Diffusion Approximation for a Metapopulation Model with Habitat Dynamics

۲

Joshua Ross

jvr@maths.uq.edu.au

MASCOS PhD Scholar

Discipline of Mathematics, University of Queensland

and

ARC Centre of Excellence for Mathematics and Statistics of Complex Systems

1st MASCOS Workshop on Probability and its Applications - 2004 - p.1/24

MASCOS

Introduction

•

MASCOS

1st MASCOS Workshop on Probability and its Applications - 2004 - p.2/24

Ċ.

A Metapopulation

•

۲

•

• Let M be the total number of patches in the network.

•

- Let M be the total number of patches in the network.
- Let n(t) be the number of occupied patches at time t.

•

- Let M be the total number of patches in the network.
- Let n(t) be the number of occupied patches at time t.
- Let m(t) be the number of suitable patches at time t.

۲

- Let M be the total number of patches in the network.
- Let n(t) be the number of occupied patches at time t.
- Let m(t) be the number of suitable patches at time t.
- Assume $\{(m(t), n(t)), t \ge 0\}$ is a Markov chain taking values in $S = \{(m, n) : 0 \le n \le m \le M\}$.

•

Stochastic logistic model

$$q((m, n), (m, n + 1)) = c \frac{n}{M} (M - n)$$
$$q((m, n), (m, n - 1)) = en$$

•

Stochastic logistic model

$$q((m,n),(m,n+1)) = c\frac{n}{M}(M-n)$$
$$q((m,n),(m,n-1)) = en$$

•

Stochastic logistic model with varying carrying capacity

$$q((m, n), (m, n+1)) = c \frac{n}{M} (\mathbf{m} - n)$$

$$q((m,n),(m,n-1)) = en$$

•

A metapopulation model with habitat dynamics

$$q((m,n), (m, n+1)) = c\frac{n}{M}(m-n)$$
$$q((m,n), (m, n-1)) = en$$
$$q((m,n), (m+1, n)) = r(M-m)$$
$$q((m,n), (m-1, n)) = s(m-n)$$
$$q((m, n), (m-1, n-1)) = sn.$$

A Simulation

۲

MASCOS

1st MASCOS Workshop on Probability and its Applications - 2004 - p.6/24

•

• All metapopulations - natural fluctuations.

- All metapopulations natural fluctuations.
- Metapopulations occupying successional habitats.

۲

- All metapopulations natural fluctuations.
- Metapopulations occupying successional habitats.
- Any fragmented population whose habitat experiences independent, exogenous disturbances; Many species of butterfly*.

* Hanski, I.A. and Gaggiotti (Eds.) (2004) *Ecology Genetics and Evolution of Metapopulations.* Academics Press, London.

- All metapopulations natural fluctuations.
- Metapopulations occupying successional habitats.
- Any fragmented population whose habitat experiences independent, exogenous disturbances; Many species of butterfly.
- Standard population modelling a stochastic logistic model with varying carrying capacity.

Results of Kurtz* and Barbour**

*Kurtz, T (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. *J. Appl. Probab.* 7, 49-58.

*Kurtz, T (1971) Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. *J. Appl. Probab.* 8, 344-356.

**Barbour, A.D. (1976) Quasi-stationary distributions in Markov population processes. *Adv. in Appl. Probab.* 8, 296-314.

- Results of Kurtz and Barbour allow us to establish:
 - 1. A unique deterministic approximation to a suitably scaled version of the original process,

- Results of Kurtz and Barbour allow us to establish:
 - 1. A unique deterministic approximation to a suitably scaled version of the original process,
 - 2. A bivariate normal approximation to the state probabilites of the original process, and

- Results of Kurtz and Barbour allow us to establish:
 - 1. A unique deterministic approximation to a suitably scaled version of the original process,
 - 2. A bivariate normal approximation to the state probabilites of the original process, and
 - 3. For how long this normal approximation is an adequate approximation to the original process.

What is Density Dependence?

Definition

A one-parameter family of Markov chains $\{P_{\nu}, \nu > 0\}$ with state space $S_{\nu} \subset \mathbb{Z}^{D}$ is called density dependent if there exists a set $E \subseteq \mathbb{R}^{D}$ and a continuous function $f : E \times \mathbb{Z}^{D} \to \mathbb{R}$, such that

$$q_{\nu}(k,k+l) = \nu f\left(\frac{k}{\nu},l\right), \qquad l \neq 0.$$

Remark. Thus, the family of Markov chains is density dependent if the transition rates of the corresponding "density process" $X_{\nu}(\cdot)$, defined by

$$X_{\nu}(t) := \frac{P_{\nu}(t)}{\nu}, \qquad t \ge 0,$$

depend on the present state k only through the density k/ν .

MASCOS

What is Density Dependence?

