=nRα∩Rβ

�
P
nRα∩Rβ

∈SRα∩Rβ
θα,β

�
nRα∩Rβ

�
θβ,α

�
nRα∩Rβ

�
P

�
Y Rα∩Rβ

=nRα∩Rβ

� , (12)

where

θ
(C−Aer)
α,β

(
nRα∩Rβ

)
= P


 ∑

ρ/∈Rα

aj,ρYρ ≤ Cj − aj,r −
∑
ρ∈Rα

aj,ρnρ, j ∈ β


 .
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When r ∈ Rα \Rβ,

θ
(C−Aer)
α,β (nRα∩Rβ

) = θα,β(nRα∩Rβ
), for all nRα∩Rβ

∈ SRα∩Rβ
,

and if r ∈ Rα ∩Rβ,

θ
(C−Aer)
α,β (nRα∩Rβ

) = θα,β(nRα∩Rβ
+ er), for all nRα∩Rβ

∈ SRα∩Rβ
,

in either case, and otherwise θ
(C−Aer)
α,β satisfies relations (8) and (11) with S replaced

by S(C − Aer).
The factorisation (10) holds if the graph (K,∼) contains no 3-cycles. Thus, the

extent to which J may be separated into the subsets K is limited. This might present
a problem. If Rβ contains more than a few routes, the space SRβ

might be too large
to sum over and evaluation of θα,β in (11) might still prove to be a formidable task.
In this case, imposing a product form on θK may lead to a good approximation.
This is the approach that Zachary and Ziedins [20] take in developing their Markov
field approximation (MFA) method. It is a general approximation scheme of which
the Erlang fixed point approximation (EFPA) is a special case.

4 The Erlang fixed point approximation

In the EFPA the loss probability for route r is estimated to be

Lr = 1−
∏
i∈r

(1−Bi), (13)

with B1, B2, . . . , BJ a solution to the set of fixed-point equations

Bj = E(ρj, Cj), j ∈ J, (14)

ρj =
∑
r∈Rj

νr

∏

i∈r\{j}
(1−Bi), j ∈ J, (15)

where

E(ν, C) =
νC

C!

(
C∑

n=0

νn

n!

)−1

is Erlang’s formula for the probability that capacity on a single isolated link offered
Poisson traffic at rate ν is fully utilised. The EFPA replaces the true probability
measure π by a more amenable measure P . Under P , each link j is assumed to be
offered a stream of traffic at a constant rate ρj. If this were the case, the equilibrium
probability distribution for U would be P(U = u) =

∏
j∈J P(Uj = uj), where

P(Uj = u) =
ρu

j

u!

(
C∑

n=0

ρn
j

n!

)−1

.

This amounts to the assumption that the links operate independently, and is there-
fore much simpler. Under P , the probability that link j is full is Bj in equation (14).
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Except in the most trivial of circumstances, calls on routes that use link j do
not arrive at a constant rate. In state Y with U = AY , calls requesting link j
as part of their route actually arrive at rate aj(U ) =

∑
r∈Rj

νr 1{U+Aer≤C}. When-

ever
∑

r∈Ri
Yr < Ci, for all i, the arrivals seen by link j form a Poisson stream

with rate
∑

r∈Rj
νr. In states Y for which one or more links i are full (that is,∑

r∈Ri
Yr = Ci), the arrival stream for link j only includes calls that can be ac-

cepted without violating the capacity constraints. When j is full, aj(U ) = 0.
The quantity ρj given in expression (15) can be interpreted as an expected arrival

rate under the distribution P :

ρj(uj) = EP(aj(U )|Uj = uj)

=
∑
r∈Rj

νrP (U + Aer ≤ C|Uj = uj)

=
∑
r∈Rj

νrP (∩i∈r{Ui + 1 ≤ Ci}|Uj = uj)

=
∑
r∈Rj

νr

∏

i∈r\{j}
(1−Bi) 1{uj<Cj}. (16)

The system (14)-(15) is simply stating that, for each link j ∈ J , the likelihood of
congestion and the intensity of offered traffic should be consistent. There is a unique
vector (B1, . . . , BJ) ∈ [0, 1]J satisfying (14) and (15) (see Kelly [9]).

The EFPA fits the MFA framework of Section 3. Specifically, the EFPA can be
realised by assuming

P (
Y Rj

= nRj

) ∝
∏
i∼j

θj,i

(
nRj∩Ri

) ∏
r∈Rj

νnr
r

nr!
,

along with

θj,i

(
nRj∩Ri

)
=

∏
r∈Ri∩Rj

(1−Bi)
nr ,

for individual links i and j in J .
The EFPA is known to be effective under a variety of limiting regimes. Kelly [10]

proved that the estimates for a network with fixed routing and no controls tend
towards the exact probabilities when (i) the link capacities and arrival rates are in-
creased at the same rate, keeping the network topology fixed (Kelly limiting regime),
and (ii) the number of links and routes are increased while the link loads are held
constant (diverse routing limit [21]). The EFPA performs least well in highly linear
networks and in circumstances where the offered traffic loads are roughly equal to
the capacities (critically loaded).

