On the costs and decisions of controlling a population

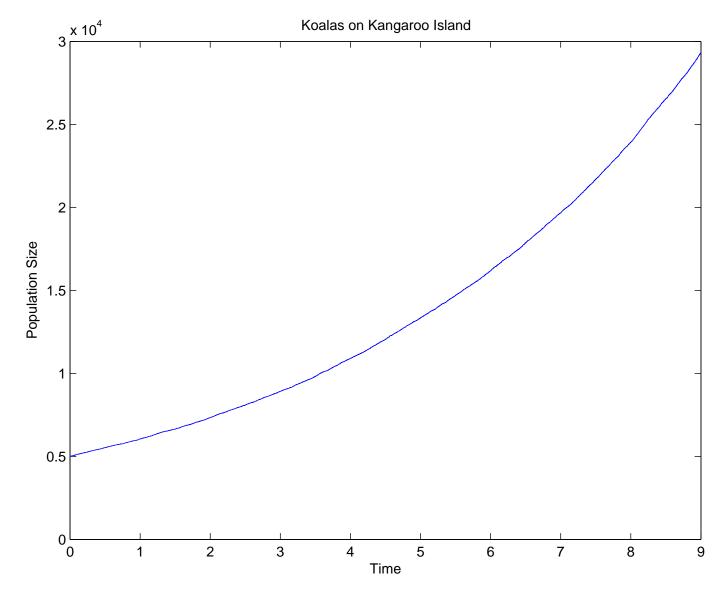
Phil Pollett and Joshua Ross

http://www.maths.uq.edu.au/~jvr

Discipline of Mathematics and MASCOS University of Queensland

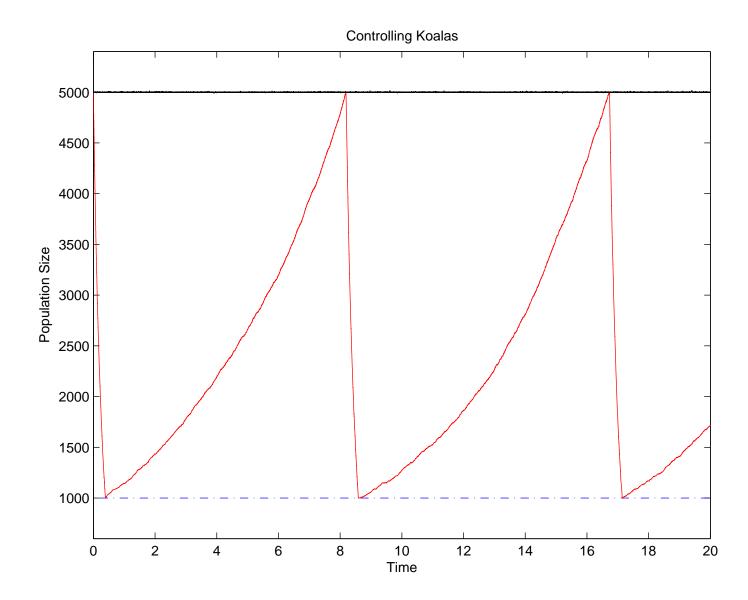
AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Koalas (Phascolarctos cinereus)

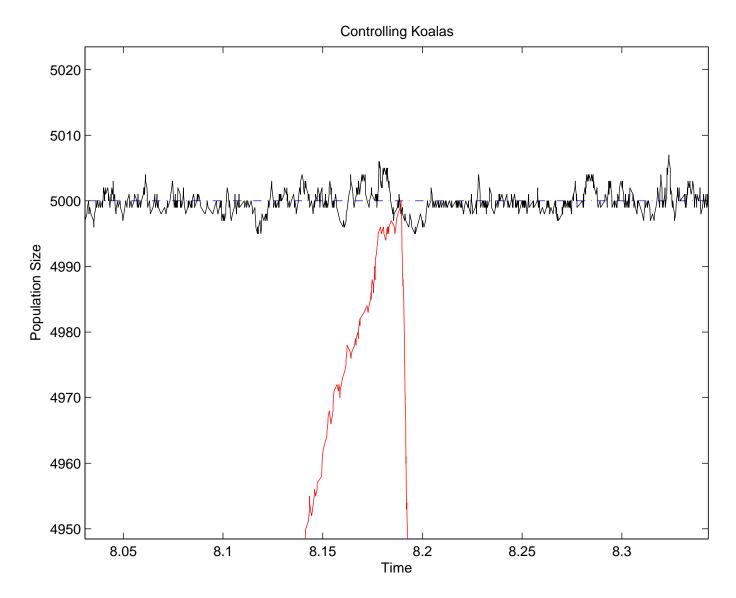


AMSI and ICE-EM Winter School in Mathematics and Computational Biology - 2004

Controlling Koalas



Controlling Koalas



AMSI and ICE-EM Winter School in Mathematics and Computational Biology - 2004

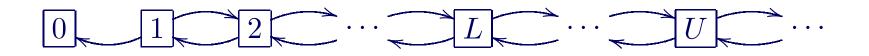
• Stochastic Models

- Stochastic Models
- Selection of Rates and Reduction Level

- Stochastic Models
- Selection of Rates and Reduction Level
- Selection of Control Policy

- Stochastic Models
- Selection of Rates and Reduction Level
- Selection of Control Policy
- - Extinction times and total costs

The birth-and-death process - Transition Diagram



The birth-and-death process is a continuous-time Markov chain taking values in $S = \{0, 1, ...\}$ with non-zero transition rates

 $q(x, x+1) = \lambda_x$

and

$$q(x, x-1) = \mu_x$$

where λ_x and μ_x are the population birth and death rates respectively.

The **linear** birth-and-death process is a continuous-time Markov chain taking values in $S = \{0, 1, ...\}$ with non-zero transition rates

$$q(x, x+1) = \lambda x$$

and

$$q(x, x - 1) = \mu x$$

where λ and μ are the per individual birth and death rates respectively.

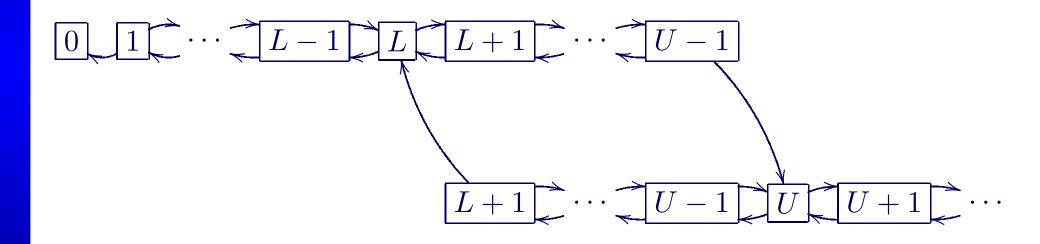
Linear birth-and-death process with suppression and constant culling

$$q(x, x+1) = \lambda x$$
 for all x

$$q(x, x - 1) = \begin{cases} \mu x & x \le U\\ \mu x + \kappa & x > U \end{cases}$$

where κ is the rate of culling (control).

Transition Diagram for **Reduction** Regime Models



Linear birth-and-death process with reduction and per-capita culling

$$q((x,0), (x+1,0)) = \lambda x \qquad x < U-1$$
$$q((x,0), (x-1,0)) = \mu x \qquad x < U$$

Linear birth-and-death process with reduction and per-capita culling

$$q((x,0), (x+1,0)) = \lambda x \qquad x < U - 1$$
$$q((x,0), (x-1,0)) = \mu x \qquad x < U$$
$$q((U-1,0), (U,1)) = \lambda(U-1)$$

Linear birth-and-death process with reduction and per-capita culling

 $q((x,0), (x+1,0)) = \lambda x \qquad x < U - 1$ $q((x,0), (x-1,0)) = \mu x \qquad x < U$ $q((U-1,0), (U,1)) = \lambda (U-1)$ $q((x,1), (x+1,1)) = \lambda x \qquad x \in \{L+1, L+2, \ldots\}$ $q((x,1), (x-1,1)) = (\mu + \psi) x \qquad x \in \{L+2, L+3, \ldots\}$ $q((L+1,1), (L,0)) = (\mu + \psi)(L+1)$

where ψ is the rate of culling (control).

Some Decisions of Controlling

• Which control regime?

Some Decisions of Controlling

- Which control regime?
- How much culling (control) to perform?
 i.e. What level should L be set to?

Some Decisions of Controlling

- Which control regime?
- How much culling (control) to perform?
 i.e. What level should L be set to?
- What rate of culling to use? i.e. How large should κ and/or ψ be?

• Per-koala birth rate: $\lambda = 0.3$

- Per-koala birth rate: $\lambda = 0.3$
- Per-koala death rate: $\mu = 0.1$

- Per-koala birth rate: $\lambda = 0.3$
- Per-koala death rate: $\mu = 0.1$
- Culling level: U = 5,000

- Per-koala birth rate: $\lambda = 0.3$
- Per-koala death rate: $\mu = 0.1$
- Culling level: U = 5,000
- Reduction level: L = ?

