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ABSTRACT

We consider a simple and widely used method for evaluating quasis-
tationary distributions of continuous time Markov chains. The infinite
state space is replaced by a large, but finite approximation, which is used
to evaluate a candidate distribution.

We give some conditions under which the method works, and describe
some important pitfalls.

1 INTRODUCTION

Various models used in applied probability feature a lifetime 7, after which their
behaviour becomes ‘uninteresting’. For example, epidemics usually end after a cer-
tain (perhaps long) time. Chemical reactions may stop, having exhausted one of the
reactants. Market options expire. Endangered species become extinct.

When the model involves a Markov chain, it has proved useful to study the
associated family of so-called quasistationary distributions. These probability dis-
tributions typically arise in the following generic way. Consider a Markov chain (X;)
on a state space S, together with a transient irreducible class C' C S. The first exit
time 7 from C must be almost surely finite. What happens to (X;) after time 7
is not of immediate interest; the states outside C' are amalgamated into one single
absorbing set {0}.

A quasistationary distribution (QSD) is a probability measure m = (m;) on C

related to the process (X;) by the equation

Pr(Xt:j |T>t;X0Nm):mj7



where the notation Xy ~ m means that Xy has distribution m. QSDs exist and
are unique whenever C is finite (see Darroch and Seneta (1967)). In the infinite
case, it 1s natural to ask whether the class C' may be replaced by a large but finite
subset (™) such that the corresponding QSD approximates one sought after on C.
Indeed, such a technique is commonly used for the numerical evaluation of QSDs.
A major aim of the present paper is to point out that this strategy does not always
work.

Complications arise in many ways. The class C may admit zero, one, or a con-
tinuum of QSDs, the birth-death process being a case in point (Van Doorn (1991)).
In addition, the approximate QSDs may not converge as C(™) increases, or may
converge to the wrong QSD on C.

We concentrate on continuous time Markov chains; analogous results in discrete
time are described in Seneta (1967), but their extension to continuous time is non-

trivial.

2 NOTATION AND ASSUMPTIONS

Let (p;(t)) denote the transition probabilities of a continuous time Markov chain
(X;) with countable state space S, that is, p;;(t) = Pr(X; =7 | Xo = 1), 1,5 € S.
The associated g-matrix, given by ¢;; = lim o4 (pi;(¢) — 6:5)/t, is assumed stable:
—g;; < oo. The state space is the union of an irreducible class C and a single
absorbing state: S = {0} UC. The hitting time of {0} (or first exit time from C) is
denoted 7.

Henceforth, the transition matrix is assumed minimal (Anderson (1991)). The
reason for this will become apparent following Lemma 3.

A quasistationary distribution is an example of a A-invariant measure, that is,
a measure (m;) on C satisfying the equation

> mipi(t) = e Nmj, j€C,t>0 (1)
1eC
for some real number A > 0. In contrast, a positive vector (z;) is called a A-invariant

vector if it satisfies

Zpij(t):llj =e Mz, 1€C.

jec



Tweedie (1974) showed that the numbers (m,) defined by (1) always satisfy
Y migi; = —Am;, j€C. (2)
1€C
Pollett (1986) gave necessary and sufficient conditions for the converse to hold.
In the remainder of this section, we recall some further results that we will need.
All these facts may be found in Anderson (1991).

There exists a number A* such that the integrals
| estya, ijec (3)
all converge for A < A* and diverge for A > A*. It is given by
Af = — tli)rglo t~'log pi(t), (independently of 2 € C.)

Now suppose that A = A*. If (3) diverges, the process (X;) is called A*-recurrent
and there exists an essentially unique measure (m;) satisfying (1). An essentially
unique A*-invariant vector (z;) also exists.
Furthermore, the process is called A*-positive recurrent if 3 ;.o m;z; < co. In
that case, we have the limit
lim Pr(Xe =g | 7> 8) =m;/ > mu (4)
keC
which defines a QSD (Vere-Jones (1969)) when the measure (m;) is finite. In par-
ticular, this is true whenever the set C is finite, on account of the Perron-Frobenius

theorem (Darroch and Seneta (1967)).

3 APPROXIMATING QUASISTATIONARY DISTRIBUTIONS

Let (C(™) be an increasing sequence of finite subsets of C such that
pbccHc...cc=Jo™. (5)

The truncated g-matrix associated with C™ is defined by

N 0, otherwise.

(n)
)

transition probabilities p(")(t) =Pr(X; = 5,7 >t | Xo = 1), 14,5 € C™, where

3

Associated with the matrix (g;;”) is a unique (and hence minimal) process with



7( is the first exit time of X from C(). Since lim, .o T 7(™ = 7, the monotone

convergence theorem also implies (see Thm 2.2.14 of Anderson (1991)) that
lim 1 pl)(t) = pis(t), ¢>0,4,5 €C. (6)

Lemma 1 There ezists a sequence (C™) of finite sets satisfying (5), such that C™
15 irreducible for (pgﬂ)(t)).

3

Proof: we sketch the proof. Take C(!) as a singleton, e.g. C*) = {a} for some
a € C, which is always irreducible for (p{!)(¢)). By induction, if C(™ is irreducible
for (pgl)(t)) and b ¢ C™), the process (X;) can go from C™ to b and back in

a finite time, with positive probability, passing through some sequence of states

a,...,0k, b, 0541, ..., a,. We obtain C(®*1) by adding these states to C(). a
Now set
A = — lim ¢ log {7 (2). (7)

From the previous section, we have the limit

lim Pr(X, =7 | 7™ > ¢) =m{™, 4,5 € O™,

t—o0

where the numbers (mg-") . § € C™) satisfy

> m) = A, e o, ¥ w1 ®)

ieCc(n) ieC(n)

In essence, the remainder of this paper looks at the problem of what happens
when we let n tend to infinity on both sides of (8). Alternatively, we are asking
whether two different ways of approximating the set {r = co} give the same result,
at least when the limit (4) exists:

lim lim Pr(X, =j |7 > 1) £ lim lim Pr(X, = j | 7™ > 1).

n—oo t—oo t— o0 n—o0

We remark that this certainly holds if Pr(7 = oo0) > 0, since it is always possible
to interchange monotone limits; but this is not usually the case, certainly not when
considering quasistationary distributions.

One situation for which we do in fact have Pr(7 = co) = 1 is when (p;;(¢)) is
positive recurrent (A\* = 0) on C. In this case, the preceding remark yields a way of

approximating the limiting distribution.



Theorem 2 Let (X;) be positive recurrent, with limiting distribution
pij(t) =Pr(X; =75 | Xo=1) > 7, 2,j€EC ast— oco.
(_"))

Then mg-") — 75, where (m;") is the unique positive vector satisfying (8).

A different way of estimating (7;), which currently has the advantage of provid-
ing relative error bounds, was developed in Tweedie (1973). Writing (c; (r )) for the
cofactor matrix of (qu )) he showed that

(n) . o)

C, 7T'

Jim 15 = —= = Jim | i)
27 _71
4 CONVERGENCE
Lemma 3 X* = lim, ., | An)
Proof: By (6), we have
A= hmt 1logp(")( t)
> — hmt 110gp("+1)( t) = A1)
>

—thmt Yog pi(t) = A*

and hence A* < lim,_,co A(™. On the other hand, the function t — — log p( )( t) is

subadditive, so that the limit in (7) coincides with the infimum over ¢ > 0. Therefore

—t7 log pi (1) > inf{—t 7 log (1)} =A™ > lim A®).

k— oo

Letting n — co on the left implies that —¢7! log p;;(¢) > limg 00 M) and finally

N = = lim ¢ log pig(t) > lim 2™

a
Note that the minimality assumption on (p;;(¢)) is crucial here; otherwise, we
can only say that lim,_,co | A(® > X*.
For the next result, we recall that a non-trivial measure is A-subinvariant if
> mipii(t) < e Mmy, jeC (9)
1eC
for some A > 0. For the minimal process, the condition (9) is actually equivalent
(see Tweedie (1974)) to the g-matrix condition (2) in which the ‘=’ sign is replaced
by ‘<’



Lemma 4 For each a € C, there ezists a subsequence (n') such that
(i) m} = limp e mg-n’)/m,(l”’) (7 € C) is A*-subinvariant;

(1) either m’; :=limp o mg-"’) (7 € C) is identically zero, or it is A*-subinvariant

(and the measure is finite).

Proof:

(i) Since
1) < Zm(")PSJ) N () < )

holds for j,a € C™), it follows by (6) that for fixed ¢ > 0 and all k£ > 0,
m(-"+k)/m(”+k) < 1/p§-2)(t) < o00. Thus, there are bounds, (U;), such that

(k) ._ mg.k)/m((lk) < Uj < o for all j € C. By Cantor’s diagonal

0 < uj
argument, there exists a subsequence (n') of (n) such that the numbers m/
defined by (i) exist, simultaneously for all j € C. Finally, Fatou’s lemma gives

Smipst) = 3 ( im o 870)

n'—oo

< lim Zu("’)pgll)

n' —oo

_ 1 —Ane (n)
- (e v

_ —A*t__ 1
= € mj.

Since m,, = 1, we must have m} > e*"*m/pa;(t) > 0.

(ii) Since 0 < m(-") <1forn > 1,5 € C, a subsequence (n') can be found such

(n)

that m} := limpu o m;"’ exists simultaneously for all j € C. If the resulting

measure (m}) is not identically zero, then as above, Fatou’s lemma shows that

(9) holds, and hence m’; > 0 for all j.

a

While part (i) of the lemma always works, though it might give an infinite mea-
sure, part (ii) seems to be closely connected to the existence of finite A*-subinvariant
measures. Unfortunately, these do not always exist; this has to do with a second

parameter A, < A*, studied in Jacka and Roberts (1996), and defined by

Ay 1= — tlim t'log Pr(7 > t|Xo = 1) independently of 1 € C



when the limit exists. This number happens to be the supremum of those A for
which a finite A-subinvariant measure exists. It follows that a necessary condition
for the measure (m}) in part (ii) of the lemma to be nonzero is that A, = X*. The
paper (Jacka and Roberts (1996)) has some sufficient conditions which guarantee
this, the most important being that the limiting conditional distribution (4) exist.

Theorem 5 Suppose that (p;;(t)) is A*-positive recurrent. Then for any a € C,

m; = lim m( )/m(")

n— 00

exists and satisfies
tli)rgloPr(Xt =7|7>¢t,Xo=1)= mj/Zmi.
1eC

Proof: By general theory (Anderson (1991)), A*-recurrence guarantees that there
exists precisely one A*-subinvariant measure (r;) say, which is therefore, up to con-
stant multiples, the one and only limit point (componentwise) of the set of measures
{(mg-")) : n > 1}, by Lemma 4. This proves the existence of the limit, and the
second statement is well known (Anderson (1991), Prop. 5.2.11) with (r;) in place
of (m;). a

As commonly encountered processes are not always A*-positive recurrent, the

next result may be more useful in some circumstances.

Theorem 6 Suppose that (p;;(t)) satisfies the Feller-Dynkin condition
(FD) lim; 0 pij(t) =0 for allj € C, t > 0.
If, for some (and then all) j € C,

mj := lim supmg-") > 0, (10)

n— 00

then vj :=mj/ > ;cc ™ is a quasistationary distribution associated with A*.