The relationships between P and the probability measures P and π are interest-
ing enough to mention. If there were no capacity constraints on the network, then
all three would imply that Uj is a Poisson random variable with mean

∑
r∈Rj

νr, but
only under P do the links operate independently. When the constraints AY ≤ C
are added, π and P bear little resemblance to one another. They may not even be
equivalent measures. The true distribution π restricts U to the set {u ∈ NJ : ∃n ∈
S : An = u}. The approximate distribution P assigns non-zero probability mass to
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all of the states {u ∈ NJ : u ≤ C}. Only if the routing matrix A has rank J will
the two sets coincide. Some extra care should be taken when applying the EFPA
to networks with rank(A) < J [10]. One thing that the two measures π and P do
share, is a common expression for the expected utilisation of link j:

Eπ(Uj) =

Cj∑

k=0

∑

u:uj=k

k π(U = u)

=

Cj∑

k=0

∑

u:uj=k

∑
r∈Rj

νr π(U = u− Aer) (from (7))

=
∑
r∈Rj

νr(1− Lr). (17)

The construction of P using reduced load rates ρj, as given by (16), ensures that
EP (Uj) is also equal to

∑
r∈Rj

νr(1−Lr), but this time Lr is only an estimate of the

loss probability of calls on route r as calculated from (13). The marginal distribution
of Uj under both P and P is a quantity ρ

uj

j /uj! appropriately normalised. It appears
as though P(Uj = uj) has adopted the exact form of P (Uj = uj) with the transition
rate

∑
r∈Rj

νr of Uj → Uj + 1 replaced by the reduced rates (15), so that EP (Uj) is

consistent with (17). This observation is the motivation for the approach taken in
the next section.

5 A two-link approximation

An estimate of the route loss probabilities, which is more accurate than those in (13),
can be obtained by taking into account the link interdependencies. Here we present
an approximation method that makes some allowance of the link interactions. This
two-link approximation is achieved by considering reduced load approximations for
the joint distributions of pairs of links. The EFPA instead estimates the marginal
distribution of each single link in isolation.

The two-link approximation is as follows. For each pair of links i, j, let

hi,j(ui|j, ui,j, uj|i) =

∏ui|j−1

m=0 ρi|j(m)

ui|j!

∏ui,j−1
m=0 ρi,j(m)

ui,j!

∏uj|i−1

m=0 ρj|i(m)

uj|i!
, (18)

for (ui|j, ui,j, uj|i) ∈ N3 : ui|j + ui,j ≤ Ci, uj|i + ui,j ≤ Cj, where

ρi|j(u) =
∑

r∈Ri\Rj

νr

min(Ci−u,Cj)∑
ui,j=0

∏

k∈r

(
1−Bk|i(u + ui,j)

) ∑Cj−ui,j

v=0 hi,j(u, ui,j, v)∑Ci−u−1
w=0

∑Cj−w
v=0 hi,j(u,w, v)

, (19)

ρi,j(u) =
∑

r∈Ri∩Rj

νr

Ci−u−1∑
ui|j=0

∏

k∈r

(
1−Bk|i(ui|j + u)

) ∑Cj−u−1
v=0 hi,j(ui|j, u, v)

∑Ci−u−1
w=0

∑Cj−u−1
v=0 hi,j(w, u, v)

, (20)

and

Bk|i(ui) =





Pmin(Ck,ui)
ui,k=0 hk,i(Ck−ui,k,ui,k,ui−ui,k)PCk

uk=0

Pmin(uk,ui)
ui,k=0 hk,i(uk−ui,k,ui,k,ui−ui,k)

, if k 6= i,

1{ui=Ci}, if k = i.

(21)
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Equations (18) through (21) will be derived in Section 7. They form a set of fixed
point equations in the unknowns B = (Bk|i; i, k ∈ J) where Bk|i = (Bk|i(m); m ≤
Ci) ∈ RCi . Let Ωk = {xk ∈

∏
i∈J RCi : 0 ≤ xk ≤ 1}. Existence of a solution is

guaranteed by Brouwer’s fixed point Theorem. To see this, observe that

fui

k|i(B) =





Pmin(Ck,ui)
ui,k=0 hk,i(Ck−ui,k,ui,k,ui−ui,k)PCk

uk=0

Pmin(uk,ui)
ui,k=0 hk,i(uk−ui,k,ui,k,ui−ui,k)

, if k 6= i,

1{ui=Ci}, if k = i,

is a continuous mapping from Ω =
∏

k∈J Ωk into [0, 1]. Thus with f = (fui

k|i; ui =

0, . . . , Ci, k, i ∈ J), we have f(Ω) ⊆ Ω, and therefore f has at least one fixed point
in Ω.

