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What is a metapopulation?

• A Population inhabiting geographically separated habitat

• - Different patch sizes

• - Spatial structure

• - Heterogenous landscape
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Analytical Models

• Presence-absence

• Homogenous patch sizes

• No spatial structure - homogenous mixing
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Realistic Models

• Simulation models

• Day and Possingham (1995)

- Variability in patch size and position

- Discrete-time Markov chain

• But...

- does not account for local population dynamics

- computationally intensive (2k × 2k for a k-patch system)
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My model

• Variability in patch size

• Variability in patch position and inter-patch landscape

• Incorporates local population dynamics

• Analytically tractable

• Surprise surprise... a continuous-time Markov chain!
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Why do we need such a model?

• Effect of relative patch sizes?

• Effect of spatial arrangements?

• Reserve network design and decision theory

• Patch abundance - local population dynamics?
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The model - parameters

• k - number of habitat patches

• n(t) = {n1(t), . . . , nk(t)} - vector of patch population sizes

• Ni(t) - maximum population size at the i-th patch

• b - birth parameter

• γij = γji - migration parameter between patches i and j

• µ - per-individual death rate

• ei - i-th unit vector
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The model - CTMC

We denote the population size at time t by n(t) and assume
that (n(t), t ≥ 0) is a Markov chain with transition rates

Q = (q(i, j), i, j ∈ S),

so that q(i, j) represents the rate of transition from state i to
state j, for j 6= i, and q(i, i) = −q(i), where

q(i) :=
∑

j 6=i

q(i, j) (< ∞)

represents the total rate out of state i.
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The model - transition rates

Birth
q(n, n + ei) = b

ni

Ni

(Ni − ni), ∀ i ∈ K

Migration

q(n, n − ei + ej) = γij

ni

Nj

(Nj − nj), ∀ i 6= j, i, j ∈ K

Death
q(n, n − ei) = µni, ∀ i ∈ K

where K = {1, . . . , k}.
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Density-dependence

Definition: A one-parameter family of Markov chains
{Pν , ν > 0} with state space Sν ⊂ Z

D is called density
dependent if there exists a set E ⊆ R

D and a continuous
function f : E × Z

D → R, such that

qν(k, k + l) = νf

(

k

ν
, l

)

, l 6= 0.

[Kurtz (1970)]
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Functional law of large numbers

Theorem: Suppose that f(x, l) is bounded for each l and that
F , where F (x) =

∑

l lf(x, l), is Lipschitz continuous on E.
Then, if

lim
ν→∞

Xν(0) = x0,

we have, for fixed τ > 0 and for all ǫ > 0, that

lim
ν→∞

Pr
(

sup
t≤τ

|Xν(t) − X(t, x0)| > ǫ

)

= 0,

where X(·, x) is the unique trajectory satisfying

X(0, x) = x, X(t, x) ∈ E, 0 ≤ t ≤ τ,
∂

∂t
X(t, x) = F (X(t, x)).

[Kurtz (1970)]
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Functional central limit theorem

√
ν (Xν(t) − X(t, x0)) → Gaussian Diffusion

√
ν (Xν(t) − x∗) → N(0,Σt)

Long-term

E(Xν) ≈ x∗

Var(Xν) ≈ 1

ν
Σ where Σ = limt→∞ Σt.

[Kurtz (1971)]



MASCOS Workshop on Metapopulations - 2004

Density-dependence

If we take the maximum population size of the metapopulation
network, N =

∑k
i=1

Ni, as our index parameter



MASCOS Workshop on Metapopulations - 2004

Density-dependence

If we take the maximum population size of the metapopulation
network, N =

∑k
i=1

Ni, as our index parameter and define
Xi(t) = ni(t)/N to be the population densities and the limiting
proportion of patch carrying capacities to be
ρi = limN→∞ Ni/N, i ∈ K = {1, 2, . . . , k}



MASCOS Workshop on Metapopulations - 2004

Density-dependence

If we take the maximum population size of the metapopulation
network, N =

∑k
i=1

Ni, as our index parameter and define
Xi(t) = ni(t)/N to be the population densities and the limiting
proportion of patch carrying capacities to be
ρi = limN→∞ Ni/N, i ∈ K = {1, 2, . . . , k}, we can define a
continuous function f : E × Z

k → R, where
E = {X ∈ [0, ρ1] × · · · × [0, ρk]}, as follows:

f(x, x + ei) = b
xi

ρi

(ρi − xi), ∀i ∈ K

f(x, x − ei + ej) = γij

xi

ρj

(ρj − xj) , ∀i 6= j, i, j ∈ K

f(x, x − ei) = µxi, ∀i ∈ K.
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Deterministic approximation

The functional law of large numbers gives us

dx

dt
= F (x)

Therefore we have a system of k differential equations with
the i-th given by

dxi

dt
=



b − µ −
∑

j 6=i

γij



 xi+
∑

j 6=i

γijxj+
xi

ρi





∑

j 6=i

γij

ρj

xj(ρi − ρj) − bxi




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dx1
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Special case - 2 equal patches

dx1

dt
=

(

b − µ − γ − b

ρ
x1

)

x1 + γx2

dx2

dt
=

(

b − µ − γ − b

ρ
x2

)

x2 + γx1

Fixed points and stability

Trivial fixed point: (0, 0)
Stable if b − µ < 0, saddle if 0 < b − µ < 2γ and
unstable if b − µ > 2γ.

SL fixed point:
(

1

2b
(b − µ), 1

2b
(b − µ)

)

Unstable if b − µ < −2γ, saddle if −2γ < b − µ < 0
and stable if b − µ > 0.

Another pair: Real and saddles if |b − µ| > 2γ.
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Different patch sizes?
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General stability analysis

The nonlinear system can be written in the linearised form

dx
dt

= Ax + h(x)

where
A = Γ + (b − µ)I

in which Γ is a q-matrix with diagonal entries given by
−

∑

j 6=i γij and off-diagonal entries γij, and h(x) consists of
higher order terms such that ||h(x)|| = o(||x||), as ||x|| → 0.
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General stability analysis

Determine stability by considering the eigenvalues σ of A

Ax = σx

so we have
(b − µ)x + Γx = σx

and therefore
Γx = [σ − (b − µ)] x

so finally we have
σi = λi + b − µ

where λi is the i-th eigenvalue of Γ.
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General stability analysis

Determine stability by considering the eigenvalues σ of A

Ax = σx

so we have
(b − µ)x + Γx = σx

and therefore
Γx = [σ − (b − µ)] x

so finally we have
σi = λi + b − µ

where λi is the i-th eigenvalue of Γ. Therefore, SL fixed point
is always stable if

b > µ.
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One-dimensional summary

If the patches are close to homogenous in size, we can
approximate the equilibrium mean population density by using
the logistic model [Verhulst (1838)]

dy

dt
= by(1 − y) − µy

with equilibrium y∗ = 1

b
(b − µ), which is stable if b > µ, where

y =
∑k

i=1
xi.

The equilibrium density at each patch will then be given by

x∗
i =

1

kb
(b − µ), i = {1, 2, . . . , k}
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What I want to do...

• Full analysis of model - fixed points and stability

• Investigate effect of migration parameters and spatial
structure

• Diffusion approximation - investigate the variances and
covariances

• Listen to Michael’s talk and then have some pizza!
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