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Conditional state distribution

X(t) - state of the metapopulation at time t

We suppose that (X(t), t ≥ 0) is a discrete-time
Markov chain with a discrete state space
S = {0} ∪ C, where 0 is the state corresponding to
extinction (of all patches) and C comprises the
remaining states.

px(t) = Pr(X(t) = x) - state probabilities

Suppose these are given. We observe the
population at an arbitrary time s and extinction has
not yet occurred . How can we incorporate this
information?
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Conditional state distribution

We evaluate the state probabilities at time s
conditioned on non-extinction:

mx(s) = Pr(X(s) = x|X(s) 6= 0)

=
px(s)

1 − p0(s)
, x ∈ C.
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A metapopulation model

There are n separate geographical regions (patches):
N = {1, 2, . . . , n}

Let X = (X1, X2, . . . , Xn), where Xi(t) is 1 or 0 according as
patch i is occupied or not at time t (t = 0, 1, 2, . . . ). Note that
the state space is S = {0, 1}n.

Q = (qij , i, j ∈ N ) - Interaction matrix:

qij, for j 6= i, is the probability that patch j will not be
colonized by migration from patch i, and qii is the
probability that (in the absence of immigration)
patch i will become extinct.
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A metapopulation model

Assume (Gyllenberg and Silvestrova) that

qij = exp(−e−adijAi), i, j ∈ N ,

where dij is the distance between patches i and j (dii = 0

and dij = dji), Ai is the area of patch i and a(≥ 0) measures
how badly individuals are at migrating.

aM. Gyllenberg and D.S. Silvestrov. Quasi-stationary distributions of a stochastic metapopulation model. J.

Math. Biol., 33:35–70, 1994.
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Transition probabilities

Assume that the various colonization processes and local
extinction processes are independent.

Define qi(x), where x = (x1, x2, . . . , xn), by

qj(x) =
n

∏

i=1

qxi

ij , j ∈ N , x ∈ S,

to be the probability that patch j will become extinct at the
next time step given a present configuration x.
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Transition probabilities

The transition matrix P = (p(x, y), x, y ∈ S):

p(x, y) =
n

∏

i=1

qi(x)1−yi(1 − qi(x))yi , x, y ∈ S.

Note that, since qi(0) = 1, i ∈ N , state 0 = (0, 0, . . . , 0)
(corresponding to the extinction of all patches) is an
absorbing state for the chain:

p(0, y) =

{

1, if y = 0,

0, otherwise.
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A 5-patch metapopulation
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Patches 2, 3, 4 & 5 are equally spaced (a distance 0.1 apart). Patch 1 is 10 times

that distance away from the others (d1j = 1). All patches have the same area.
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Persistence of metapopulations
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Simulation of the 5-patch model with a = 7. The number of occupied patches is

plotted against time (up to total extinction at t = 728).
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Persistence of metapopulations
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Persistence of metapopulations

Recall that

mx(s) = Pr(X(s) = x|X(s) 6= 0) =
px(s)

1 − p0(s)
, x ∈ C.

Do these conditional state probabilities account for the
observed behaviour?

We compare of the observed frequencies with the
conditional state distribution mx(t) at t = 1, 2, 5, 10. The
brown bar is the proportion of time for which i patches were
occupied (i = 1, 2, . . . , 5) during the period of the simulation.
The blue bar is the distribution of the number of occupied
patches evaluated using mx(t).
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Persistence of metapopulations
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Limiting conditional distributions

The observed trend has a simple theoretical explanation.

Since C is a finite set, the limit

lim
t→∞

mx(t) = mx

exists and defines a proper distribution m = (mx, x ∈ C),
called a limiting conditional distribution, and m is the left
eigenvector of PC (P restricted to C) corresponding to the
eigenvalue, ρ1, with maximal modulusa. Note that the
expected time till absorption, τ , is approximately ρ1/(1 − ρ1).

aJ.N. Darroch and E. Seneta. On quasi-stationary distributions in absorbing discrete-time Markov chains. J.

Appl. Probab., 2:88–100, 1965.
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Limiting conditional distributions

We can be precise about the rate of convergence by
examining the eigenvalue, ρ2, of PC with second-largest
modulus. It might not be real, and it has multiplicity κ ≥ 1
(for simplicity, suppose κ = 1). It can be shown that

mx(t) = mx + O(βt) as t → ∞,

where β = |ρ2|/ρ1(< 1).