The loss probabilities can be estimated using h = (hi,j; i, j ∈ J). Losses on
two-link routes, for example, have

Lr = 1− Φi,j(Ci − 1, Cj − 1)

Φi,j(Ci, Cj)
, if r = {i, j}, (22)

where

Φi,j(Ci, Cj) =

Ci∑
ui=0

Cj∑
uj=0

min(ui,uj)∑

k=0

hi,j(ui − k, k, uj − k).

Calls that use the single link r = {i} are lost with probability

Bi = 1− Φi,j(Ci − 1, Cj)

Φi,j(Ci, Cj)
, (23)

where j is any link with a route common to i.
The rationale for the approximation is as follows. The traffic offered to a sub-

system consisting two arbitrary links, i and j, can be classified as either link i only,
link j only, or common to both links i and j. Correspondingly, let Ui|j =

∑
r∈Ri\Rj

Yr,

Uj|i =
∑

r∈Rj\Ri
Yr and Ui,j =

∑
r∈Ri∩Rj

Yr be, respectively, the number of calls using
link i, the number using link j and the number on routes using both i and j. This
is a natural way to classify the traffic offered to the subsystem. Without capacity
constraints, the joint probability distribution for the link utilisations Ui = Ui|j +Ui,j

and Uj = Uj|i + Ui,j is

P (Ui = ui, Uj = uj) =

min(ui,uj)∑

k=0

P (Ui|j = ui − k, Ui,j = k, Uj|i = uj − k),

where

P (Ui|j = ui|j, Ui,j = ui,j, Uj|i = uj|i) =
ρ

ui|j
i|j

ui|j!

ρ
ui,j

i,j

ui,j!

ρ
uj|i
j|i

uj|i!
e−(ρi|j+ρi,j+ρj|i), (24)

with ρi,j =
∑

r∈Ri∩Rj
νr, ρi|j =

∑
r∈Ri\Rj

νr, and ρj|i =
∑

r∈Rj\Ri
νr. To construct

a reduced load approximation we shall replace the aggregate rates ρi,j, ρi|j and ρj|i
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in (24) with reduced load rates. We isolate the subsystem composed of traffic of-
fered to link i and traffic offered to link j from the network. Motivated by the
form of (24), let us suppose that π(Ui|j = ui|j, Ui,j = ui,j, Uj|i = uj|i) has the
form hi,j(ui|j, ui,j, uj|i)/Φi,j(Ci, Cj). If this were the case then questions concerning
call blocking could be answered easily. For instance, the probability that link i is
full would be Bi in expression (23), the probability that either link i or link j are
full would be Lr in expression (22), and the conditional probability that link k is
full given link i carries ui calls would be Bk|i(ui) in expression (21). To ensure that
the traffic offered to the subsystem is consistent with blocking in other parts for
the network, the rates ρi,j, ρi|j and ρj|i are replaced with state-dependent reduced
rates. For example, expression (19) for ρi|j(ui|j) is ρi|j =

∑
r∈Ri\Rj

νr reduced by an

estimate of the average blocking on the other links k ∈ r : r ∈ Ri \ Rj when link i
is carrying ui|j calls that are not also carried by link j.

6 Examples

In this section we present the results of applying the two-link reduced load approxi-
mation to a suite of simple networks. We compare its accuracy with other methods
such as the MFA and the EFPA.

6.1 A star network

Consider a private computing network consisting of a number of workstations linked
to a central mainframe in a star configuration. Each workstation is linked directly
to the central processor. Any exchange of information between workstations must
be via the central mainframe. This structure is quite common and in the past it
was a popular design for computing environments. As such, the backbone of many
networks in existence today is a number of star configurations with a few additional
links to improve resilience [12].

In a star network, each link carries a single-link route as well as sharing two-
link traffic with each of the other links. For simplicity, we will assume that the
network is completely symmetric: the link capacities are the same (Cj = C for
all j ∈ J = {1, 2, . . . , l}), each link is offered single-link traffic at the same rate ν1

and the l − 1 streams of two-link traffic are each offered at rate ν2.

