Evaluating Persistence Times in Populations that are Subject to Catastrophes

Ben Cairns
bjc@maths.uq.edu.au

ARC Centre of Excellence for Mathematics and Statistics of Complex Systems.
Department of Mathematics, The University of Queensland.

Intro 1: Queues vs. Populations

Queues

Populations

Intro 1: Queues vs. Populations

Queues

- Customers arrive...

Populations

- Individuals born...

Intro 1: Queues vs. Populations

Queues

- Customers arrive...
- Customers wait...

Populations

- Individuals born...
- Individuals live...

Intro 1: Queues vs. Populations

Queues

- Customers arrive...
- Customers wait...
- Queues flushed...

Populations

- Individuals born...
- Individuals live...
- Catastrophes...

Intro 1: Queues vs. Populations

Queues

- Customers arrive...
- Customers wait...
- Queues flushed...
- Customers served:

Populations

- Individuals born...
- Individuals live...
- Catastrophes...

Intro 1: Queues vs. Populations

Queues

- Customers arrive...
- Customers wait...
- Queues flushed...
- Customers served:

Populations

- Individuals born...
- Individuals live...
- Catastrophes...
- Individuals served:

Intro 2: In better 'taste'...

Intro 2: In better 'taste'...

Let's focus on a simple biological population (imagine your favourite animal/plant/microbe).

Intro 2: In better 'taste'...

Let's focus on a simple biological population (imagine your favourite animal/plant/microbe).

- Of course, any biological population experiences births and deaths.

Intro 2: In better 'taste'...

Let's focus on a simple biological population (imagine your favourite animal/plant/microbe).

- Of course, any biological population experiences births and deaths.
- (c.f. birth-death processes.)

Intro 2: In better 'taste'...

Let's focus on a simple biological population (imagine your favourite animal/plant/microbe).

- Of course, any biological population experiences births and deaths.
- (c.f. birth-death processes.)
- Some populations may also experience catastrophic events, which may cause large numbers of deaths.

Introduction: Catastrophes

Introduction: Markov chains

- We will turn a few familiar words into jargon:

Introduction: Markov chains

- We will turn a few familiar words into jargon:
- Births: increases of size 1 .

Introduction: Markov chains

- We will turn a few familiar words into jargon:
- Births: increases of size 1 .
- Deaths: decreases of size 1 .

Introduction: Markov chains

- We will turn a few familiar words into jargon:
- Births: increases of size 1 .
- Deaths: decreases of size 1 .
- Catastrophes: decreases of size ≥ 0.

Introduction: Markov chains

- We will turn a few familiar words into jargon:
- Births: increases of size 1 .
- Deaths: decreases of size 1 .
- Catastrophes: decreases of size ≥ 0.

We will define continuous-time Markov chains exhibiting transitions corresponding to each of these events:
birth, death and catastrophe processes.

BDCPs

BDCPs

- Births occur at rate b_{i}, deaths at rate $\boldsymbol{d}_{\boldsymbol{i}}$.

BDCPs

- Births occur at rate b_{i}, deaths at rate d_{i}.
- Catastrophes occur at rate $\boldsymbol{c}_{\boldsymbol{i}}$, killing k with probability $\boldsymbol{f}(\boldsymbol{k}, \boldsymbol{i})$.

BDCPs

- Births occur at rate b_{i}, deaths at rate d_{i}.
- Catastrophes occur at rate c_{i}, killing k with probability $f(k, i)$.
- We express these transitions as rates $q_{i j}$ from i to j individuals.

Rate $q_{i i}=-\sum_{j \neq i} q_{i j}$.

A simulation example

A population simulated by a BDCP

Persistence: bounded populations

Often interested in measures of the persistence of a population:

Persistence: bounded populations

Often interested in measures of the persistence of a population:

- the probability of extinction $\boldsymbol{\alpha}_{\boldsymbol{i}}$ (assumed here $\equiv 1$);

Persistence: bounded populations

Often interested in measures of the persistence of a population:

- the probability of extinction α_{i} (assumed here $\equiv 1$);
- the expected time to extinction $\boldsymbol{\tau}_{\boldsymbol{i}}$.

Persistence: bounded populations

Often interested in measures of the persistence of a population:

- the probability of extinction α_{i} (assumed here $\equiv 1$);
- the expected time to extinction τ_{i}.

For bounded populations, extinction is certain:

Persistence: bounded populations

Often interested in measures of the persistence of a population:

- the probability of extinction α_{i} (assumed here $\equiv 1$);
- the expected time to extinction τ_{i}.

For bounded populations, extinction is certain: Solve

$$
\mathrm{M} \tau=-1
$$

M is the matrix of transition rates $q_{i j}$, with i, j restricted to between 1 and the upper bound N.

Unbounded populations

Even if there is no such bound N, extinction may be certain. Then, τ_{i} is the minimal, non-negative solution to

$$
\sum_{j=1}^{i+1} q_{i j} z_{j}=-1, \quad i>x_{e}
$$

with $z_{j}=0,0 \leq j \leq x_{e}$.

