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Habitat dynamics

“Classical” patch-occupancy metapopulation
models assume that habitat is a constant
component of the model.
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Habitat dynamics

“Classical” patch-occupancy metapopulation
models assume that habitat is a constant
component of the model.

• Many patchy habitats are not static:

• Habitat may be affected by environmental events;

• Species utilising successional habitat depend on
habitat dynamics;

• Some species appear to have a negative impact on
their local habitat.
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Modelling dynamic habitat

We will explicitly model suitable and unsuitable
habitat in addition to the number of patches
occupied by a species.

Let:
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Modelling dynamic habitat

We will explicitly model suitable and unsuitable
habitat in addition to the number of patches
occupied by a species.

Let:

• N be the total number of habitat patches,

• X = [X Y ]T be the state of the metapopulation, where

• X is the number of suitable patches;

• Y is the number of occupied patches.
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The model of the half-hour...

(Habitat dynamics driven by

catastrophes.)
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The model of the half-hour...
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Local events

Our paired metapopulation-habitat states will
make the following transitions due to local
population or habitat processes:
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Local events

Our paired metapopulation-habitat states will
make the following transitions due to local
population or habitat processes:

• Each unsuitable patch recovers in IID time ∼ Exp(r)
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Local events

Our paired metapopulation-habitat states will
make the following transitions due to local
population or habitat processes:

• Each unsuitable patch recovers at rate r
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Local events

Our paired metapopulation-habitat states will
make the following transitions due to local
population or habitat processes:

• (x, y) → (x + 1, y) at rate r (N − x),

• Each occupied patch produces migrants at rate c,
which may colonise empty, suitable patches
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Local events

Our paired metapopulation-habitat states will
make the following transitions due to local
population or habitat processes:

• (x, y) → (x + 1, y) at rate r (N − x),

• (x, y) → (x, y + 1) at rate cy
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Local events

Our paired metapopulation-habitat states will
make the following transitions due to local
population or habitat processes:

• (x, y) → (x + 1, y) at rate r (N − x),

• (x, y) → (x, y + 1) at rate cy
(

x
N
− y

N

)

,

• Each local population goes extinct at rate e
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Local events

Our paired metapopulation-habitat states will
make the following transitions due to local
population or habitat processes:

• (x, y) → (x + 1, y) at rate r (N − x),

• (x, y) → (x, y + 1) at rate cy
(

x
N
− y

N

)

,

• (x, y) → (x, y − 1) at rate ey.
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Local events

Our paired metapopulation-habitat states will
make the following transitions due to local
population or habitat processes:

• (x, y) → (x + 1, y) at rate r (N − x),

• (x, y) → (x, y + 1) at rate cy
(

x
N
− y

N

)

,

• (x, y) → (x, y − 1) at rate ey.

on S = {(x, y) | x, y ∈ N, 0 ≤ y ≤ x ≤ N}.
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Wide-scale (catastrophic) events

Catastrophic jumps occur at a constant rate, γ,
affecting each habitat patch independently.
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(x, y) → (x − (i + j), y − j) at rate
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Wide-scale (catastrophic) events

Catastrophic jumps occur at a constant rate, γ,
affecting each habitat patch independently.
Catastrophes are binomial in size...

(x, y) → (x − (i + j), y − j) at rate

γ

(

x − y

i

)(

y

j

)

pi+j(1 − p)x−i−j.

• p is the probability that any suitable patch is
rendered unsuitable by a catastrophe.
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The model again...
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Finite State-space Processes

When N is finite, we can hope to evaluate
measures of interest directly.

• For example: expected extinction times (a.k.a. first
passage or ’hitting’ times) are finite with probability 1!
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Finite State-space Processes

When N is finite, we can hope to evaluate
measures of interest directly.

• For example: expected extinction times (a.k.a. first
passage or ’hitting’ times) are finite with probability 1!

If N is small, (e.g.) expected extinction times are

easy to calculate.
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Extinction Times

QCτ = −1
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Extinction Times
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Difficulties asN ↑

Direct computation of hitting times, etc.,
becomes infeasible as N gets large:
#S = 1

2
(N + 1)(N + 2).
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Difficulties asN ↑

Direct computation of hitting times, etc.,
becomes infeasible as N gets large:
#S = 1

2
(N + 1)(N + 2).

• To make progress, we need good
approximations: e.g. stochastic differential
equations for the limit as N → ∞?
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Simulations

Simulations can inform our intuition about the
behaviour of a process, and suggest possible

approximations.
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Simulations
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Simulations

(How does the process change as N increases?)
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Simulations
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Simulations
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Simulations

As N increases, the process begins to look more
deterministic.
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Proportional scaling

In order to get a limit to the process, we need to
scale it. If X(t) = [X(t) Y (t)]T is our unscaled
process, scale first by 1/N .

MASCOS Workshop on Metapopulations 2 September 2004 – p. 12/21



Proportional scaling

In order to get a limit to the process, we need to
scale it. If X(t) = [X(t) Y (t)]T is our unscaled
process, scale first by 1/N .

It is possible to show that as N → ∞,
(

N−1
XN − X̂N

)

⇒ 0 (assuming

N−1
XN(0) = X̂N(0)).
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Proportional scaling

In order to get a limit to the process, we need to
scale it. If X(t) = [X(t) Y (t)]T is our unscaled
process, scale first by 1/N .

It is possible to show that as N → ∞,
(

N−1
XN − X̂N

)

⇒ 0 (assuming

N−1
XN(0) = X̂N(0)).

• X̂N is deterministic between catastrophes of fixed size,
and these catastrophes occur at the same time as
catastrophes in XN .
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Proportional scaling

This suggests X̂ as an approximation to XN . We
can easily write down the generator :
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Proportional scaling

This suggests X̂ as an approximation to XN . We
can easily write down the generator :

G
X̂
f(x, y) = r(1 − x)fx(x, y)

+
[

cy(x − y) − ey
]

fy(x, y)

+ γ [f(x − px, y − py) − f(x, y)] .
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Proportional scaling

This suggests X̂ as an approximation to XN . We
can easily write down the generator :

G
X̂
f(x, y) = r(1 − x)fx(x, y)

+
[

cy(x − y) − ey
]

fy(x, y)

+ γ [f(x − px, y − py) − f(x, y)] .

(The generator tells us how the distribution of X̂

changes over time.)
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Hitting times

There’s a lot we can do with this simple scaling.

A solution h(x, y) to the system of equations

G
X̂
h(x, y) = −1, (x, y) ∈ H ⊂ [0, 1]2,

h(x, y) = 0, (x, y) /∈ H,

gives the expected time to depart the set H
(Gihman & Skorohod, 1972).

MASCOS Workshop on Metapopulations 2 September 2004 – p. 14/21



Hitting times

Example. Let H = {(x, y) : 0 ≤ q < y ≤ x ≤ 1},
where q is a level of functional or quasi-extinction
of the species, in terms of the proportion of
occupied habitat patches.

q 1

q

1
H = { (x,y): q < y ≤ x ≤ 1 } 
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Hitting times

Example. Let H = {(x, y) : 0 ≤ q < y ≤ x ≤ 1},
where q is a level of functional or quasi-extinction
of the species, in terms of the proportion of
occupied habitat patches.

Fortunately, it is relatively easy to show that in
this case, a solution h(x, y) exists, but...

• The solution can be tough to evaluate (numerically)!

• The existence of a solution is not proven for other
(even closely related) models.
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A central limit scaling

Density dependent processes (as XN would be,
if not for the catastrophes) are well known to
converge to Gaussian diffusion processes when
appropriately scaled and normalised.

Let ZN(t) =
√

N
(

N−1XN(t) − X̂N(t)
)

. Then it is
possible to show that

[

ZN

X̂N

]

⇒
[

Z

X̂

]

.
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A central limit

What is Z? From the theory of density dependent
processes we might expect a diffusion process
with drift, plus catastrophes, and that is exactly
what we get.

It is again possible to write down the generator...
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Generator of Z

Generator Gf(z1, z2, x1, x2) of
[

Z
T

X̂
T
]T

has components:

• Drift components derived from
[

∂Fi

∂zj

]

=





−r 0

cz2 cz1 − 2cz2 − e



.

• Diffusion components 1

2
r(1 − z1)fz1z1

and
1

2
[cz2(z1 − z2) + ez2]fz2z2

.

• Catastrophe component obtained by
E[f(Z1 + U1, Z2 + U2, ·) − f(Z1, Z2, ·)], where (U1, U2) is
bivariate normal.
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A central limit
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A central limit

What is Z? From the theory of density dependent
processes we might expect a diffusion process
with drift, plus catastrophes, and that is exactly
what we get.

It is again possible to write down the generator...

...and we could approximate XN by X̂ + N−1/2
Z.
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Future directions

• Extension of this approach to general density
dependent processes subject to a wider class of
catastrophes.

• Investigation of the accuracy of the approximations and
their properties (e.g. hitting times).

• When do features of small-N processes remain in
large-N approximations?
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