6.1.1 The Erlang fixed point

When considered in isolation, the arrivals at any given link consist of l − 1 streams
at rate ν2, each thinned by a factor (1−B), and, one traffic stream at rate ν1. Thus,
the EFPA for the loss of single-link and two-link calls, respectively, are given by

L1 = B and L2 = 1− (1−B)2,

where B is the solution to

B = E
(
(ν1 + (l − 1)ν2(1−B), C

)
.
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6.1.2 The two-link approximation

The two-link reduced load approximation is obtained by solving the following sys-
tem. By the symmetry of this network Bk|i(u) = B(u) and ρi|j(u) = ρ(u) are inde-
pendent of i and j. Since the longest route consists of only two links, ρi,j(u) = ν2.
The parameters B(u) and ρ(u) satisfy

ρ(u) = ν1+(J−2)ν2

C−u−1∑
w=0

(
1−B(w+u)

) ∑C−w
v=0

Qu−1
m=0 ρ(m)

u!

νw
2

w!

Qv−1
m=0 ρ(m)

v!∑C−u−1
k=0

∑C−k
v=0

Qu−1
m=0 ρ(m)

u!

νk
2

k!

Qv−1
m=0 ρ(m)

v!

, (25)

B(u) =

∑min(C,u)
w=0

QC−w−1
m=0 ρ(m)

(C−w)!

νw
2

w!

Qu−w−1
m=0 ρ(m)

(u−w)!∑C
v=0

∑min(v,u)
w=0

Qv−w−1
m=0 ρ(m)

(C−w)!

νw
2

w!

Qu−w−1
m=0 ρ(m)

(u−w)!

, for u = 0, . . . , C − 1. (26)

Under this scheme, the loss probabilities are estimated to be

L1 = 1− Φ(C − 1, C)

Φ(C, C)
and L2 = 1− Φ(C − 1, C − 1)

Φ(C,C)
. (27)

with

Φ(ui, uj) =

ui∑
x=0

uj∑
y=0

min(x,y)∑

k=0

∏x−k−1
m=0 ρ(m)

x− k!

νk
2

k!

∏y−k−1
m=0 ρ(m)

y − k!
.

6.1.3 Zachary and Ziedins’ method

In Section 4 of their paper, Zachary and Ziedins [20] describe a generic approximation
for networks that exhibit a certain degree of symmetry. For the star model, the
approximation is achieved by replacing the existing probability measure π under
which

π
(
Y Rj

= nRj

)
=

θ
(
n∂Rj

)

G(C)

∏
r∈Rj

νnr
r

nr!
, for all j ∈ J,

by P with

P (
Y Rj

= nRj

) ∝
l−1∏

k=1

λ
(
nRj∩Rk

) ∏
r∈Rj

νnr
r

nr!
, for all j ∈ J,

where λ is given by

λ
(
nRj∩Rk

) ∝
∑

mRk
∈SRk

:
mRj∩Rk

=nRj∩Rk

l−2∏
i=1

λ (mRk∩Ri
)

∏

r∈Rk\Rj

νmr
r

mr!
.

Under P , instances of blocking of single-link and two-link routes have the respective
likelihoods

L1 =

∑C−1
k=0 λ(k)λ(k + 1)

νk
2

k!∑C
k=0 λ(k)λ(k)

νk
2

k!

and L2 =

∑C−1
k=0 λ(k + 1)λ(k + 1)

νk
2

k!∑C
k=0 λ(k)λ(k)

νk
2

k!

.
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Figure 1: Accuracy for a star network (J = 5, C = 5, ν2 = ν1/2)

This scheme is labelled MFA.
Figure 1 compares the relative errors in the MFA, EFPA, and two-link reduced

load approximation schemes. The network considered had five links and five circuits
per link. The x-axes have the single-link arrival rate ν1 varying over [0, 10]. We have
chosen ν2 = ν1/4, so that each link is offered roughly equal proportions of single-link
and two-link traffic. From the graphs it appears that the two-link approximation
compares favourably with the EFPA over most of the region tested. The accuracy
of the two-link scheme is only marginally worse than the MFA.

6.2 A ring network

Reduced load approximations such as the EFPA tend to perform least well in net-
works of linear structure with the links joined end-to-end or in a cycle. A popular
test case is the ring network, where the links are arranged in a loop with adjacent
pairs of links sharing routes.

As with the star network, we assume a high degree of symmetry in the model.
Suppose that all links have the same capacity C and that there are only two types
of traffic. Single-link traffic is offered to each link, 1, 2, . . . , l, at a common rate ν1

and two-link traffic is offered to each pair of adjacent links, {1, 2} , {2, 3} , . . . , {l, 1},
at rate ν2.

12



The MFA is applicable to the star network. Indeed, successive applications of
recurrence (6) provides a means of exact analysis in reasonable time; see [20] for
details.