Unbounded populations

Even if there is no such bound N, extinction may be certain. Then, τ_{i} is the minimal, non-negative solution to

$$
\sum_{j=1}^{i+1} q_{i j} z_{j}=-1, \quad i>x_{e}
$$

with $z_{j}=0,0 \leq j \leq x_{e}$.

In some cases, there are analytic solutions, but often this isn't possible-we need to find good approximations.

Truncations

Truncations

Assume the population is unbounded. Choose a ceiling (boundary) A that truncates the state space of possible population sizes. There are two basic options:

Truncations

Assume the population is unbounded. Choose a ceiling (boundary) A that truncates the state space of possible population sizes. There are two basic options:

1. Make A reflecting. If the process hits A, it may return to $0 \leq i<A$.

Truncations

Assume the population is unbounded. Choose a ceiling (boundary) A that truncates the state space of possible population sizes. There are two basic options:

1. Make A reflecting. If the process hits A, it may return to $0 \leq i<A$.
2. Make A absorbing. If the process hits A, it instantly goes extinct (!).

Truncations

Assume the population is unbounded. Choose a ceiling (boundary) A that truncates the state space of possible population sizes. There are two basic options:

1. Make A reflecting. If the process hits A, it may return to $0 \leq i<A$.
2. Make A absorbing. If the process hits A, it instantly goes extinct (!).

Our goal is to solve the problem for the truncated process, and ensure it's a good truncation.

Reflecting vs absorbing boundaries

The pros and cons of reflecting boundaries:

Reflecting vs absorbing boundaries

The pros and cons of reflecting boundaries:

Pros

+ a 'realistic' truncation;
+ approx. τ_{i} easy to calculate.

Reflecting vs absorbing boundaries

The pros and cons of reflecting boundaries:

Pros

+ a 'realistic' truncation;
+ approx. τ_{i} easy to calculate.

Cons

- approx. τ_{i} too big or small;
- hard to see if A is suitable.

Reflecting vs absorbing boundaries

The pros and cons of reflecting boundaries:

Pros

+ a 'realistic' truncation;
+ approx. τ_{i} easy to calculate.

Cons

- approx. τ_{i} too big or small;
- hard to see if A is suitable.

And those of absorbing boundaries:

Reflecting vs absorbing boundaries

The pros and cons of reflecting boundaries:

Pros

+ a 'realistic' truncation;
+ approx. τ_{i} easy to calculate.

Cons

- approx. τ_{i} too big or small;
- hard to see if A is suitable.

And those of absorbing boundaries:

Pros

+ always underestimates τ_{i};
+ can see if A is suitable.

Reflecting vs absorbing boundaries

The pros and cons of reflecting boundaries:

Pros

+ a 'realistic' truncation;
+ approx. τ_{i} easy to calculate.

Cons

- approx. τ_{i} too big or small;
- hard to see if A is suitable.

And those of absorbing boundaries:

Pros

+ always underestimates τ_{i};
+ can see if A is suitable.

Cons

- apparently unrealistic;
- less easy to get approx. τ_{i}.

The character of solutions

Anderson (1991) characterised all solutions to the system

$$
\sum_{j=0}^{i+1} q_{i j} z_{j}=\theta z_{i}-\gamma_{i}, \quad i>x_{e}
$$

The character of solutions

Anderson (1991) characterised all solutions to the system

$$
\sum_{j=0}^{i+1} q_{i j} z_{j}=\theta z_{i}-\gamma_{i}, \quad i>x_{e}
$$

(For τ_{i}, set $\theta=0, \gamma_{i}=1, z_{0}=0$.)

The character of solutions

Anderson (1991) characterised all solutions to the system

$$
\sum_{j=0}^{i+1} q_{i j} z_{j}=\theta z_{i}-\gamma_{i}, \quad i>x_{e}
$$

(For τ_{i}, set $\theta=0, \gamma_{i}=1, z_{0}=0$.) All solutions have the form

$$
z_{i}=a_{i} \kappa-b_{i}
$$

where $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are unique sequences (see [And91] or [CP04]) and $\kappa=z_{1}$.

Choosing A I

"Can we choose a truncation that yields a suitable z_{i} ?"

Choosing A I

"Can we choose a truncation that yields a suitable z_{i} ?"

Let $\kappa_{A}=b_{A} / a_{A}$. Then $z_{A}=0$, and so κ_{A} and gives the value of z_{1} for a truncation with an absorbing boundary A.

Choosing A I

"Can we choose a truncation that yields a suitable z_{i} ?"

Let $\kappa_{A}=b_{A} / a_{A}$. Then $z_{A}=0$, and so κ_{A} and gives the value of z_{1} for a truncation with an absorbing boundary A.
$\left\{\kappa_{A}\right\}$ is increasing, so $\kappa_{A} \uparrow \tau_{1}$ as $A \rightarrow \infty$, so if κ_{A} is close to τ_{1}, approximate

$$
\tau_{i} \approx a_{i} \kappa_{A}-b_{i}, \quad 0 \leq i<A .
$$

Choosing A II

"How do we know we have a suitable value of A ?"

