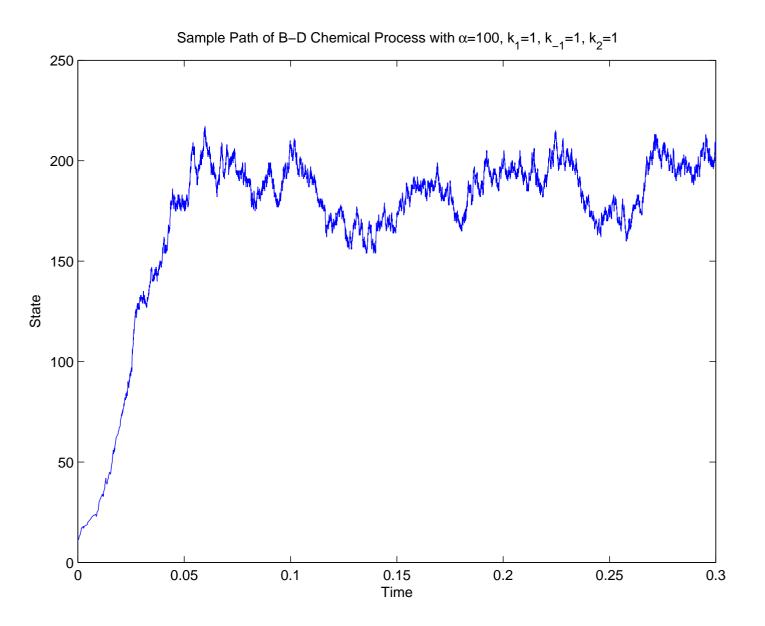
### **Quasistationary Distributions for Continuous-Time Markov Chains**

David Sirl

The University of Queensland

### **Quasi-Stationary Behaviour**



### We will:

- Briefly review some facts about continuous-time Markov chains (CTMCs).
- Look at this type of behaviour in the context of a chemical reaction.
- Look at the analytical tools available to describe this behaviour — quasistationary distributions (QSDs) and limiting conditional distributions (LCDs).
- Look at the tools available to establish the existence of QSDs.
- Briefly discuss numerical methods for establishing approximations to these QSDs.

### Recall . . .

- ▲ time-homogeneous CTMC (X(t), t ≥ 0) taking values in a countable set S (Z<sup>+</sup>) is completely described by its transition function P(t) = (p<sub>ij</sub>(t), i, j ∈ S, t ≥ 0).
- In practice we know only the *transition rates*  $(p'_{ij}(0+) = q_{ij}, i, j \in S).$
- If we know P, we can in principle answer any question about the behaviour of the chain. The challenge is to try and answer these questions in terms of Q.
- We will assume that the process is absorbed with probability one, and is therefore regular (non-explosive).



A Birth-Death Process is a CTMC with the property that if the chain is in state *i*, transitions can only be made to state i - 1 or i + 1.

#### **Recall** . . .

A Birth-Death Process is a CTMC with the property that if the chain is in state *i*, transitions can only be made to state i - 1 or i + 1. The q-matrix has the form

$$q_{ij} = \begin{cases} \lambda_i & \text{if } j = i+1 \\ \mu_i & \text{if } j = i-1, \ i \ge 1 \\ -(\lambda_i + \mu_i) & \text{if } j = i \ge 1 \\ -\lambda_0 & \text{if } j = i = 0 \\ 0 & \text{otherwise} \end{cases}$$

where  $\lambda_i, \mu_i > 0$ ,  $\forall i \in C$ . We also assume that  $\lambda_0 = 0$ .

▶ A distribution  $a = (a_i, i \in C)$  is a QSD over C if

$$\mathbb{P}_a(X(t) = j | X(t) \in C) = a_j,$$

independently of t.

▶ A distribution  $a = (a_i, i \in C)$  is a QSD over *C* if

$$\mathbb{P}_a(X(t) = j | X(t) \in C) = a_j,$$

independently of t.

 A distribution  $b = (b_i, i \in C)$  is a LCD over C if for all i, j ∈ C,

$$\lim_{t \to \infty} \mathbb{P}(X(t) = j | X(t) \in C, \ X(0) = i) = b_j.$$

▶ A distribution  $a = (a_i, i \in C)$  is a QSD over *C* if

$$\mathbb{P}_a(X(t) = j | X(t) \in C) = a_j,$$

independently of t.