6.2.1 The Erlang fixed point

Arguing that every single link sees one traffic stream at rate ν1 and two streams
at ν2 thinned by a factor (1 − B) representing the proportion of calls accepted on
neighbouring links, the reduced load rate for the EFPA is ν1 + 2ν2(1 − B). The
EFPAs for the loss of single-link and two-link calls, respectively, are given by

L1 = B and L2 = 1− (1−B)2,

where B is the solution to

B = E
(
ν1 + 2ν2(1−B), C

)
.

6.2.2 The two-link approximation

The EFPA is accurate when instances of link blocking appear almost independently
of one another. Unfortunately, the link utilisations are sometimes significantly de-
pendent. This is particularly true of linear and cyclic networks, such as the ring.
The two-link approximation is an attempt to account for the link interactions. The
approximation used for the star network requires only minor modification for the
ring network. In fact, the only change is that

ρ(u) = ν1 + ν2

C−u−1∑
w=0

(
1−B(w + u)

) ∑C−w
v=0

Qu−1
m=0 ρ(m)

u!

νw
2

w!

Qv−1
m=0 ρ(m)

v!∑C−u−1
k=0

∑C−k
v=0

Qu−1
m=0 ρ(m)

u!

νk
2

k!

Qv−1
m=0 ρ(m)

v!

,

instead of (25) (in the ring network each link i carries a single two-link route {i, i+1}
not shared with an adjacent link i−1). Expression (26) for B(u) and expressions (27)
for the loss probabilities remain unaltered.

6.2.3 The method of Bebbington, Pollett and Ziedins

A similar approximation for the ring network was previously devised by Bebbington,
Pollett and Ziedins [1] (here labelled BPZ). In both their Approximation II and our
two-link approximation, the rates are reduced by a usage-dependent factor (1 −
B(m)). Link i is offered three streams of traffic. Let Yi, Yi,i+1 and Yi−1,i be the
numbers currently carried on the respective streams. Taking into account the cyclic
structure of the network, we write i = 1 for i = l + 1. For m = 0, . . . , C − 1, they
define

B(m) = P (Yi + Yi,i+1 + Yi−1,i = C |Yi−1 + Yi−1,i = m) ,

whereas our approximation requires

B(m) = P (Yi + Yi,i+1 + Yi−1,i = C |Yi−1 + Yi−1,i + Yi−2,i−1 = m) .

Aside from this, the schemes are the same. The event {Yi−1 + Yi−1,i = m} yields
more information than does {Yi−1 + Yi−1,i + Yi−2,i−1 = m} in deciding the likelihood
of {Yi + Yi,i+1 + Yi−1,i = C}.

13
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Figure 2: Accuracy for a ring network (J = 5, C = 5, ν2 = ν1/2)

Figure 2 shows that the relative errors in the estimates from the BPZ scheme
are negligible when compared with our two-link approximation and the EFPA. Both
two-link approximations improve on the EFPA.

6.3 A linear network

As a final example, the accuracy of the two-link approximation is compared with
the EFPA on a network in which the links are joined end-to-end. Typically, reduced
load approximations perform poorly in linear networks.

Consider a network of l links labelled 1, . . . , l. Suppose that each link is offered
a stream of single-link traffic, and that each of the links i ∈ {2, . . . , l − 1} share
two-link routes {i− 1, i} and {i, i + 1}, with each of their neighbouring links, i− 1
and i + 1. For simplicity, assume that calls on single-link routes arrive at common
rate ν1, and that calls on each two-link route arrive at rate ν2. In this network, there
are l single-link routes and l − 1 two-link routes.
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6.3.1 The Erlang fixed point

The EFPA for the route loss probabilities is

Li = Bi, i = 1, . . . , l,

Li,i+1 = 1− (1−Bi) (1−Bi+1) , i = 1, . . . , l − 1,

where (Bi; i = 1, . . . , l) is the solution to

B1 = ν1 + ν2 (1−B2) ,

Bi = ν1 + ν2 (1−Bi−1) + ν2 (1−Bi+1) , i = 2, . . . , l − 1,

Bl = ν1 + ν2 (1−Bl−1) .