Proof: Take a subsequence (n') such that limys mg-"’) = m;. Fatou’s lemma (see

lemma 4) shows that the (subprobability) measure (m;) is A*-subinvariant. Also,

e—A("’)tmg_"') _ Zm(n’)pgﬂ)

< ngnl)pijt

— Z (mﬁ"') — mi) pi;(t) + Z m;pi;(t)

K]



By (FD), the first sum on the right can be made arbitrarily small for large n’. Take
a finite set K such that p;;(¢) < €/4 whenever + ¢ K. Then for n' large enough,
|m(-",) —m;| < €e/2 for all : € K, so that

3 (m™ - m,) pz-j<t>\ < 3 I — i ps(0)
1€C €K
Xl
i¢K
< €/242-¢/4=ce

pii(t)

As a result, we get as n’ — oo,
e M tmy; <3 mipi(t),
1eC
which implies that the measure (m;) is A*-invariant, and (r;) is a quasistationary
distribution. a
The condition (FD) in the statement of Theorem 6 could be replaced (though

we won’t prove it here) by the tightness condition,

(T) For each € > 0, there is a finite K C C such that, for all n large enough,
tliglo Pr(X; € K|T(") >t) = Z mg-") >1—k¢,
JjEK
but this seems more difficult to check, unless one has good error bounds on the

differences (mg-") — mj), or the behaviour of the process (X;) is well known.

5 EXAMPLE: BIRTH-DEATH PROCESSES

Consider a birth-death process (BDP) on S = {0} U {1,2,...}, with birth rates
A; > Ao = 0 and death rates y; > po = 0. Suppose that the hitting time of {0} is
a.s. finite for the minimal process; in other words, we suppose that
> 1

k=1 Akﬂ'k

A=

= 00,

with potential coeflicients 7y = 1 and 7 = mg—1(Ag—1/p) if & > 1. In this situation,
we can take O™ = {1,...,n}, and (qf;)) represents the n X n north-west truncation
of the original ¢g-matrix.

Cavender (1978) showed that mg-") — mj as n — oo. Here, we consider the BDP

in light of the preceding results.



In terms of the birth-death polynomials @;(z) defined by Qo(z) =0, Q1(z) =1,

and for z > 1,

piQi-a(z) = (Ai + 1) Qi(2) + AiQita(z) = —2Qi(2),
we can write mg-") = w7 Yam;Qi(v), (1 < j < n), where —, (= —A(™) is the
(n)

smallest eigenvalue of (¢;;”). Now Lemma 3 and the continuity in z of the polyno-

mials immediately shows that

m; = lim m{” = u7"9m;Q,(7).  (Here, y = X*).

nSoo  J
When v > 0, we are in the situation where the measures (mg-")) satisfy condition (T):
since Y ;cc m; = 1 (Van Doorn (1991)), we take K such that Y ,cxm; > 1 —¢€/2 and
for n large enough, sup,; y(x) Mmaxjex |m§-") —mj| < €¢/2|K|. Thus

> > S mi= 3 fm{—my| > 1-¢/2-|K|-¢/2|K| = 1~¢, when n > N(K).

jEK jEK jEK

6 EXAMPLE: BRANCHING PROCESSES

Again, let S = {0} U {1,2,...} and consider a Markov branching process on S5,
with offspring law (p;) such that po > 0, p1 = 0 and ;51 p; > 0. The g-matrix is
given by

0, f0<j<ez—lorz=0

gi; = § —v1, ifj=2>0

vipj_iy1 f0<j=2—-1lorj>1>0
and C is an irreducible class. On account of the upper triangular form of the g-
matrix, the components of a A-invariant measure are given by a recurrence, which
ensures essential uniqueness (per value of A). Moreover, the minimal process is well
known (Anderson (1991)) to satisfy (FD). Taking C(™ = {1,...,n}, it remains to
check (10) for the approximations to converge. An expanded treatment of this will
be discussed in Hart (1997).

Note that if we add the possibility of a catastrophe (see Pakes (1995) for details)
so that ¢;0 > x > 0 say, then we have A*— A, > & > 0, and although a quasistationary

distribution exists, the approximations (mg-")) do not converge to it.
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