▲ A distribution  $b = (b_i, i \in C)$  is a LCD over C if for all  $i, j \in C$ ,

$$\lim_{t \to \infty} \mathbb{P}(X(t) = j | X(t) \in C, \ X(0) = i) = b_j.$$

A LCD must be quasistationary, but a QSD need not be limiting conditional.

■ A  $\mu$ -invariant measure (over *C*) for *P* is a collection of numbers  $m = (m_i, i \in C)$  which, for some  $\mu > 0$ , satisfy

$$\sum_{i \in C} m_i p_{ij}(t) = e^{-\mu t} m_j, \qquad j \in C, \ t \ge 0.$$

■ A  $\mu$ -invariant measure (over *C*) for *P* is a collection of numbers  $m = (m_i, i \in C)$  which, for some  $\mu > 0$ , satisfy

$$\sum_{i \in C} m_i p_{ij}(t) = e^{-\mu t} m_j, \qquad j \in C, \ t \ge 0.$$

▲ A µ-invariant measure (over C) for Q is a collection of numbers  $m = (m_i, i \in C)$  which, for some  $\mu > 0$ , satisfy

$$\sum_{i \in C} m_i q_{ij} = -\mu m_j, \qquad j \in C.$$

$$\begin{array}{cccc} \mathbf{A} + \mathbf{X} & \xrightarrow{k_1} & 2\mathbf{X} \\ & & & & \\ \mathbf{X} & \xrightarrow{k_2} & \mathbf{B} \end{array}$$

■ Model the number of molecules of X with a CTMC — a birth-death process on  $S = \{0\} \cup C$ , where zero is absorbing and C is an irreducible transient class.

$$\begin{array}{cccc} \mathbf{A} + \mathbf{X} & \xrightarrow{k_1} & 2\mathbf{X} \\ & & & & \\ \mathbf{X} & \xrightarrow{k_2} & \mathbf{B} \end{array}$$

- Model the number of molecules of X with a CTMC a birth-death process on  $S = \{0\} \cup C$ , where zero is absorbing and C is an irreducible transient class.
- The system can be either *closed* or *open* with respect to A & B.  $C = \{1, 2, ..., N\}$  or  $\{1, 2, ...\}$ , respectively.

## **Finite State Space**

- Finite state space easy because of Perron-Frobenius theory.
- The unique QSD (and LCD) is given by m such that

$$mP_C(t) = e^{-\nu t}m.$$

This is equivalent to

$$mQ_C = -\nu m$$

where  $-\nu$  is the eigenvalue with maximal real part (it is real and negative).

### **The Decay Parameter**

The quantity

$$\lambda_C := \lim_{t \to \infty} \frac{-\log(p_{ij}(t))}{t}$$

exists and is independent of  $i, j \in C$ .

Called the decay parameter because

$$p_{ij}(t) \le M_{ij} e^{-\lambda_C t}, \qquad 0 < M_{ij} < \infty.$$

Solution Show that for a µ-invariant measure for P over C to exist, it is necessary that  $(0 <)\mu ≤ \lambda_C$ .

Infinite state space - more difficult as Perron-Frobenius theory no longer applies.

- Infinite state space more difficult as Perron-Frobenius theory no longer applies.
- $\checkmark$  Again, the QSDs are given by m such that

$$mP_C(t) = e^{-\nu t}m.$$

- Infinite state space more difficult as Perron-Frobenius theory no longer applies.
- $\checkmark$  Again, the QSDs are given by m such that

$$mP_C(t) = e^{-\nu t}m.$$

• The LCD (if it exists) is given by m such that

$$mP_C(t) = e^{-\lambda_C t} m.$$

- Infinite state space more difficult as Perron-Frobenius theory no longer applies.
- Again, the QSDs are given by m such that

$$mP_C(t) = e^{-\nu t}m.$$

• The LCD (if it exists) is given by m such that

$$mP_C(t) = e^{-\lambda_C t} m.$$

However these expressions involve P and  $\lambda_C$ , which are not known and difficult/impossible to find analytically.

A solution *m* to  $mQ_C = -\mu m$  also satisfies  $mP_C(t) = e^{-\mu t}m$ (and is therefore a QSD) iff

$$\sum_{i \in C} y_i q_{ij} = -\kappa y_j, \qquad 0 \le y_i \le m_i,$$

has only the trivial solution for some (all)  $\kappa < \mu$ .

