Diffusion approximation for a spatially realistic structured metapopulation model

Joshua Ross

http://www.maths.uq.edu.au/~jvr

Discipline of Mathematics and MASCOS University of Queensland

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

• A Population inhabiting geographically separated habitat

- A Population inhabiting geographically separated habitat
- - Different patch sizes

- A Population inhabiting geographically separated habitat
- - Different patch sizes
- - Spatial structure

- A Population inhabiting geographically separated habitat
- - Different patch sizes
- - Spatial structure
- - Heterogenous landscape

Analytical Models

• Presence-absence

Analytical Models

• Presence-absence

• Homogenous patch sizes

Analytical Models

• Presence-absence

• Homogenous patch sizes

• No spatial structure - homogenous mixing

Realistic Models

• Simulation models

Realistic Models

- Simulation models
- Day and Possingham (1995)
 - Variability in patch size and position
 - Discrete-time Markov chain

Realistic Models

- Simulation models
- Day and Possingham (1995)
 - Variability in patch size and position
 - Discrete-time Markov chain
- But...
 - does not account for local population dynamics
 - computationally intensive ($2^k \times 2^k$ for a k-patch system)

• Variability in patch size

- Variability in patch size
- Variability in patch position and inter-patch landscape

- Variability in patch size
- Variability in patch position and inter-patch landscape
- Incorporates local population dynamics

- Variability in patch size
- Variability in patch position and inter-patch landscape
- Incorporates local population dynamics
- Analytically tractable

- Variability in patch size
- Variability in patch position and inter-patch landscape
- Incorporates local population dynamics
- Analytically tractable
- Surprise surprise... a continuous-time Markov chain!

• Effect of relative patch sizes?

- Effect of relative patch sizes?
- Effect of spatial arrangements?

- Effect of relative patch sizes?
- Effect of spatial arrangements?
- Reserve network design and decision theory

- Effect of relative patch sizes?
- Effect of spatial arrangements?
- Reserve network design and decision theory
- Patch abundance local population dynamics?

• *k* - number of habitat patches

- *k* number of habitat patches
- $n(t) = \{n_1(t), \dots, n_k(t)\}$ vector of patch population sizes

- *k* number of habitat patches
- $n(t) = \{n_1(t), \dots, n_k(t)\}$ vector of patch population sizes
- $N_i(t)$ maximum population size at the *i*-th patch

- *k* number of habitat patches
- $n(t) = \{n_1(t), \dots, n_k(t)\}$ vector of patch population sizes
- $N_i(t)$ maximum population size at the *i*-th patch
- *b* birth parameter

- *k* number of habitat patches
- $n(t) = \{n_1(t), \dots, n_k(t)\}$ vector of patch population sizes
- $N_i(t)$ maximum population size at the *i*-th patch
- *b* birth parameter
- $\gamma_{ij} = \gamma_{ji}$ migration parameter between patches *i* and *j*

- *k* number of habitat patches
- $n(t) = \{n_1(t), \dots, n_k(t)\}$ vector of patch population sizes
- $N_i(t)$ maximum population size at the *i*-th patch
- *b* birth parameter
- $\gamma_{ij} = \gamma_{ji}$ migration parameter between patches *i* and *j*
- μ per-individual death rate

- *k* number of habitat patches
- $n(t) = \{n_1(t), \dots, n_k(t)\}$ vector of patch population sizes
- $N_i(t)$ maximum population size at the *i*-th patch
- *b* birth parameter
- $\gamma_{ij} = \gamma_{ji}$ migration parameter between patches *i* and *j*
- μ per-individual death rate
- e_i *i*-th unit vector

The model - CTMC

We denote the population size at time t by n(t)

The model - CTMC

We denote the population size at time t by n(t) and assume that $(n(t), t \ge 0)$ is a Markov chain with transition rates

 $Q=(q(i,j),i,j\in S),$

We denote the population size at time t by n(t) and assume that $(n(t), t \ge 0)$ is a Markov chain with transition rates

 $Q = (q(i,j), i, j \in S),$

so that q(i, j) represents the rate of transition from state i to state j, for $j \neq i$, and q(i, i) = -q(i), where

$$q(i) := \sum_{j \neq i} q(i, j) \ (< \infty)$$

represents the total rate out of state *i*.

The model - transition rates

Birth

$$q(n, n + e_i) = b \frac{n_i}{N_i} (N_i - n_i), \ \forall i \in K$$

Migration

$$q(n, n - e_i + e_j) = \gamma_{ij} \frac{n_i}{N_j} (N_j - n_j), \ \forall i \neq j, i, j \in K$$

Death

$$q(n, n - e_i) = \mu n_i, \ \forall i \in K$$

where $K = \{1, ..., k\}$.

