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Introduction

We consider a continuous-time Markov process (Xt) with a
countable state space, taken here to be N+, and with a
single absorbing state 0.
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single absorbing state 0.
Let Q = (qij) denote the generator, assumed here to be
stable, conservative and regular.
We denote by P = (pij(t)) transition probabilities of the
minimal process which here is the unique process with
generator Q.
Let Pi(·) = Pi(· | X0 = i) and If ν is a finite measure on N,
let Pν =

∑

νiPi . Here and below any unqualified sum is
taken over N.
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Introduction

We consider a continuous-time Markov process (Xt) with a
countable state space, taken here to be N+, and with a
single absorbing state 0.
Let Q = (qij) denote the generator, assumed here to be
stable, conservative and regular.
We denote by P = (pij(t)) transition probabilities of the
minimal process which here is the unique process with
generator Q.
Let Pi(·) = Pi(· | X0 = i) and If ν is a finite measure on N,
let Pν =

∑

νiPi . Here and below any unqualified sum is
taken over N.
Finally, assume that N is irreducible and that 0 is accessible
from some (and hence from every) state in N.
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Introduction

We further define

T = inf{t ≥ 0 : X(t) = 0}

the absorption (hitting) time at 0. We shall only the
interested in processes for which EiT < ∞ for all i ≥ 1.
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Quasi-stationary distributions

A quasi-stationary distribution (qsd) M = (mi) is a
probability measure on {1, 2, · · · } with the property that,
starting with M = (mi), the conditional distribution, given
the event that at time t the process has not been absorbed,
still M = (mi). That is,

∑

miPi(X(t) = j)
∑

miPi(X(t) 6= 0)
= mj . (1)
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Quasi-stationary distributions

Quasi-stationary distributions for Markov processes and
chains have been studied by several authors. Vere-Jones
(1962), Seneta and Vere-Jones (1996) and Kingman (1963)
studied the case of a general denumerable state space.
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Quasi-stationary distributions

Quasi-stationary distributions for Markov processes and
chains have been studied by several authors. Vere-Jones
(1962), Seneta and Vere-Jones (1996) and Kingman (1963)
studied the case of a general denumerable state space.

Actually, there are a great deal of papers (almost over 300
papers ) dealing with the qsds
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Quasi-stationary distributions

We now distinguish several related notions; Anderson
(1991), Chapter 5 is a good general reference.
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Quasi-stationary distributions

We now distinguish several related notions; Anderson
(1991), Chapter 5 is a good general reference.

Given µ ≥ 0 we call a measure M on N a µ-invariant
measure for Q if for each j ≥ 1,

∑

miqij = −µmj , (4)
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Quasi-stationary distributions

We now distinguish several related notions; Anderson
(1991), Chapter 5 is a good general reference.

Given µ ≥ 0 we call a measure M on N a µ-invariant
measure for Q if for each j ≥ 1,

∑

miqij = −µmj , (6)

and if for all t > 0,
∑

mipij(t) = e−µtmj , (7)

it is called µ-invariant on {1, 2, · · · } for P .
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Quasi-stationary distributions

M.G. Nair and P.K.Pollett (1993)show that if M is probability
distribution on {1, 2, · · · }. Then M is a quasi-stationary
distribution on {1, 2, · · · } for P if and only if, for some µ > 0,
M is µ-invariant on {1, 2, · · · } for P .
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Quasi-stationary distributions

We call M = (mj) ν- the limit conditional distribution
(ν-LCD) if ν is a probability measure on {1, 2, · · · } and each
j ≥ 1

mj = lim
t→∞

Pν(Xt = j | T > t) (8)

exists and is a probability measure on {1, 2, · · · } .
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Quasi-stationary distributions

We call M = (mj) ν- the limit conditional distribution
(ν-LCD) if ν is a probability measure on {1, 2, · · · } and each
j ≥ 1

mj = lim
t→∞

Pν(Xt = j | T > t) (10)

exists and is a probability measure on {1, 2, · · · } .

Trivially, any qsd M is an M -LCD.

The ν-LCD is a qsd (Vere-Jones(1996)).
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Quasi-stationary distributions

A complete treatment of the qsd problem for a given family
of processes should accomplish two things:
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A complete treatment of the qsd problem for a given family
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(ii) solve the domian of attraction problem, namely,
characterize all probability measure ν such that a given qsd
M is a ν-LCD.
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Quasi-stationary distributions

A complete treatment of the qsd problem for a given family
of processes should accomplish two things:

(i) determination of all qsd’s; and

(ii) solve the domian of attraction problem, namely,
characterize all probability measure ν such that a given qsd
M is a ν-LCD.

Although (i) has been addressed for several cases, details
about (ii) are known only for finite Markov processes, and
for the subcritical MBP.
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Quasi-stationary distributions

We now discuss the existence of qsd for a general Markov
Chain.
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Quasi-stationary distributions

We now discuss the existence of qsd for a general Markov
Chain.

P.A. Ferrari, H. Kesten, S. Martinez and P. Picco (1995)
prove the following interesting result which makes no
reference to this general theory. They make the following
definition of asymptotic remoteness (AR) of the absorbing
state: For each t > 0

lim
i→∞

Pi(T > t) = 1. (12)

In other words, T ⇒ ∞ as i → ∞.
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Quasi-stationary distributions

Assume that AR condition holds, Ferrari et al. prove that a
qsd exists iff

Ei(e
ǫT) < ∞ (13)

for some ǫ > 0 and i ∈ N.
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Quasi-stationary distributions

Assume that AR condition holds, Ferrari et al. prove that a
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for some ǫ > 0 and i ∈ N.

Indeed this condition is necessary with, or without, AR
condition.
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Quasi-stationary distributions

Assume that AR condition holds, Ferrari et al. prove that a
qsd exists iff

Ei(e
ǫT) < ∞ (15)

for some ǫ > 0 and i ∈ N.

Indeed this condition is necessary with, or without, AR
condition.

T. G. Pakes (1994) investigates what happens in a number
of examples when AR condition fails. In fact, he examine
quite closely two examples which violate AR condition but
which nevertheless can have a qsd , showing AR condition
is far from being a necessary condition, though it seems
essential for the proofs of Ferrari et al.’s theorem.
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Quasi-stationary distributions

First we have the following
Proposition 1 The following statements are equivalent:

1. Equation (22) holds, that is,

Ei(e
ǫT) < ∞

for some ǫ > 0 and i ∈ N.

2. There is λ with 0 < λ < infi≥1 qi (here qi ≡ −qii ) for
which the system

∑

j 6=i

qijxj ≤ (qi − λ)xi − 1, i ≥ 1, x0 = 0 (16)

has a finite non-negative solution.
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Quasi-stationary distributions

Secondly we can obtain that the following condition

lim
i→∞

EiT = ∞ (17)

can substitute for the AR condtion (that is, for each t > 0
limi→∞ Pi(T > t) = 1.) which preserves the main result of
Ferrari et all (1995).
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Quasi-stationary distributions

Remarks: 1. It is easy to prove that AR condition =⇒ (17).
So condition (17) is weaker than AR condtion .
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Quasi-stationary distributions

Remarks: 1. It is easy to prove that AR condition =⇒ (17).
So condition (17) is weaker than AR condtion .

2. As we know, the mean extinction time EiT is the minimal
non-negative solution of the system

∑

j≥0

qijzj = −1, i ≥ 1, z0 = 0. (19)

So condition (17) is easier to check than AR condition.
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Quasi-stationary distributions

Our main result is as follows
Theorem 1 Assume that Q is stable, conservative and
regular, and that Q restricted to {1, 2, · · · } is irreducible.
Assume further that (17) holds, that is

lim
i→∞

EiT = ∞

and that Pi(T < ∞) = 1 for some (and hence all) i. Then a
necessary and sufficient condition for the existence of a qsd
is that there is λ with 0 < λ < infi≥1 qi for which the system
(16)(that is,

∑

j 6=i qijxj ≤ (qi − λ)xi − 1, i ≥ 1, x0 = 0) has a
finite non-negative solution.
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The decay parameter

Suppose we have a q-matrix Q over E. Let P be an
arbitrary Q-transition function. Suppose that E = {0} ∪ C,
where 0 is an absorbing state and C = {1, 2, · · · } is
irreducible. The decay parameter λ is defined by

λ = lim
t→∞

−
1

t
log Pij(t).