A solution *m* to  $mQ_C = -\mu m$  also satisfies  $mP_C(t) = e^{-\mu t}m$  (and is therefore a QSD) iff

$$\sum_{i \in C} y_i q_{ij} = -\kappa y_j, \qquad 0 \le y_i \le m_i,$$

has only the trivial solution for some (all)  $\kappa < \mu$ .

• Conditions do not depend explicitly on P or  $\lambda_C$ .

A solution *m* to  $mQ_C = -\mu m$  also satisfies  $mP_C(t) = e^{-\mu t}m$  (and is therefore a QSD) iff

$$\sum_{i \in C} y_i q_{ij} = -\kappa y_j, \qquad 0 \le y_i \le m_i,$$

has only the trivial solution for some (all)  $\kappa < \mu$ .

- Conditions do not depend explicitly on P or  $\lambda_C$ .
- Do depend on having a particular  $\mu$ , m to check.

If *m* is a *finite*  $\mu$ -invariant measure for *Q* (i.e.  $\sum m_i < \infty$ ), then

$$\mu = \sum_{i \in C} m_i q_{ij}$$

is neccesary and sufficient for m to be a QSD.

If *m* is a *finite*  $\mu$ -invariant measure for *Q* (i.e.  $\sum m_i < \infty$ ), then

$$\mu = \sum_{i \in C} m_i q_{ij}$$

is neccesary and sufficient for m to be a QSD.

This allows us to find all finite µ-invariant measures for Q, and we can then check which of these are QSDs using the previous result.

$$\mu = \sum_{i \in C} m_i q_{ij}$$

- This allows us to find *all* finite µ-invariant measures for Q, and we can then check which of these are QSDs using the previous result.
- When finding  $\mu$ -invariant measures for Q, we can now eliminate  $\mu$  explicitly from the system we need to solve, however this renders the system

$$\sum_{i \in C} m_i q_{ij} = -\mu(m)m_j, \qquad j \in C$$

non-linear in m.

If the equations

$$\sum_{i \in C} y_i q_{ij} = \kappa y_j, \qquad y_i \ge 0, \ \sum_i y_i < \infty$$

have only the trivial solution for some (all)  $\kappa > 0$ , then all finite  $\mu$ -invariant measures for Q are also  $\mu$ -invariant for P and are therefore QSDs.

If the equations

$$\sum_{i \in C} y_i q_{ij} = \kappa y_j, \qquad y_i \ge 0, \ \sum_i y_i < \infty$$

have only the trivial solution for some (all)  $\kappa > 0$ , then all finite  $\mu$ -invariant measures for Q are also  $\mu$ -invariant for P and are therefore QSDs.

If this condition holds, all we have to do is find a  $\mu$ -invariant measure for Q and this is a QSD.

If the equations

$$\sum_{i \in C} y_i q_{ij} = \kappa y_j, \qquad y_i \ge 0, \ \sum_i y_i < \infty$$

have only the trivial solution for some (all)  $\kappa > 0$ , then all finite  $\mu$ -invariant measures for Q are also  $\mu$ -invariant for P and are therefore QSDs.

- If this condition holds, all we have to do is find a  $\mu$ -invariant measure for Q and this is a QSD.
- But we want it to be  $\lambda_C$ -invariant, so that we have the LCD.

#### **Birth-Death Process**

For a B-D process with which is absorbed with probability one, suppose the initial distribution has compact support. Then

- If  $\mathcal{D} < \infty$  then there is a unique QSD which is the LCD.
- If  $\mathcal{D} = \infty$  then either
  - $\lambda_C = 0$  and there are no QSDs, or
  - $\lambda_C > 0$  and there is a one-parameter family of QSDs, one of which is the LCD.

Here

$$\mathcal{D} = \sum_{n=1}^{\infty} \frac{1}{\mu_n \pi_n} \sum_{m=n}^{\infty} \pi_m, \qquad \pi_n = \frac{\lambda_1 \cdots \lambda_{n-1}}{\mu_2 \cdots \mu_n}.$$

● For the (B-D) chemical system, one can show that

$$\mathcal{D} = \sum_{n=1}^{\infty} \frac{n\Gamma(n+r)}{[nk_2 + n(n-1)\frac{k_{-1}}{2}](\alpha s)^{n-1}} \sum_{m=n}^{\infty} \frac{(\alpha s)^{m-1}}{m\Gamma(m+r)},$$

● For the (B-D) chemical system, one can show that

$$\mathcal{D} = \sum_{n=1}^{\infty} \frac{n\Gamma(n+r)}{[nk_2 + n(n-1)\frac{k_{-1}}{2}](\alpha s)^{n-1}} \sum_{m=n}^{\infty} \frac{(\alpha s)^{m-1}}{m\Gamma(m+r)},$$

and that this is in fact finite.

For the (B-D) chemical system, one can show that

$$\mathcal{D} = \sum_{n=1}^{\infty} \frac{n\Gamma(n+r)}{[nk_2 + n(n-1)\frac{k_{-1}}{2}](\alpha s)^{n-1}} \sum_{m=n}^{\infty} \frac{(\alpha s)^{m-1}}{m\Gamma(m+r)},$$

and that this is in fact finite.

So there is a unique quasistationary distribution, which is limiting conditional.

#### **A** Connection

It can be shown that for a Birth-Death process, the Reuter FE conditions hold iff  $\mathcal{D} = \infty$ .

### **A** Connection

- It can be shown that for a Birth-Death process, the Reuter FE conditions hold iff  $\mathcal{D} = \infty$ .
- So, let's replace

 ${\cal D}$  diverges (converges)

in van Doorns' result with

the Reuter FE condition holds (fails)

**Conjecture:** Suppose a process is absorbed with probability one, and that the initial distribution has compact support. Then

- If the Reuter FE conditions fail then there is only one  $\mu$ -invariant measure; it is in fact  $\lambda_C$ -invariant and is therefore the LCD.
- If the Reuter FE conditions hold, either
  - $\lambda_C = 0$  and there are no QSDs (and no LCD), or
  - $\lambda_C > 0$  and there is a one-parameter family of  $\mu$ -invariant measures (QSDs),  $0 < \mu \le \lambda_C$ , of which the  $\lambda_C$ -invariant measure is the LCD.

Having established the existence of a LCD, how do we go about approximating it, given that a closed form solution is almost never available?

Having established the existence of a LCD, how do we go about approximating it, given that a closed form solution is almost never available?

Let  $C^{(1)} \subset C^{(2)} \subset \cdots \subset C$  be a sequence of finite truncations of *C*. What happens to the solutions  $m^{(n)}$  of

$$\sum_{i \in C^{(n)}} m_i^{(n)} q_{ij}^{(n)} = -\lambda^{(n)} m_j^{(n)}, \quad j \in C^{(n)},$$

where  $-\lambda^{(n)}$  is the P-F maximal negative eigenvalue of  $Q_{C^{(n)}}$ , as  $n \to \infty$ ?

• We know that  $\lambda^{(n)} \downarrow \lambda_C$  as  $n \to \infty$ .

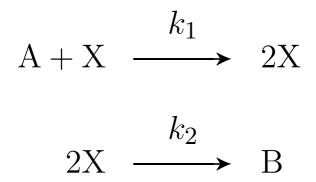
- We know that  $\lambda^{(n)} \downarrow \lambda_C$  as  $n \to \infty$ .
- But under what conditions does  $m^{(n)}$  'converge', in some sense?

- We know that  $\lambda^{(n)} \downarrow \lambda_C$  as  $n \to \infty$ .
- But under what conditions does  $m^{(n)}$  'converge', in some sense?
- If  $m^{(n)}$  converges, does it converge to m?

- We know that  $\lambda^{(n)} \downarrow \lambda_C$  as  $n \to \infty$ .
- But under what conditions does  $m^{(n)}$  'converge', in some sense?
- If  $m^{(n)}$  converges, does it converge to m?
- Breyer & Hart (2000) give some sufficient conditions.

- We know that  $\lambda^{(n)} \downarrow \lambda_C$  as  $n \to \infty$ .
- But under what conditions does  $m^{(n)}$  'converge', in some sense?
- If  $m^{(n)}$  converges, does it converge to m?
- Breyer & Hart (2000) give some sufficient conditions.
- We know:
  - Works for the Birth-Death Process.
  - Works for the subcritical Markov Branching Process.

#### **Another Chemical Reaction**



This is not a Birth-Death process: it has jumps up of size 1, but jumps down of size 2.

#### **The Quasi-Stationary Distribution**