Choosing A II

"How do we know we have a suitable value of A ?"

Problems:

Choosing A II

"How do we know we have a suitable value of A ?"

Problems:

- z_{A} is always 0 , and so $\tau_{i} \approx z_{i}$ will be a bad approximation for i close to A.

Choosing A II

"How do we know we have a suitable value of A ?"

Problems:

- z_{A} is always 0 , and so $\tau_{i} \approx z_{i}$ will be a bad approximation for i close to A.
- We don't know τ_{1}, so we can't compare it to κ_{A}.

Choosing A II

"How do we know we have a suitable value of A ?"

Problems:

- z_{A} is always 0 , and so $\tau_{i} \approx z_{i}$ will be a bad approximation for i close to A.
- We don't know τ_{1}, so we can't compare it to κ_{A}.

BUT, we can check for apparent convergence of κ_{A} to some limit as A gets large.

Convergence of κ_{A}

Example [CP04]:

κ_{A} appears
to converge...

Convergence of κ_{A}

$\Delta \kappa_{A}=\kappa_{A+1}-\kappa_{A}$

Example [CP04]:

κ_{A} appears
to converge...

Convergence of κ_{A}

Comparing truncations

We can reinterpret absorbing boundaries: κ_{A} gives the expected time to hit either 0 or A, starting with 1 individual.

Comparing truncations

We can reinterpret absorbing boundaries: κ_{A} gives the expected time to hit either 0 or A, starting with 1 individual.

If this quantity is close to τ_{1}, then there is little contribution to τ_{1} from 'reaching A before going extinct'.

Comparing truncations

We can reinterpret absorbing boundaries: κ_{A} gives the expected time to hit either 0 or A, starting with 1 individual.

If this quantity is close to τ_{1}, then there is little contribution to τ_{1} from 'reaching A before going extinct'.

Suppose now that we have a population bounded by N.

Comparing truncations

We can reinterpret absorbing boundaries: κ_{A} gives the expected time to hit either 0 or A, starting with 1 individual.

If this quantity is close to τ_{1}, then there is little contribution to τ_{1} from 'reaching A before going extinct'.

Suppose now that we have a population bounded by N.

What if we take the (already) bounded process and make the boundary absorbing?

Comparing truncations

"How does making the boundary absorbing help?"

Comparing truncations

"How does making the boundary absorbing help?"

We might want to:

Comparing truncations

"How does making the boundary absorbing help?"

We might want to:

- understand how existing, physical bounds on population size affect persistence;

Comparing truncations

"How does making the boundary absorbing help?"

We might want to:

- understand how existing, physical bounds on population size affect persistence;
- decide whether increasing available habitat might aid in conservation.

Comparing truncations

"How does making the boundary absorbing help?"

We might want to:

- understand how existing, physical bounds on population size affect persistence;
- decide whether increasing available habitat might aid in conservation.

Compare absorbing and reflecting boundaries to see if the boundary plays a significant role in the population process.

Comparing truncations

Comparing truncations

The difference between the two results is the contribution to the extinction time, in the reflecting case, from the event that the population hits N at least once before extinction.

Summary

- Birth, death and catastrophe processes: a general class of models.

Summary

- Birth, death and catastrophe processes: a general class of models.
- Persistence of populations can be (relatively) easily assessed from model parameters.

Summary

- Birth, death and catastrophe processes: a general class of models.
- Persistence of populations can be (relatively) easily assessed from model parameters.
- In some cases, truncation is necessary:

Summary

- Birth, death and catastrophe processes: a general class of models.
- Persistence of populations can be (relatively) easily assessed from model parameters.
- In some cases, truncation is necessary:
- Reflecting boundary: simple, but may give over- or under-estimates.

Summary

- Birth, death and catastrophe processes: a general class of models.
- Persistence of populations can be (relatively) easily assessed from model parameters.
- In some cases, truncation is necessary:
- Reflecting boundary: simple, but may give over- or under-estimates.
- Absorbing boundary: counterintuitive, but reliably underestimates persistence.

Summary

- Birth, death and catastrophe processes: a general class of models.
- Persistence of populations can be (relatively) easily assessed from model parameters.
- In some cases, truncation is necessary:
- Reflecting boundary: simple, but may give over- or under-estimates.
- Absorbing boundary: counterintuitive, but reliably underestimates persistence.
- Both can be compared to assess the effect of the boundary on persistence.

Thanks

- AMSI and ICE-EM.
- Phil Pollett and Hugh Possingham (advisors).

References

[And91] W.J. Anderson. Continuous-Time Markov Chains: An Applications-Oriented Approach, Springer-Verlag, New York, 1991.
[CP04] B.J. Cairns and P.K. Pollett (2004). Approximating measures of persistence in a general class of population processes. (Submitted for publication.)

See also: http://www.maths.uq.edu.au/~bjc/talks.html