Kingman showed that this limit exists and is the same for all
i, j ∈ C, and that 0 ≤ λ < ∞.
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The decay parameter

It is called the decay parameter because there exist
constants Mij > 0 with Mii = 1 such that

Pij(t) ≤ Mije
−λt, i, j ∈ C.

Note, in particular, that Pii(t) ≤ e−λt.
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The decay parameter

It is called the decay parameter because there exist
constants Mij > 0 with Mii = 1 such that

Pij(t) ≤ Mije
−λt, i, j ∈ C.

Note, in particular, that Pii(t) ≤ e−λt.

Why are we interested in the decay parameter?

λ = sup {α : Pij(t) = O(exp[−αt]) as t → ∞ ∀i, j ∈ C}.
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The decay parameter

It is called the decay parameter because there exist
constants Mij > 0 with Mii = 1 such that

Pij(t) ≤ Mije
−λt, i, j ∈ C.

Note, in particular, that Pii(t) ≤ e−λt.

Why are we interested in the decay parameter?

λ = sup {α : Pij(t) = O(exp[−αt]) as t → ∞ ∀i, j ∈ C}.

If µ > λ, there does not exist any µ-invariant measure
(Pollett 1986); in particularly, there does not exist any qsd if
λ = 0 .
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The decay parameter

Questions ? Two obvious problems now arise in the
context of the decay parameter, namely,
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Questions ? Two obvious problems now arise in the
context of the decay parameter, namely,

to give criteria for decay parameter λ to be positive in
terms of the rates (qij);

MASCOS Workshop on Markov Chains 04/04/2005 - Page 19



The decay parameter

Questions ? Two obvious problems now arise in the
context of the decay parameter, namely,

to give criteria for decay parameter λ to be positive in
terms of the rates (qij);

to determine the value of λ, or at least bounds for λ, in
terms of the rates (qij).

MASCOS Workshop on Markov Chains 04/04/2005 - Page 19



The decay parameter

Example 1 Markov branching process (MBP).
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The decay parameter

Example 1 Markov branching process (MBP).

We shall adopt the usual notation ( Anderson (1991))in
prescribing MBP, that is, let pk, k ≥ 0, denote a sequence of
non-negative numbers such that

∑∞
k=0

pk = 1, and let

p(s) =
∞

∑

k=0

pks
k, 0 ≤ s ≤ 1,

denote the probability generating function of this sequence.
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The decay parameter

Example 1 Markov branching process (MBP).

We shall adopt the usual notation ( Anderson (1991))in
prescribing MBP, that is, let pk, k ≥ 0, denote a sequence of
non-negative numbers such that

∑∞
k=0

pk = 1, and let

p(s) =
∞

∑

k=0

pks
k, 0 ≤ s ≤ 1,

denote the probability generating function of this sequence.

m = p′(1) =
∑∞

k=0
kpk.
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The decay parameter

MBP with generator Q is given by

qij =











0 if j < i − 1

−ia(1 − pi) if j = i

iapj−i+1 if j ≥ i − 1, j 6= i.
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The decay parameter

MBP with generator Q is given by

qij =











0 if j < i − 1

−ia(1 − pi) if j = i

iapj−i+1 if j ≥ i − 1, j 6= i.

It is well known that Pi(T < ∞) = 1 iff m ≤ 1.
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The decay parameter

MBP with generator Q is given by

qij =











0 if j < i − 1

−ia(1 − pi) if j = i

iapj−i+1 if j ≥ i − 1, j 6= i.

It is well known that Pi(T < ∞) = 1 iff m ≤ 1.

And if m ≤ 1, then the decay parameter is λ = (1 − m)a.
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The decay parameter

Example 2: The birth and death process
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The decay parameter

Example 2: The birth and death process

We shall adopt the usual notation in prescribing birth rates
λi > 0 (i ≥ 1), with λ0 = 0, and death rates µi > 0 (i ≥ 1) .
Now define by π1 = 1 and

πn =

n
∏

k=2

λk−1

µk

, n ≥ 2.

We will assume the process is absorbed with probability 1,
that is,

∞
∑

n=1

1

πnλn
= ∞. (21)

MASCOS Workshop on Markov Chains 04/04/2005 - Page 22



The decay parameter

In order to state our main results, we need the following
notation:

Qn =





1

π1µ1

+
n−1
∑

j=1

1

πjλj





∞
∑

j=n

πj , n ≥ 1,

and
S0 = sup

n≥1

Qn.
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The decay parameter

Phil Pollett and Hanjun Zhang have obtained the following

Theorem 2 (4S0)
−1 ≤ λ ≤ S−1

0
.

And, hence,

λ > 0 if and only if S0 < ∞.
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The decay parameter

For a general Markov chain, we have the following
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The decay parameter

For a general Markov chain, we have the following

Proposition 2 If
Ei(e

ǫT) < ∞ (23)

for some ǫ > 0 and i ∈ N, then the decay parameter λ > 0.
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The decay parameter

For a general Markov chain, we have the following

Proposition 2 If
Ei(e

ǫT) < ∞ (24)

for some ǫ > 0 and i ∈ N, then the decay parameter λ > 0.

By using Propsosition 1, we get

MASCOS Workshop on Markov Chains 04/04/2005 - Page 25



The decay parameter

Theorem 3 If there is λ with 0 < λ < infi≥1 qi for which the
system

∑

j 6=i

qijxj ≤ (qi − λ)xi − 1, i ≥ 1, x0 = 0 (25)

has a finite non-negative solution, then the decay
parameter λ > 0.
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The decay parameter

Theorem 3 If there is λ with 0 < λ < infi≥1 qi for which the
system

∑

j 6=i

qijxj ≤ (qi − λ)xi − 1, i ≥ 1, x0 = 0 (26)

has a finite non-negative solution, then the decay
parameter λ > 0.

I guess the above condition is necessary for the decay
parameter λ > 0.
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The decay parameter

Theorem 3 If there is λ with 0 < λ < infi≥1 qi for which the
system

∑

j 6=i

qijxj ≤ (qi − λ)xi − 1, i ≥ 1, x0 = 0 (27)

has a finite non-negative solution, then the decay
parameter λ > 0.

I guess the above condition is necessary for the decay
parameter λ > 0.

We have the following interesting result:

Corollary If supi≥1 EiT < ∞, then λ > 0.
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The GMBP

R. R. Chen (1997) and Anyue Chen (2002) have discussed
the Generalized Markov Branching Processes, the
generator Q is given by
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The GMBP

R. R. Chen (1997) and Anyue Chen (2002) have discussed
the Generalized Markov Branching Processes, the
generator Q is given by

qij =











0 if j < i − 1

−iνa(1 − pi) if j = i

iνapj−i+1 if j ≥ i − 1, j 6= i.

where, as above, pk, k ≥ 0, denote a sequence of
non-negative numbers such that

∑∞
k=0

pk = 1.
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The GMBP

And let

p(s) =
∞

∑

k=0

pks
k, 0 ≤ s ≤ 1,

denote the probability generating function of this sequence.
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The GMBP

And let

p(s) =
∞

∑

k=0

pks
k, 0 ≤ s ≤ 1,

denote the probability generating function of this sequence.

m = p′(1) =
∑∞

k=0
kpk.

MASCOS Workshop on Markov Chains 04/04/2005 - Page 28



The GMBP

And let

p(s) =
∞

∑

k=0

pks
k, 0 ≤ s ≤ 1,

denote the probability generating function of this sequence.

m = p′(1) =
∑∞

k=0
kpk.

It can be seen that the ordinary MBP corresponds to the
special case of ν = 1.
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The GMBP

R.R.Chen obtained the following conclusions

(i) If ν > 1, then Q is regular if and only if m ≤ 1.
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The GMBP

R.R.Chen obtained the following conclusions

(i) If ν > 1, then Q is regular if and only if m ≤ 1.

(ii) If ν ≤ 1, then it is regular if m < ∞.
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The GMBP

R.R.Chen obtained the following conclusions

(i) If ν > 1, then Q is regular if and only if m ≤ 1.

(ii) If ν ≤ 1, then it is regular if m < ∞.

(iii) Assume the given GMBP Q is regular. Then the
extinction probability of the corresponding GMBP is 1 if and
only if m ≤ 1.

MASCOS Workshop on Markov Chains 04/04/2005 - Page 29



The GMBP

R.R.Chen obtained the following conclusions

(i) If ν > 1, then Q is regular if and only if m ≤ 1.

(ii) If ν ≤ 1, then it is regular if m < ∞.

(iii) Assume the given GMBP Q is regular. Then the
extinction probability of the corresponding GMBP is 1 if and
only if m ≤ 1.

Recall that a conservative Q is called regular if the Feller
minimal Q-process is honest and thus there exists unique
Q-process.
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The GMBP

Anyue Chen (2002) obtained the following conclusion

If assume that the probability of eventual extinction is 1, i.e.,
assume m ≤ 1. Then for all i ≥ 1, EiT are finite if and only if

∫ 1

0

1 − y

p(s) − s
(−ln y)ν−1dy < ∞. (28)
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The GMBP

Anyue Chen (2002) obtained the following conclusion

If assume that the probability of eventual extinction is 1, i.e.,
assume m ≤ 1. Then for all i ≥ 1, EiT are finite if and only if

∫ 1

0

1 − y

p(s) − s
(−ln y)ν−1dy < ∞. (30)

Moreover, If (30) is true, then for all i ≥ 1

EiT =
1

Γ(ν)

∫ 1

0

1 − y

a(p(s) − s)
(−ln y)ν−1dy < ∞. (31)

Where Γ(ν) is the gamma function.
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The GMBP

We here talk about the positivity of the decay parameter
and the existence of qsd. The following conclusions are
obtained
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The GMBP

We here talk about the positivity of the decay parameter
and the existence of qsd. The following conclusions are
obtained

Theorem 3 (i) If m < 1, and ν ≥ 1, then the decay
parameter λ > 0.
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The GMBP

We here talk about the positivity of the decay parameter
and the existence of qsd. The following conclusions are
obtained

Theorem 3 (i) If m < 1, and ν ≥ 1, then the decay
parameter λ > 0.

(ii) If m = 1 and ν ≥ 2, then the decay parameter λ > 0.
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The GMBP

We here talk about the positivity of the decay parameter
and the existence of qsd. The following conclusions are
obtained

Theorem 3 (i) If m < 1, and ν ≥ 1, then the decay
parameter λ > 0.

(ii) If m = 1 and ν ≥ 2, then the decay parameter λ > 0.

(iii) If m = 1 , 1 < ν ≤ 2 and
∑∞

k=1
k2pk < ∞, then there

exists a qsd.
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Conclusion

Theorem 1 Assume that Q is stable, conservative and
regular, and that Q restricted to {1, 2, · · · } is irreducible.
Assume further that (17) holds, that is

lim
i→∞

EiT = ∞

and that Pi(T < ∞) = 1 for some (and hence all) i. Then a
necessary and sufficient condition for the existence of a
qsd is that there is λ with 0 < λ < infi≥1 qi for which the
system (16), that is,

∑

j 6=i

qijxj ≤ (qi − λ)xi − 1, i ≥ 1, x0 = 0

has a finite non-negative solution.
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Conclusion

The decay parameter plays an important role in studying
properties of Markov chains.
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Conclusion

The decay parameter plays an important role in studying
properties of Markov chains.

If there is λ with 0 < λ < infi≥1 qi for which the system
∑

j 6=i

qijxj ≤ (qi − λ)xi − 1, i ≥ 1, x0 = 0 (33)

has a finite non-negative solution, then the decay
parameter λ > 0.
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Conclusion

The decay parameter plays an important role in studying
properties of Markov chains.

If there is λ with 0 < λ < infi≥1 qi for which the system
∑

j 6=i

qijxj ≤ (qi − λ)xi − 1, i ≥ 1, x0 = 0 (34)

has a finite non-negative solution, then the decay
parameter λ > 0.

Corollary If supi≥1 EiT < ∞, then λ > 0.
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Conclusion

For every birth-death process satisfying (20), that is,

∞
∑

n=1

1

πnλn
= ∞.

we have
(4S0)

−1 ≤ λ ≤ S−1

0
,

and hence

λ > 0 if and only if S0 < ∞.
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Further research

We wish to prove supi≥1 EiT < ∞, then there exists a
qsd.
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Further research

We wish to prove supi≥1 EiT < ∞, then there exists a
qsd.

We will obtain some formulae for the values of the
decay parameter in general Markov processes.
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