6.3.2 The two-link approximation

The two-link reduced load approximation for this network is as follows. For u =
0, . . . , C − 1, set ρi,j(u) = ν2 for all i, j = 1, . . . , l such that j = i − 1 or j = i + 1,
ρ1|2(u) = ν1, ρl|l−1(u) = ν1, and let (Bj|i(u); i, j = 1, . . . , l, j = i− 1 or j = i + 1) be
a solution to

Bj|i(u) =

∑min(C,u)
ui,j=0 hj,i(C − ui,j, ui,j, u− ui,j)

∑C
uj=0

∑min(uj ,u)
ui,j=0 hj,i(uj − ui,j, ui,j, u− ui,j)

,

i, j = 1, . . . , l, j = i− 1 or j = i + 1,

ρi|i−1(u) = ν1 + ν2

C−u−1∑

k=0

(
1−Bi+1|i(u + k)

) ∑C−k
w=0 hi−1,i(w, k, u)∑C−u−1

v=0

∑C−v
w=0 hi−1,i(w, v, u)

,

i = 2, . . . , l − 1,

ρi|i+1(u) = ν1 + ν2

C−u−1∑

k=0

(
1−Bi−1|i(u + k)

) ∑C−k
w=0 hi,i+1(u, k, w)∑C−u−1

v=0

∑C−v
w=0 hi,i+1(u, v, w)

,

i = 2, . . . , l − 1,

where

hi,j(ui|j, ui,j, uj|i) =

∏ui|j−1

m=0 ρi|j(m)

ui|j!
ν

ui,j

2

ui,j!

∏uj|i−1

m=0 ρj|i(m)

uj|i!
,

for i, j = 1, . . . , l, j = i − 1 or j = i + 1. Estimates for the loss probabilities on
single-link routes are

Li = 1− Φi,i+1(C − 1, C)

Φi,i+1(C, C)
, for i = 1, . . . , l − 1, and

Li = 1− Φi,i−1(C − 1, C)

Φi,i−1(C, C)
, for i = 2, . . . , l,

where

Φi,j(Ci, Cj) =

Ci∑
ui=0

Cj∑
uj=0

min(ui,uj)∑

k=0

∏ui−k−1
m=0 ρi|j(m)

ui − k!

νk
2

k!

∏uj−k−1
m=0 ρj|i(m)

uj − k!
,

15



0 1 2 3 4 5 6 7 8 9 10
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Arrival rate of single link calls (ν
1
)

R
el

at
iv

e 
er

ro
r

Route using an end link

two link
EFPA

0 1 2 3 4 5 6 7 8 9 10
−0.01

−0.005

0

0.005

0.01

0.015

0.02

Arrival rate of single link calls (ν
1
)

R
el

at
iv

e 
er

ro
r

Route using the middle link

two link
EFPA

Figure 3: Accuracy for a line network (5 links, C = 5, ν2 = ν1/2)

for i = 1, . . . , l and j a link adjacent to i. For certain links there may be more
than one possible estimate for the congestion probability. For example, this scheme
produces two estimates for the loss probability on link 2,

L2 = 1− Φ1,2(C, C − 1)

Φ1,2(C, C)
and L2 = 1− Φ2,3(C − 1, C)

Φ2,3(C,C)
.

In practice there is no way of knowing which estimate is the most accurate. Both
estimates achieved greater precision than the EFPA for the network tested here.
There is no ambiguity in estimating the loss probabilities on two-link routes. For
i = 1, . . . , l − 1,

Li,i+1 = 1− Φi,i+1(C − 1, C − 1)

Φi,i+1(C, C)
.

In Figures 3, 4 and 5, the relative errors in the loss probability estimates for the
EFPA and the two-link reduced load approximation are compared. The network
tested had 5 links, each with a carrying capacity of 5 calls. The single-link route
arrival rate ν1 was varied over [0, 10] and ν2 was set at ν1/2. By symmetry, there
are only three single-link routes and two two-link routes to distinguish. In this test
case, the two-link approximation provided a significant improvement in accuracy
over the EFPA in each of the two-link routes (Figure 5), the single-link route using
an end link (top pane of Figure 3) and the single-link route that uses the centre link
(bottom pane of Figure 3). The single-link route that uses a link second from the
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Figure 4: Accuracy for a line network (5 links, C = 5, ν2 = ν1/2)
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Figure 5: Accuracy for a line network (5 links, C = 5, ν2 = ν1/2)
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end was the only one with multiple loss estimates. In Figure 4 the relative errors
of the estimates of L2 using the Φ1,2, and Φ2,3 are compared to the EFPA. Both
two-link estimates improve significantly on the EFPA’s accuracy.

7 Derivation of the two-link approximation

In this section we derive the fixed-point equations for the two-link reduced load ap-
proximation of Section 5. Recall the way that we classified traffic offered to links i
and j. We had introduced Ui|j =

∑
r∈Ri\Rj

Yr, Uj|i =
∑

r∈Rj\Ri
Yr, and Ui,j =∑

r∈Ri∩Rj
Yr. When capacity constraints are present, questions concerning U i,j =

(Ui|j, Ui,j, Uj|i) are generally not easily answered. Let us now introduce new, in-

dependent processes Ũ i,j = (Ũi|j, Ũi,j, Ũj|i), for each pair of links i, j ∈ J . We

shall suppose Ũ i,j to be a continuous-time Markov chain that approximates the π-
behaviour of U i,j in the space Si,j = Si,j(Ci, Cj) = {(ui|j, ui,j, uj|i) : ui|j + ui,j ≤
Ci, uj|i + ui,j ≤ Cj}. Suppose that Ũ i,j makes transitions