Technical interlude

Conjecture. For a general absorbing Markov chain, β < 1
implies R-positive recurrence.
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The convergence of mx(t) to mx
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Comparison between the conditional state distribution (blue) and the limiting conditional

distribution (brown) of the number of occupied patches for the 5-patch model with a = 7.
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The convergence of mx(t) to mx

For the 5-patch metapopulation model with a = 7, we find
that ρ1 ' 0.9979, ρ2 ' 0.6312 (real with multiplicity 1),
β(= ρ2/ρ1) ' 0.6325 and τ ' 488.
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Pseudo-stationary distributions
(The method of Gyllenberg and Silvestrov)

Rationale: If we had assumed that Patch 1 (say) had a zero
local extinction probability (q11 = 0), that patch would
behave as a mainland .
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Pseudo-stationary distributions
(The method of Gyllenberg and Silvestrov)

Rationale: If we had assumed that Patch 1 (say) had a zero
local extinction probability (q11 = 0), that patch would
behave as a mainland .

State 0 would no longer be
accessible from all states: C would decompose into two
classes, C0 and C1, consisting of those states in C which
have x1 = 0 and x1 = 1 respectively; either the process
would start in C1 (mainland inhabited) and remain there, or,
start in C0 (mainland uninhabited) and eventually enter
either C1 or the absorbing state.

We identify a “quasi-mainland” , namely a single patch i with
qii small (say Patch 1), and consider a sequence of
processes indexed by ε = qii, treating ε as a perturbation.
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Perturbation theory

General idea:

Model(ε) = Model(0) + ε × (another bit)

+ smaller order terms

Answer = (Answer when ε = 0) + ε × (something)

+ smaller order terms

Indeed, we hope for

Answer = a0 + a1ε +
∞

∑

n=2

anεn.
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Perturbation theory

Let ε ∈ (0, 1] (now arbitrary) and suppose that our
interaction matrix depends on ε in the following way:

q
(ε)
ij = qij + εq̂ij + ◦(ε), as ε → 0,

where

qij = lim
ε→0

q
(ε)
ij and q̂ij = lim

ε→0

1

ε

(

q
(ε)
ij − qij

)

,

the latter assumed to be non-negative and finite, and, that
Q = (qij , i, j ∈ N ) satisfies q11 = 0.
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Perturbation theory

Then, in an obvious notation,

p(ε)(x, y) = p(x, y) + εp̂(x, y) + ◦(ε), x, y ∈ S,

where P (ε) = (p(ε)(x, y), x, y ∈ S) is the transition matrix
corresponding to Q(ε) and P = (p(x, y), x, y ∈ S) is the
transition matrix corresponding to Q.
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The G&S limiting regime

Let ε → 0 and t(= tε) → ∞ in such a way that ε tε → s, where
0 ≤ s ≤ ∞.

Since the expected lifetime of the quasi-mainland is of order
1/ε, one is able to study the process on different time
scales:

s = 0 (smaller order)

s = ∞ (larger order)

0 < s < ∞ (same order)
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The G&S limiting regime

G&S showed that the limit

lim
ε→0

Pr(X(tε) = y|X(0) = x), x, y ∈ C,

exists and is given by a mixture of the limiting probabilities
π(x, y) for the (ergodic) chain generated by Q and the
degenerate distribution δ(y, 0) which assigns all its mass to
state 0, the mixing probability being e−λs, where λ is a
positive constant which is specified in terms of p̂(x, y).
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Comparison using 5-patch model
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Comparison between the limiting conditional distribution (blue), the simulated proportions

(green) and the pseudo-stationary distribution (brown).
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Comparison using 5-patch model
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The disparity is marked: for this example, the two ways of analysing the model lead to quite

different predictions.
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Effect of varying s
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Pseudo-stationary distribution (blue). Simulated proportions (brown).
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Effect of varying s
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The disparity becomes worse as the time-scale parameter s increases.
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Reconciliation

Denote the state probabilities corresponding to P (ε) by
p(ε)(t) = (p

(ε)
x (t), x ∈ S), and denote the corresponding

conditional probabilities by m
(ε)
x (t). Gosselin (1997) proved

that

lim
ε→0

lim
t→∞

m
(ε)
x (t) =

{

π(x), if x ∈ C1,

0, if x ∈ C0,

which he compared with Theorem 6.2 of G&S:

lim
ε→0

m
(ε)
x (tε) =

{

π(x), if x ∈ C1,

0, if x ∈ C0.
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Reconciliation

Thus, in the important case s = 0 (where we are observing
the process over a time scale of smaller order than the
expected time to extinction of the quasi-mainland), the
limiting conditional distribution and the pseudo-stationary
agree when ε is small.

The problem with the 5-patch model is that ε(= q11) ' 0.3679
(not small enough).
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Remarks

Quasi-stationarity is a property of the model and not the
means of analysing it.

The 5-patch model exhibits quasi-stationarity, demonstrated
emphatically using simulation, yet q11 is not small. The
pseudo-stationary distribution does not capture this
behaviour.

On the other hand, the conditional state distribution m(t)
does: after all, it is the most information our model can
provide at any time t given that we know extinction has not
occurred by time t. In cases when the convergence of m(t)
to the limiting conditional distribution m is rapid, this
distribution can be used instead.
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