Definition: A one-parameter family of Markov chains $\{P_{\nu}, \nu > 0\}$ with state space $S_{\nu} \subset \mathbb{Z}^{D}$ is called density dependent if there exists a set $E \subseteq \mathbb{R}^{D}$ and a continuous function $f : E \times \mathbb{Z}^{D} \to \mathbb{R}$, such that

$$q_{\nu}(k,k+l) = \nu f\left(\frac{k}{\nu},l\right), \qquad l \neq 0.$$

[Kurtz (1970)]

Functional law of large numbers

Theorem: Suppose that f(x, l) is bounded for each l and that F, where $F(x) = \sum_{l} lf(x, l)$, is Lipschitz continuous on E. Then, if

$$\lim_{\nu \to \infty} X_{\nu}(0) = x_0,$$

we have, for fixed $\tau > 0$ and for all $\epsilon > 0$, that

$$\lim_{\nu \to \infty} \Pr\left(\sup_{t \le \tau} |X_{\nu}(t) - X(t, x_0)| > \epsilon \right) = 0,$$

where $X(\cdot, x)$ is the unique trajectory satisfying

$$X(0,x) = x, \quad X(t,x) \in E, \ 0 \le t \le \tau, \quad \frac{\partial}{\partial t} X(t,x) = F(X(t,x)).$$

[Kurtz (1970)]

Functional central limit theorem

 $\sqrt{\nu} \left(X_{\nu}(t) - X(t, x_0) \right) \rightarrow$ Gaussian Diffusion

$$\sqrt{\nu} \left(X_{\nu}(t) - x^* \right) \to N(0, \Sigma_t)$$

Long-term

 $\mathsf{E}(X_{\nu}) \approx x^*$ $\mathsf{Var}(X_{\nu}) \approx \frac{1}{\nu} \Sigma$ where $\Sigma = \lim_{t \to \infty} \Sigma_t$.

[Kurtz (1971)]

Density-dependence

If we take the maximum population size of the metapopulation network, $N = \sum_{i=1}^{k} N_i$, as our index parameter

Density-dependence

If we take the maximum population size of the metapopulation network, $N = \sum_{i=1}^{k} N_i$, as our index parameter and define $X_i(t) = n_i(t)/N$ to be the population densities and the limiting proportion of patch carrying capacities to be $\rho_i = \lim_{N \to \infty} N_i/N, i \in K = \{1, 2, \dots, k\}$

Density-dependence

If we take the maximum population size of the metapopulation network, $N = \sum_{i=1}^{k} N_i$, as our index parameter and define $X_i(t) = n_i(t)/N$ to be the population densities and the limiting proportion of patch carrying capacities to be $\rho_i = \lim_{N\to\infty} N_i/N, i \in K = \{1, 2, ..., k\}$, we can define a continuous function $f : E \times \mathbb{Z}^k \to \mathbb{R}$, where $E = \{X \in [0, \rho_1] \times \cdots \times [0, \rho_k]\}$, as follows:

$$f(x, x + e_i) = b \frac{x_i}{\rho_i} (\rho_i - x_i), \ \forall i \in K$$

$$f(x, x - e_i + e_j) = \gamma_{ij} \frac{x_i}{\rho_j} \left(\rho_j - x_j \right), \ \forall i \neq j, i, j \in K$$
$$f(x, x - e_i) = \mu x_i, \ \forall i \in K.$$

Deterministic approximation

The functional law of large numbers gives us

$$\frac{dx}{dt} = F(x)$$

Therefore we have a system of k differential equations with the *i*-th given by

$$\frac{dx_i}{dt} = \left(b - \mu - \sum_{j \neq i} \gamma_{ij}\right) x_i + \sum_{j \neq i} \gamma_{ij} x_j + \frac{x_i}{\rho_i} \left[\sum_{j \neq i} \frac{\gamma_{ij}}{\rho_j} x_j (\rho_i - \rho_j) - bx_i\right]$$

$$\frac{dx_1}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho}x_1\right)x_1 + \gamma x_2$$
$$\frac{dx_2}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho}x_2\right)x_2 + \gamma x_1$$

$$\frac{dx_1}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho}x_1\right)x_1 + \gamma x_2$$
$$\frac{dx_2}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho}x_2\right)x_2 + \gamma x_1$$

Fixed points and stability

Trivial fixed point: (0,0)Stable if $b - \mu < 0$, saddle if $0 < b - \mu < 2\gamma$ and unstable if $b - \mu > 2\gamma$.

$$\frac{dx_1}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho}x_1\right)x_1 + \gamma x_2$$
$$\frac{dx_2}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho}x_2\right)x_2 + \gamma x_1$$

Fixed points and stability

Trivial fixed point: (0,0)Stable if $b - \mu < 0$, saddle if $0 < b - \mu < 2\gamma$ and unstable if $b - \mu > 2\gamma$.

SL fixed point: $\left(\frac{1}{2b}(b-\mu), \frac{1}{2b}(b-\mu)\right)$ Unstable if $b-\mu < -2\gamma$, saddle if $-2\gamma < b-\mu < 0$ and stable if $b-\mu > 0$.

$$\frac{dx_1}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho}x_1\right)x_1 + \gamma x_2$$
$$\frac{dx_2}{dt} = \left(b - \mu - \gamma - \frac{b}{\rho}x_2\right)x_2 + \gamma x_1$$

Fixed points and stability

Trivial fixed point: (0,0)Stable if $b - \mu < 0$, saddle if $0 < b - \mu < 2\gamma$ and unstable if $b - \mu > 2\gamma$.

SL fixed point: $(\frac{1}{2b}(b-\mu), \frac{1}{2b}(b-\mu))$ Unstable if $b - \mu < -2\gamma$, saddle if $-2\gamma < b - \mu < 0$ and stable if $b - \mu > 0$.

Another pair: Real and saddles if $|b - \mu| > 2\gamma$.

Different patch sizes?

General stability analysis

The nonlinear system can be written in the linearised form

$$\frac{d\underline{\mathbf{x}}}{dt} = A\underline{\mathbf{x}} + h(\underline{\mathbf{x}})$$

where

$$A = \Gamma + (b - \mu)I$$

in which Γ is a q-matrix with diagonal entries given by $-\sum_{j\neq i} \gamma_{ij}$ and off-diagonal entries γ_{ij} , and $h(\underline{\mathbf{x}})$ consists of higher order terms such that $||h(\underline{\mathbf{x}})|| = o(||\underline{\mathbf{x}}||)$, as $||\underline{\mathbf{x}}|| \to 0$.

General stability analysis

Determine stability by considering the eigenvalues σ of A

$$A\underline{\mathbf{X}} = \sigma\underline{\mathbf{X}}$$

so we have

 $(b-\mu)\underline{\mathbf{X}} + \Gamma\underline{\mathbf{X}} = \sigma\underline{\mathbf{X}}$

and therefore

$$\Gamma \underline{\mathbf{X}} = [\sigma - (b - \mu)] \,\underline{\mathbf{X}}$$

so finally we have

$$\sigma_i = \lambda_i + b - \mu$$

where λ_i is the *i*-th eigenvalue of Γ .

General stability analysis

Determine stability by considering the eigenvalues σ of A

$$A\underline{\mathbf{X}} = \sigma\underline{\mathbf{X}}$$

so we have

 $(b-\mu)\underline{\mathbf{X}} + \Gamma\underline{\mathbf{X}} = \sigma\underline{\mathbf{X}}$

and therefore

$$\Gamma \underline{\mathbf{X}} = [\sigma - (b - \mu)] \,\underline{\mathbf{X}}$$

so finally we have

$$\sigma_i = \lambda_i + b - \mu$$

where λ_i is the *i*-th eigenvalue of Γ . Therefore, SL fixed point is always stable if

 $b > \mu$.

If the patches are close to homogenous in size, we can approximate the equilibrium mean population density by using the logistic model [Verhulst (1838)]

$$\frac{dy}{dt} = by(1-y) - \mu y$$

with equilibrium $y^* = \frac{1}{b}(b - \mu)$, which is stable if $b > \mu$, where $y = \sum_{i=1}^{k} x_i$.

The equilibrium density at each patch will then be given by

$$x_i^* = \frac{1}{kb}(b-\mu), \quad i = \{1, 2, \dots, k\}$$

• Full analysis of model - fixed points and stability

- Full analysis of model fixed points and stability
- Investigate effect of migration parameters and spatial structure

- Full analysis of model fixed points and stability
- Investigate effect of migration parameters and spatial structure
- Diffusion approximation investigate the variances and covariances

- Full analysis of model fixed points and stability
- Investigate effect of migration parameters and spatial structure
- Diffusion approximation investigate the variances and covariances
- Listen to Michael's talk and then have some pizza!

Acknowledgements

Phil Pollett and Hugh Possingham

Ben Cairns and David Sirl

The University of Queensland

and

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems