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Intro 2: In better ‘taste’...

Let’s focus on a simple biological population (imagine your
favourite animal/plant/microbe).

Of course, any biological population experiences
births and deaths .

(c.f. birth-death processes.)

Some populations may also experience catastrophic
events, which may cause large numbers of deaths.
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Introduction: Catastrophes
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Introduction: Markov chains

We will turn a few familiar words into jargon:

Births: increases of size 1.

Deaths: decreases of size 1.

Catastrophes: decreases of size ≥ 0.

We will define continuous-time Markov chains exhibiting
transitions corresponding to each of these events:

birth, death and catastrophe processes .
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BDCPs

gfed`abc0 . . . gfed`abci − 1 gfed`abcgfed`abci

cif(i,i)

^^

cif(k,i)

``

di�� bi ��

cif(0,i)

QQ

gfed`abci + 1

Births occur at rate bi, deaths at rate di.

Catastrophes occur at rate ci, killing k with probability f(k, i).

We express these transitions as rates qij from i to j individuals.
Rate qii = −

∑
j 6=i qij .
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A simulation example
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Persistence: bounded populations
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population:
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Persistence: bounded populations

Often interested in measures of the persistence of a
population:

the probability of extinction αi (assumed here ≡ 1);

the expected time to extinction τi.

For bounded populations, extinction is certain: Solve

Mτ = −1.

M is the matrix of transition rates qij, with i, j restricted to
between 1 and the upper bound N .
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Unbounded populations

Even if there is no such bound N , extinction may be
certain. Then, τi is the minimal, non-negative solution to

i+1∑

j=1

qijzj = −1, i > xe,

with zj = 0, 0 ≤ j ≤ xe.
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Unbounded populations

Even if there is no such bound N , extinction may be
certain. Then, τi is the minimal, non-negative solution to

i+1∑

j=1

qijzj = −1, i > xe,

with zj = 0, 0 ≤ j ≤ xe.

In some cases, there are analytic solutions, but often this
isn’t possible—we need to find good approximations.
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Truncations

Assume the population is unbounded. Choose a ceiling
(boundary) A that truncates the state space of possible
population sizes. There are two basic options:

1. Make A reflecting. If the process hits A, it may return
to 0 ≤ i < A.

2. Make A absorbing. If the process hits A, it instantly
goes extinct (!).

Our goal is to solve the problem for the truncated process,
and ensure it’s a good truncation.
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The pros and cons of reflecting boundaries:
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Reflecting vs absorbing boundaries

The pros and cons of reflecting boundaries:

Pros

+ a ‘realistic’ truncation;

+ approx. τi easy to calculate.

Cons

– approx. τi too big or small;

– hard to see if A is suitable.

And those of absorbing boundaries:

Pros

+ always underestimates τi;

+ can see if A is suitable.

Cons

– apparently unrealistic;

– less easy to get approx. τi.
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The character of solutions

Anderson (1991) characterised all solutions to the system

i+1∑

j=0

qijzj = θzi − γi, i > xe.
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qijzj = θzi − γi, i > xe.

(For τi, set θ = 0, γi = 1, z0 = 0.)
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The character of solutions

Anderson (1991) characterised all solutions to the system

i+1∑

j=0

qijzj = θzi − γi, i > xe.

(For τi, set θ = 0, γi = 1, z0 = 0.) All solutions have the form

zi = aiκ − bi,

where {ai} and {bi} are unique sequences (see [And91] or
[CP04]) and κ = z1.
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ChoosingA I

“Can we choose a truncation that yields a suitable zi?”

Let κA = bA/aA. Then zA = 0, and so κA and gives the
value of z1 for a truncation with an absorbing boundary A.

{κA} is increasing, so κA ↑ τ1 as A → ∞, so if κA is close
to τ1, approximate

τi ≈ aiκA − bi, 0 ≤ i < A.
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ChoosingA II

“How do we know we have a suitable value of A?”
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ChoosingA II

“How do we know we have a suitable value of A?”

Problems:

zA is always 0, and so τi ≈ zi will be a bad
approximation for i close to A.

We don’t know τ1, so we can’t compare it to κA.

BUT, we can check for apparent convergence of κA to
some limit as A gets large.
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Convergence ofκA
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Comparing truncations

We can reinterpret absorbing boundaries: κA gives the
expected time to hit either 0 or A, starting with 1 individual.
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Comparing truncations

We can reinterpret absorbing boundaries: κA gives the
expected time to hit either 0 or A, starting with 1 individual.

If this quantity is close to τ1, then there is little contribution
to τ1 from ‘reaching A before going extinct’.

Suppose now that we have a population bounded by N .

What if we take the (already) bounded process and make
the boundary absorbing?
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Comparing truncations

“How does making the boundary absorbing help?”

We might want to:

understand how existing, physical bounds on
population size affect persistence;

decide whether increasing available habitat might aid
in conservation.

Compare absorbing and reflecting boundaries to see if the
boundary plays a significant role in the population process.
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Comparing truncations
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The difference between
the two results is the
contribution to the
extinction time, in the
reflecting case, from the
event that the population
hits N at least once
before extinction.
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Birth, death and catastrophe processes: a general
class of models.

AMSI and ICE-EM Winter School 5 July 2004 – p. 19/21



Summary

Birth, death and catastrophe processes: a general
class of models.

Persistence of populations can be (relatively) easily assessed

from model parameters.

AMSI and ICE-EM Winter School 5 July 2004 – p. 19/21



Summary

Birth, death and catastrophe processes: a general
class of models.

Persistence of populations can be (relatively) easily assessed

from model parameters.

In some cases, truncation is necessary:

AMSI and ICE-EM Winter School 5 July 2004 – p. 19/21



Summary

Birth, death and catastrophe processes: a general
class of models.

Persistence of populations can be (relatively) easily assessed

from model parameters.

In some cases, truncation is necessary:
Reflecting boundary : simple, but may give over- or
under-estimates.

AMSI and ICE-EM Winter School 5 July 2004 – p. 19/21



Summary

Birth, death and catastrophe processes: a general
class of models.

Persistence of populations can be (relatively) easily assessed

from model parameters.

In some cases, truncation is necessary:
Reflecting boundary: simple, but may give over- or
under-estimates.

Absorbing boundary : counterintuitive, but reliably

underestimates persistence.

AMSI and ICE-EM Winter School 5 July 2004 – p. 19/21



Summary

Birth, death and catastrophe processes: a general
class of models.

Persistence of populations can be (relatively) easily assessed

from model parameters.

In some cases, truncation is necessary:
Reflecting boundary: simple, but may give over- or
under-estimates.

Absorbing boundary: counterintuitive, but reliably

underestimates persistence.

Both can be compared to assess the effect of the
boundary on persistence.
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Thanks

AMSI and ICE-EM.

Phil Pollett and Hugh Possingham (advisors).

AUSTRALIAN RESEARCH COUNCIL

Centre of Excellence for Mathematics
and Statistics of Complex Systems
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