(ui|j, ui,j, uj|i) → (ui|j − 1, ui,j, uj|i), at rate ui|j,

(ui|j, ui,j, uj|i) → (ui|j, ui,j − 1, uj|i), at rate ui,j,

(ui|j, ui,j, uj|i) → (ui|j, ui,j, uj|i − 1), at rate uj|i,

(ui|j, ui,j, uj|i) → (ui|j + 1, ui,j, uj|i), at rate ρi|j(ui|j)1{ui|j+ui,j≤Ci},

(ui|j, ui,j, uj|i) → (ui|j, ui,j + 1, uj|i), at rate ρi,j(ui,j)1{ui|j+ui,j≤Ci,uj|i+ui,j≤Cj},

(ui|j, ui,j, uj|i) → (ui|j, ui,j, uj|i + 1), at rate ρj|i(uj|i)1{uj|i+ui,j≤Cj},

and no other transitions are possible. Then, the stationary distribution for Ũ i,j is

P
(
Ũ i,j = (ui|j, ui,j, uj|i)

)
=

Φi,j(Ci, Cj)
−1

∏ui|j−1

m=0 ρi|j(m)

ui|j!

∏ui,j−1
m=0 ρi,j(m)

ui,j!

∏uj|i−1

m=0 ρj|i(m)

uj|i!
. (28)

The partition function Φi,j(Ci, Cj) is chosen such that the sum of P over the set Si,j

is 1:

Φi,j(Ci, Cj) =

Ci∑
ui=0

Cj∑
uj=0

min(ui,uj)∑

k=0

∏ui−k−1
m=0 ρi|j(m)

ui − k!

∏k−1
m=0 ρi,j(m)

k!

∏uj−k−1
m=0 ρj|i(m)

uj − k!
.

Our aim is to choose ρi|j(·), ρi,j(·), and ρj|i(·) such that the behaviour of Ũ i,j, with
its assumed transition structure, best approximates that of U i,j. We assign these
quantities expected rates.

Denote the space
∏

i,j∈J Si,j by S̃. Let Λi|j(u) = {(u,v) ∈ S̃× S̃ : ui|j = u, vi|j =
u + 1}, for u = 0, 1, . . . , Ci − 1, then ρi|j(u) defined as r(Λi|j(u)) is a quantity

ρi|j(u) = EP
(
q(Ũ ,Λi|j(u, Ũ ))

∣∣ Ũi|j = u, Ũi|j + Ũi,j < Ci

)
, (29)

where
q(u,Λi|j(u, u)) =

∑

r∈Ri\Rj

νr

∏

k∈r\{i}
1{uk|i+uk,i<Ck}1{u+ui,j<Ci}.
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Expression (29) may be partially evaluated as follows.

E
(
q(Ũ ,Λi|j(u, Ũ ))

∣∣Ũi|j = u, Ũi|j + Ũi,j < Ci

)
=

E
(
αi|j(Ũi|j + Ũi,j, Ũj|i + Ũi,j)

∣∣Ũi|j = u, Ũi|j + Ũi,j < Ci

)
,

where αi|j(ui, uj) = E(q(Ũ ,Λi|j(u, Ũ ))|E(ui, uj)), and

E(ui, uj) =
{

Ũi|k + Ũi,k = ui, k ∈ J \ {i}
}
∩

{
Ũj|k + Ũj,k = uj, k ∈ J \ {j}

}

is the event that links i and j have utilisations ui and uj respectively. The substituted
function αi|j(ui, uj) is the expected rate of transitions of type {(u,v) ∈ S̃ × S̃ :
ui|j + ui,j = ui, uj|i + ui,j = uj, vi|j = ui|j + 1}. It simplifies to

αi|j(ui, uj) =





0, if ui = Ci;∑

r∈Ri\Rj

νrP
(
Ũk|i + Ũi,k < Ck, k ∈ r \ {i}

∣∣E(ui, uj)
)

, otherwise.

To make progress we need to make a simplifying assumption about Ũ . In the Erlang
fixed point approximation it is assumed that the network’s link utilisations U =
(Ui, i ∈ J) have a product-form distribution. This assumption, which is equivalent
to link independence, substantially simplifies the analysis. In the present scheme we
assume independence of the random variables Ũ i,j, so that each pair of links {i, j} ∈
J forms an index to a random process Ũ i,j that operates independently of every other
process. Using this assumption,

αi|j(ui, uj) =
∑

r∈Ri\Rj

νr

∏

k∈r\{i}
P(

Ũk|i + Ũi,k < Ck

∣∣Ũi|k + Ũi,k = ui

)
1{ui<Ci}

=
∑

r∈Ri\Rj

νr

∏

k∈r

(
1−Bk|i(ui)

)
,

where Bk|i(ui) is the likelihood that link k is full when link i is known to have ui

circuits busy. This quantity is estimated to be

Bk|i(ui) =

∑min(Ck,ui)
ui,k=0 P(

Ũk|i = Ck − ui,k, Ũi,k = ui,k, Ũi|k = ui − ui,k

)
∑Ck

uk=0

∑min(uk,ui)
ui,k=0 P(

Ũk|i = uk − ui,k, Ũi,k = ui,k, Ũi|k = ui − ui,k

)

=





Pmin(Ck,ui)
ui,k=0 hk,i(Ck−ui,k,ui,k,ui−ui,k)PCk

uk=0

Pmin(uk,ui)
ui,k=0 hk,i(uk−ui,k,ui,k,ui−ui,k)

, if k 6= i,

1{ui=Ci}, if k = i,

with hk,i(uk|i, uk,i, uk|i) ∝ P(
Ũ k,i = (uk|i, uk,i, uk|i)

)
in Sk,i. Thus, we have an ex-

pression for the reduced load marginal rate of arrivals to link i that do not use
link j:

ρi|j(u) =
∑

r∈Ri\Rj

νr

min(Ci−u,Cj)∑
v=0

∏

k∈r

(
1−Bk|i(u + v)

)P(
Ũi,j = v

∣∣Ũi|j = u, Ũi|j + Ũi,j < Ci

)
.
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Expression (19) results when P(
Ũi,j = ui,j

∣∣ Ũi|j = u, Ũi|j + Ũi,j < Ci

)
is estimated

by ∑Cj−ui,j

v=0 hi,j(u, ui,j, v)∑Ci−u−1
w=0

∑Cj−w
v=0 hi,j(u,w, v)

.

Expression (20) for the reduced load rate ρi,j(u) of arrivals of type Λi,j(u) =
{(u,v) ∈ S̃ × S̃ : ui,j = u, vi,j = u + 1}, u = 0, 1, . . . , min(Ci − 1, Cj − 1), is derived
in a similar way. The quantity αi,j(ui, uj) representing the average rate at which
calls that cause an increase in the utilisation of both resource i and j are arriving
when Ui = ui, and Uj = uj, is

αi,j(ui, uj) = E


 ∑

r∈Ri∩Rj

νr

∏

k∈r\{i,j}
1{Ũk|i+Ũk,i<Ck}

∣∣∣∣ E(ui, uj)


 1{ui<Ci,uj<Cj},

which leads to

αi,j(ui, uj) =

{
0, if uj = Cj;∑

r∈Ri∩Rj
νr

∏
k∈r

(
1−Bk|i(ui)

)
, otherwise.

Setting ρi,j(u) = r(Λi,j(u)),

ρi,j(u) = E
(
αi,j(Ũi|j + Ũi,j, Ũj|i + Ũi,j)

∣∣∣ Ũi,j = u, Ũi|j + Ũi,j < Ci, Ũj|i + Ũi,j < Cj

)

=
∑

r∈Ri∩Rj

νr

Ci−u−1∑
ui|j=0

∏

k∈r\{j}

(
1−Bk|i(ui|j + u)

)

P
(
Ũi|j = ui|j

∣∣∣ Ũi,j = u, Ũi|j + Ũi,j < Ci, Ũj|i + Ũi,j < Cj

)
.

Expression (20) follows on substituting

∑Cj−ui,j−1
v=0 hi,j(ui|j, u, v)

∑Ci−u−1
w=0

∑Cj−u−1
v=0 hi,j(w, u, v)

for the conditional probability P(Ũi|j = ui|j
∣∣∣ Ũi,j = u, Ũi|j + Ũi,j < Ci, Ũj|i +

Ũi,j < Cj). The loss probabilities may be estimated using Φi,j. Losses on two link
routes, r = {i, j}, have

Lr = 1− π(Ui < Ci, Uj < Cj) ≈ 1− Φi,j(Ci − 1, Cj − 1)

Φi,j(Ci, Cj)
.

Calls that use the single link i are lost with probability

Bi = 1− π(Ui < Ci) ≈ 1− Φi,j(Ci − 1, Cj)

Φi,j(Ci, Cj)
.

The approximation for Bi depends on j because the distribution of Ũi|j + Ũi,j has a

different expression from that of Ũi|k + Ũi,k. As a result, the loss estimated using Φi,j

may be different from the estimate of Φi,k.
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