If we take M, the total number of patches in the metapopulation network, as our index parameter and define the scaled process $x_M(t) = \{u(t), v(t)\} = \{m(t)/M, n(t)/M\}$ and its state space $E = \{(u, v) : 0 \le v \le u \le 1\}$, then we may define a continuous function $f : E \times \mathbb{Z}^2 \to \mathbb{R}$ by

$$f(x,l) = \begin{cases} r(1-u) & \text{if } l = (1,0) \\ s(u-v) & \text{if } l = (-1,0) \\ sv & \text{if } l = (-1,-1) \\ cv (u-v) & \text{if } l = (0,1) \\ ev & \text{if } l = (0,-1). \end{cases}$$

 $\frac{1}{N} \sum_{i=1}^{N} x_i \to \mu$

MASCOS

1st MASCOS Workshop on Probability and its Applications - 2004 – p.11/24

MASCOS

1st MASCOS Workshop on Probability and its Applications - 2004 - p.11/24

۲

MASCOS

1st MASCOS Workshop on Probability and its Applications - 2004 - p.11/24

MASCOS

MASCOS

•

$$\frac{m(t)}{M} \to u(t)$$

$$\frac{n(t)}{M} \to v(t)$$

where u(t) and v(t) are given by a unique deterministic model.

•

Deterministic Approximation

$$\frac{du}{dt} = r - (r+s)u$$
$$\frac{dv}{dt} = cv(u-v) - (e+s)v$$

Deterministic Approximation

$$\frac{du}{dt} = r - (r+s)u$$
$$\frac{dv}{dt} = cv(u-v) - (e+s)v$$

Studied previously by Johnson*.

*Johnson, M.P. (2000) The influence of patch demographics on metapopulations, with particular reference to successional landscapes. *Oikos* 88, 67-74.

Deterministic Approximation

$$\frac{du}{dt} = r - (r+s)u$$
$$\frac{dv}{dt} = cv(u-v) - (e+s)v$$

Studied previously by Johnson: has non-trivial fixed point

$$\left(\frac{r}{r+s}, \frac{r}{r+s} - \frac{e+s}{c}\right)$$

and persistence condition

MASCOS

$$\frac{r}{r+s} > \frac{e+s}{c}.$$

1st MASCOS Workshop on Probability and its Applications - 2004 - p.12/24

Deterministic Model

MASCOS

1st MASCOS Workshop on Probability and its Applications - 2004 – p.13/24

Variation

MASCOS

1st MASCOS Workshop on Probability and its Applications - 2004 – p.14/24

Normal Approximation

 The second set of results of Kurtz and Barbour allow us to approximate the state-probabilities of the original process, corresponding to the number of suitable and occupied patches, by a normal distribution.

Normal Approximation

- The second set of results of Kurtz and Barbour allow us to approximate the state-probabilities of the original process, corresponding to the number of suitable and occupied patches, by a normal distribution.
- For our model this is a bivariate normal distribution centered at the fixed point of the deterministic model.

Central Limit Theorem

۲ .

$$\sqrt{N}\left(\frac{1}{N}\sum_{i=1}^{N}x_{i}-\mu\right) \to N(0,\sigma^{2})$$

Normal Approximation - Surface

MASCOS

1st MASCOS Workshop on Probability and its Applications - 2004 – p.17/24

Normal Approximation - Contours

MASCOS

1st MASCOS Workshop on Probability and its Applications - 2004 - p.18/24

Variance

۲

• The normal approximation gives the likelihood function and thus provides a framework for statistical inference.

Variance

- The normal approximation gives the likelihood function and thus provides a framework for statistical inference.
- We now have the variance in the number of suitable and occupied patches.

Variance

- The normal approximation gives the likelihood function and thus provides a framework for statistical inference.
- We now have the variance in the number of suitable and occupied patches.
- We can now take into account the variability of the population when making ecological assessments.

Confidence Intervals

۲

MASCOS

Increase in Variance

MASCOS

1st MASCOS Workshop on Probability and its Applications - 2004 – p.21/24

Comparison to Existing Models

Model	FP	PC
New Model	$\left(\frac{r}{r+s}, \frac{r}{r+s} - \frac{e+s}{c}\right)$	$\frac{r}{r+s} > \frac{e+s}{c}$
Stochastic Logistic Model with $e + s$	$1 - \frac{e+s}{c}$	c > e + s
SLM with $e + s$ & reduced habitat	$\frac{r}{r+s} \left[1 - \frac{e+s}{c} \right]$	c > e + s
MASCOS	1st MASCOS Workshop on Probability and its Applications - 2004 – p.2	

Comparison of Models

•

MASCOS

Comparison of Models

MASCOS

Acknowledgements

Phil Pollett and Hugh Possingham

Ben Cairns, David Sirl and Chris Wilcox

The University of Queensland

and

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