- Per-koala birth rate: $\lambda = 0.3$
- Per-koala death rate: $\mu = 0.1$
- Culling level: U = 5,000
- Reduction level: L = ?
- Reduction per-koala culling rate: $\psi = ?$

- Per-koala birth rate: $\lambda = 0.3$
- Per-koala death rate: $\mu = 0.1$
- Culling level: U = 5,000
- Reduction level: L = ?
- Reduction per-koala culling rate: $\psi = ?$
- Suppression constant culling rate: $\kappa = ?$

• Probability of the population "persisting".

• Probability of the population reaching the culling level U before 0 starting from reduction level L

 $\alpha_L = \Pr(\text{hit } U \text{ before } 0 \mid X(0) = L) \ge \rho.$

• Probability of the population reaching the culling level U before 0 starting from reduction level L

 $\alpha_L = \Pr(\text{hit } U \text{ before } 0 \mid X(0) = L) \ge \rho.$

• Expected time between culling phases.

• Probability of the population reaching the culling level U before 0 starting from reduction level L

 $\alpha_L = \Pr(\text{hit } U \text{ before } 0 \mid X(0) = L) \ge \rho.$

• Expected time to hit U starting from L conditional on hitting U before 0

 $\mathsf{E}(T_U \mid X(0) = L, \text{ hit } U \text{ before } 0).$

For a birth-and-death process

$$\alpha_i = \Pr(\operatorname{hit} U \operatorname{before} 0 | X(0) = i) = \frac{s_i}{s_U}$$

where $s_0 = 0$, $s_1 = 1$ and for $2 \le i \le U$

$$s_i = 1 + \sum_{j=1}^{i-1} \prod_{k=1}^{j} \frac{\mu_k}{\lambda_k}$$

For a birth-and-death process

$$\alpha_i = \Pr(\operatorname{hit} U \operatorname{before} 0 | X(0) = i) = \frac{s_i}{s_U}$$

where $s_0 = 0$, $s_1 = 1$ and for $2 \le i \le U$

$$s_i = 1 + \sum_{j=1}^{i-1} \prod_{k=1}^j \frac{\mu_k}{\lambda_k}$$

Therefore we have

$$\alpha_i = \frac{1 - \left(\frac{\mu}{\lambda}\right)^i}{1 - \left(\frac{\mu}{\lambda}\right)^U}.$$

After choosing a suitable minimum probability ρ , the minimum reduction level *L* is given by

$$L := \left\lceil \frac{\ln\{1 - \rho[1 - (\mu/\lambda)^U]\}}{\ln(\mu/\lambda)} \right\rceil$$

Koalas - Minimum *L*

	ρ
4	0.9876543209877
6	0.9986282578875
8	0.9998475842097
10	0.9999830649122
12	0.9999981183236
14	0.9999997909248
16	0.9999999767694
18	0.9999999974188
20	0.9999999997132

Expected Phase Times

• Phase 1 - Time between culling phases.

Expected Phase Times

- Phase 1 Time between culling phases.
 - Monitoring and assessment periods.

Expected Phase Times

- Phase 1 Time between culling phases.
 - Monitoring and assessment periods.

$$\tau_L = \mathcal{E}(T_U | \text{hit } U \text{ before } 0, X(0) = L) = \sum_{i=L}^{U-1} \frac{1}{\lambda_i s_i s_{i+1} \pi_i} \sum_{j=1}^i s_j^2 \pi_j$$

- Phase 1 Time between culling phases.
 - Monitoring and assessment periods.

$$\tau_L = \mathcal{E}(T_U | \text{hit } U \text{ before } 0, X(0) = L) = \sum_{i=L}^{U-1} \frac{1}{\lambda_i s_i s_{i+1} \pi_i} \sum_{j=1}^i s_j^2 \pi_j$$

where $s_0 = 0$, $s_1 = 1$ and for $2 \le i \le U$,

$$s_i = 1 + \sum_{j=1}^{i-1} \prod_{k=1}^{j} \frac{\mu_k}{\lambda_k}$$

and $\pi_1 = 1$, $\pi_j = \prod_{i=2}^j \frac{\lambda_{i-1}}{\mu_i}$ for $j \ge 2$.

Koalas - Expected Phase 1 Time

L	Expected Time (yrs)	
20	27.868	
500	11.522	
1000	8.051	
2000	4.583	
3000	2.555	

Koalas - Expected Phase 1 Time

L	Expected Time (yrs)	
20	27.868	
500	11.522	
1000	8.051	
2000	4.583	
3000	2.555	

L = 1000.

• Phase 2 - Duration of culling phase.

- Phase 2 Duration of culling phase.
 - Planning and choice of culling rates.

- Phase 2 Duration of culling phase.
- - Planning and choice of culling rates.

For our model

$$\tau_U^L = \frac{1}{\mu + \psi} \sum_{k=L+1}^U \sum_{j=0}^\infty \frac{1}{j+k} \left(\frac{\lambda}{\mu + \psi}\right)^j$$

• Choice of ψ

- Choice of ψ
- - Minimise the cost of a culling phase.

- Choice of ψ
- Minimise the cost of a culling phase.

For a birth-death process

$$c_U = \sum_{k=L+1}^U \frac{1}{\mu_k \pi_k} \sum_{j=k}^\infty f_j \pi_j$$

where $\pi_j = \prod_{i=L+1}^j \frac{\lambda_{i-1}}{\mu_i}$ and f_j is the cost per unit time of culling a population of size j.

• Choice of ψ

- Choice of ψ
- - Minimise the cost of the culling phase.

- Choice of ψ
- - Minimise the cost of the culling phase.

• - Cost function
$$f_j = d\psi^{1+\delta} j$$
 or $f_j = d\psi^{1+\delta} \left(b + \frac{c}{j}\right) j$.

- Choice of ψ
- - Minimise the cost of the culling phase.

• - Cost function
$$f_j = d\psi^{1+\delta} j$$
 or $f_j = d\psi^{1+\delta} \left(b + \frac{c}{j}\right) j$.

Therefore we have

$$c_U = \frac{d\psi^{1+\delta}(U-L)}{\mu + \psi - \lambda}.$$

- Choice of ψ
- Minimise the cost of the culling phase.

• - Cost function
$$f_j = d\psi^{1+\delta} j$$
 or $f_j = d\psi^{1+\delta} \left(b + \frac{c}{j}\right) j$.

Therefore we have

$$c_U = \frac{d\psi^{1+\delta}(U-L)}{\mu + \psi - \lambda}.$$

Minimising with respect to ψ

$$\psi = \left(\frac{1+\delta}{\delta}\right)(\lambda - \mu).$$

- Choice of ψ
- Minimise the cost of the culling phase.

• - Cost function
$$f_j = d\psi^{1+\delta} j$$
 or $f_j = d\psi^{1+\delta} \left(b + \frac{c}{j}\right) j$.

Therefore we have

$$c_U = \frac{d\psi^{1+\delta}(U-L)}{\mu + \psi - \lambda}.$$

Minimising with respect to ψ

$$\psi = \left(\frac{1+\delta}{\delta}\right)(\lambda - \mu).$$

 $\delta = 0.05 \implies \psi = 4.2$ and $\tau_U^L = 246$ hrs $\implies 41$ days. AMSI and ICE-EM Winter School in Mathematics and Computational Biology - 2004

• Choice of κ

- Choice of κ
- Probability of remaining in "control".

- Choice of κ
- Probability of reaching states in which the total death rate is less than the birth rate, starting from U, is very small.

- Choice of κ
- Probability of reaching states in which the total death rate is less than the birth rate, starting from U, is very small.

$$\alpha_{U+1} = \Pr\left(\operatorname{hit}\left[\frac{\kappa}{\lambda-\mu}\right] \text{ before } U|X(0) = U+1\right) \leq \rho.$$

- Choice of κ
- Probability of reaching states in which the total death rate is less than the birth rate, starting from U, is very small.

$$\alpha_{U+1} = \Pr\left(\operatorname{hit}\left[\frac{\kappa}{\lambda-\mu}\right] \text{ before } U|X(0) = U+1\right) \leq \rho.$$

For a birth-death process

$$\alpha_{U+1} = \frac{s_{U+1}}{s_{\left\lceil \frac{\kappa}{\lambda - \mu} \right\rceil}}$$

and $s_{U+1} = 1$, $s_i = 1 + \sum_{j=U+1}^{i-1} \prod_{k=U+1}^{j} \frac{\mu_k}{\lambda_k}$ for i > U+1.

Koalas - Choice of Culling Rates

κ	α_{U+1}
1010	1.7825×10^{-2}
1020	6.280×10^{-3}
1050	1.5501×10^{-4}
1070	3.3711×10^{-6}
1100	1.1707×10^{-9}
1120	1.3957×10^{-12}
1200	6.3347×10^{-29}

Koalas - Choice of Culling Rates

κ	α_{U+1}
1010	1.7825×10^{-2}
1020	6.280×10^{-3}
1050	1.5501×10^{-4}
1070	3.3711×10^{-6}
1100	1.1707×10^{-9}
1120	1.3957×10^{-12}
1200	6.3347×10^{-29}

$$\kappa = 1120.$$

Summary of Koala Models

General

- $\lambda = 0.3$
- $\mu = 0.1$
- U = 5,000

Summary of Koala Models

General

- $\lambda = 0.3$
- $\mu = 0.1$
- U = 5,000

Suppression model with constant culling

•
$$\kappa = 1,120$$

Summary of Koala Models

General

- $\lambda = 0.3$
- $\mu = 0.1$
- U = 5,000

Suppression model with constant culling

• $\kappa = 1,120$

Reduction model with per-capita culling

- L = 1,000
- $\psi = 4.2$

How do we choose the "best" control regime?

How do we choose the "best" control regime?

• Extinction Probabilities

How do we choose the "best" control regime?

- Extinction Probabilities
- Extinction Times

How do we choose the "best" control regime?

- Extinction Probabilities
- Extinction Times
- Total Costs

Koalas - Extinction Probabilities

Linear Birth-death Suppression Model with Constant Culling

 $\rho_L \approx 1.$

Linear Birth-death Reduction Model with Per-capita Culling

 $\rho_L = 1.$

Koalas - Extinction Times

Linear Birth-death Suppression Model with Constant Culling

 $\gamma_L pprox 2.52 imes 10^{2798}$ years.

Linear Birth-death Reduction Model with Per-capita Culling

 $\gamma_L \approx 1.07 \times 10^{478}$ years.

Cost Functions

Linear Birth-death Suppression Model with Constant Culling

 $f_j = K \mathbb{1}_{\{j > U\}} + M.$

Linear Birth-death Reduction Model with Per-capita Culling

$$f_{(j,0)} = N$$
 and $f_{(j,1)} = Cj + N$.

Cost Functions

Linear Birth-death Suppression Model with Constant Culling

 $f_j = K \mathbb{1}_{\{j > U\}} + M.$ K = \$50,000 and M = \$10,000.

Linear Birth-death Reduction Model with Per-capita Culling

 $f_{(j,0)} = N$ and $f_{(j,1)} = Cj + N$. C = \$100 and N = \$7,000.

Linear Birth-death Suppression Model with Constant Culling

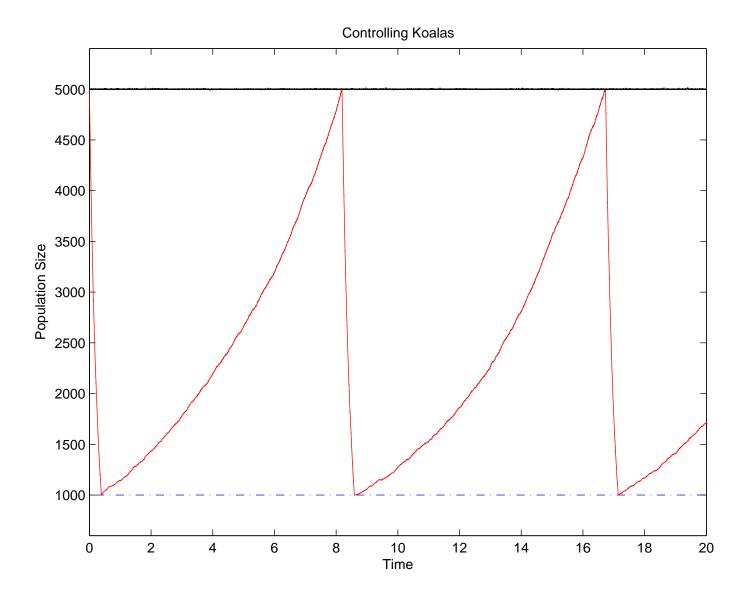
 $c_L \approx \$9.18 \times 10^{2802}$.

Linear Birth-death Reduction Model with Per-capita Culling

 $c_L \approx \$8.39 \times 10^{481}$.

Decision Tool	Supp. & Const.	Red. & Per-capita
Cost/Time	\$36,470 per year	\$7,841 per year

Conclusion



AMSI and ICE-EM Winter School in Mathematics and Computational Biology - 2004

Acknowledgements

Ben Cairns, Cindy Hauser and David Sirl

The University of Queensland

and

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems