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Andrei A. Markov (1856 – 1922)
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Random Processes

A random process is a collection of random variables
indexed by some set I, taking values in some set S.

I is the index set, usually time, e.g. Z
+, R, R

+.

S is the state space, e.g. Z
+, R

n, {1, 2, . . . , n}, {a, b, c}.

We classify random processes according to both the index
set (discrete or continuous) and the state space (finite,
countable or uncountable/continuous).
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Markov Processes

A random process is called a Markov Process if,
conditional on the current state of the process, its future
is independent of its past.

More formally, X(t) is Markovian if has the following
property:

P(X(tn) = jn |X(tn−1) = jn−1 , . . . , X(t1) = j1)

= P(X(tn) = jn |X(tn−1) = jn−1)

for all finite sequences of times t1 < . . . < tn ∈ I and of
states j1, . . . , jn ∈ S.

Markov Chains: An Introduction/Review — MASCOS Workshop on Markov Chains, April 2005 – p. 4



Time Homogeneity

A Markov chain (X(t)) is said to be time-homogeneous if

P(X(s + t) = j |X(s) = i)

is independent of s. When this holds, putting s = 0 gives

P(X(s + t) = j |X(s) = i) = P(X(t) = j |X(0) = i).
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Time Homogeneity

A Markov chain (X(t)) is said to be time-homogeneous if

P(X(s + t) = j |X(s) = i)

is independent of s. When this holds, putting s = 0 gives

P(X(s + t) = j |X(s) = i) = P(X(t) = j |X(0) = i).

Probabilities depend on elapsed time, not absolute time.
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Discrete-time Markov chains

At time epochs n = 1, 2, 3, . . . the process changes from
one state i to another state j with probability pij.
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Discrete-time Markov chains

At time epochs n = 1, 2, 3, . . . the process changes from
one state i to another state j with probability pij.

We write the one-step transition matrix
P = (pij, i, j ∈ S).
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Discrete-time Markov chains

At time epochs n = 1, 2, 3, . . . the process changes from
one state i to another state j with probability pij.

We write the one-step transition matrix
P = (pij, i, j ∈ S).

Example: a frog hopping on 3 rocks. Put S = {1, 2, 3}.

P =
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DTMC example

Example: A frog hopping on 3 rocks. Put S = {1, 2, 3}.

P =
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We can gain some insight by drawing a picture:
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DTMCs: n-step probabilities

We have P , which tells us what happens over one time
step; lets work out what happens over two time steps:

p
(2)
ij = P(X2 = j |X0 = i)

=
∑

k∈S

P(X1 = k |X0 = i) P(X2 = j |X1 = k , X0 = i)

=
∑

k∈S

pikpkj.
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DTMCs: n-step probabilities

We have P , which tells us what happens over one time
step; lets work out what happens over two time steps:

p
(2)
ij = P(X2 = j |X0 = i)

=
∑

k∈S

P(X1 = k |X0 = i) P(X2 = j |X1 = k , X0 = i)

=
∑

k∈S

pikpkj.

So P (2) = PP = P 2.

Similarly, P (3) = P 2P = P 3 and P (n) = Pn.
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DTMC: Arbitrary initial distributions

We may wish to start the chain according to some initial
distribution π(0).
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DTMC: Arbitrary initial distributions

We may wish to start the chain according to some initial
distribution π(0).

We can then calculate the state probabilities

π(n) = (π
(n)
j , j ∈ S) of being in state j at time n as

follows:

π
(n)
j =

∑

k∈S

P(X0 = k) P(Xn = j |X0 = k)

=
∑

k∈S

π
(0)
j p

(n)
ij .
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DTMC: Arbitrary initial distributions

We may wish to start the chain according to some initial
distribution π(0).

We can then calculate the state probabilities

π(n) = (π
(n)
j , j ∈ S) of being in state j at time n as

follows:

π
(n)
j =

∑

k∈S

P(X0 = k) P(Xn = j |X0 = k)

=
∑

k∈S

π
(0)
j p

(n)
ij .

Or, in matrix notation, π(n) = π(0)Pn; similarly we can
show that π(n+1) = π(n)P .
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Class structure

We say that a state i leads to j (written i → j) if it is
possible to get from i to j in some finite number of

jumps: p
(n)
ij > 0 for some n ≥ 0.
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Class structure

We say that a state i leads to j (written i → j) if it is
possible to get from i to j in some finite number of
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We say that i communicates with j (written i ↔ j) if
i → j and j → i.
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Class structure

We say that a state i leads to j (written i → j) if it is
possible to get from i to j in some finite number of

jumps: p
(n)
ij > 0 for some n ≥ 0.

We say that i communicates with j (written i ↔ j) if
i → j and j → i.

The relation ↔ partitions the state space into
communicating classes.
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Class structure

We say that a state i leads to j (written i → j) if it is
possible to get from i to j in some finite number of

jumps: p
(n)
ij > 0 for some n ≥ 0.

We say that i communicates with j (written i ↔ j) if
i → j and j → i.

The relation ↔ partitions the state space into
communicating classes.

We call the state space irreducible if it consists of a
single communicating class.
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Class structure

We say that a state i leads to j (written i → j) if it is
possible to get from i to j in some finite number of

jumps: p
(n)
ij > 0 for some n ≥ 0.

We say that i communicates with j (written i ↔ j) if
i → j and j → i.

The relation ↔ partitions the state space into
communicating classes.

We call the state space irreducible if it consists of a
single communicating class.

These properties are easy to determine from a
transition probability graph.
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Classification of states

We call a state i recurrent or transient according as
P(Xn = i for infinitely many n) is equal to one or zero.
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Classification of states

We call a state i recurrent or transient according as
P(Xn = i for infinitely many n) is equal to one or zero.

A recurrent state is a state to which the process
always returns.
A transient state is a state which the process
eventually leaves for ever.
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Classification of states

We call a state i recurrent or transient according as
P(Xn = i for infinitely many n) is equal to one or zero.

A recurrent state is a state to which the process
always returns.
A transient state is a state which the process
eventually leaves for ever.

Recurrence and transience are class properties; i.e. if
two states are in the same communicating class then
they are recurrent/transient together.

We therefore speak of recurrent or transient classes
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Classification of states

We call a state i recurrent or transient according as
P(Xn = i for infinitely many n) is equal to one or zero.

A recurrent state is a state to which the process
always returns.
A transient state is a state which the process
eventually leaves for ever.

Recurrence and transience are class properties; i.e. if
two states are in the same communicating class then
they are recurrent/transient together.

We therefore speak of recurrent or transient classes

We also assume throughout that no states are periodic.

Markov Chains: An Introduction/Review — MASCOS Workshop on Markov Chains, April 2005 – p. 11



DTMCs: Two examples

S irreducible:
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S = {0} ∪ C, where C is a transient class:
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DTMCs: Quantities of interest

Quantities of interest include:

Hitting probabilities.

Expected hitting times.

Limiting (stationary) distributions.

Limiting conditional (quasistationary) distributions.
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DTMCs: Hitting probabilities

Let αi be the probability of hitting state 1 starting in state i.

Clearly α1 = 1; and for i 6= 1,

αi = P(hit 1 | start in i)

=
∑

k∈S

P(X1 = k |X0 = i) P(hit 1 | start in k)

=
∑

k∈S

pikαk
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DTMCs: Hitting probabilities

Let αi be the probability of hitting state 1 starting in state i.

Clearly α1 = 1; and for i 6= 1,

αi = P(hit 1 | start in i)

=
∑

k∈S

P(X1 = k |X0 = i) P(hit 1 | start in k)

=
∑

k∈S

pikαk

Sometimes there may be more than one solution
α = (αi, i ∈ S) to this system of equations.

If this is the case, then the hitting probabilites are given
by the minimal such solution.
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Example: Hitting Probabilities
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Let αi be the probability of hitting state 3 starting in state i.

So α3 = 1 and αi =
∑

k pikαk:

α0 = α0

α1 = 1
2α0 + 1

4α2 + 1
4α3

α2 = 5
8α1 + 1

8α2 + 1
4α3
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Example: Hitting Probabilities
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Let αi be the probability of hitting state 3 starting in state i.

α =











0
9
23
13
23

1











≈
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0.39

0.57
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.
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DTMCs: Hitting probabilities II

Let βi be the probability of hitting state 0 before state N ,
starting in state i.

Clearly β0 = 1 and βN = 0.

For 0 < i < N ,

βi = P(hit 1 before n | start in i)

=
∑

k∈S

P(X1 = k |X0 = i) P(hit 1 before n | start in k)

=
∑

k∈S

pikβk

Again, we take the minimal solution of this system of
equations.
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Example: Hitting Probabilities II
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Let βi be the probability of hitting 0 before 3 starting in i.

So β0 = 1, β3 = 0 and βi =
∑

k pikβk:

β1 = 1
2β0 + 1

4β2 + 1
4β3

β2 = 5
8β1 + 1

8β2 + 1
4β3

Markov Chains: An Introduction/Review — MASCOS Workshop on Markov Chains, April 2005 – p. 17



Example: Hitting Probabilities II
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Let βi be the probability of hitting 0 before 3 starting in i.

β =
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≈
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DTMCs: Expected hitting times

Let τi be the expected time to hit state 1 starting in state i.

Clearly τ1 = 0; and for i 6= 0,

τi = E(time to hit 1 | start in i)

= 1 +
∑

k∈S

P(X1 = k |X0 = i) E(time to hit 1 | start in k)

= 1 +
∑

k∈S

pikτk

If there are multiple solutions, take the minimal one.
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Example: Expected Hitting Times
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Let τi be the expected time to hit 2 starting in i.

So τ2 = 0 and τi = 1 +
∑

k pikτk:

τ1 = 1 + 1
2τ2 + 1

2τ3

τ3 = 1 + 2
3τ1 + 1

3τ2
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Example: Expected Hitting Times
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Let τi be the expected time to hit 2 starting in i.

τ =
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=
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DTMCs: Hitting Probabilities and Times

Just systems of linear equations to be solved.

In principle can be solved analytically when S is finite.

When S is an infinite set, if P has some regular
structure (pij same/similar for each i) the resulting
systems of difference equations can sometimes be
solved analytically.

Otherwise we need numerical methods.
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DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and
recurrent.

What happens to the state probabilities π
(n)
j as n → ∞?
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DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and
recurrent.

What happens to the state probabilities π
(n)
j as n → ∞?

We know that π(n+1) = π(n)P .
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DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and
recurrent.

What happens to the state probabilities π
(n)
j as n → ∞?

We know that π(n+1) = π(n)P .

So if there is a limiting distribution π, it must satisfy

π = πP (and
∑

i πi = 1).

(Such a distribution is called stationary.)
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DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and
recurrent.

What happens to the state probabilities π
(n)
j as n → ∞?

We know that π(n+1) = π(n)P .

So if there is a limiting distribution π, it must satisfy

π = πP (and
∑

i πi = 1).

(Such a distribution is called stationary.)

This limiting distribution does not depend on the initial
distribution.
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DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and
recurrent.

What happens to the state probabilities π
(n)
j as n → ∞?

We know that π(n+1) = π(n)P .

So if there is a limiting distribution π, it must satisfy

π = πP (and
∑

i πi = 1).

(Such a distribution is called stationary.)

This limiting distribution does not depend on the initial
distribution.

When the state space is infinite, it may happen that

π
(n)
j → 0 for all j.
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Example: The Limiting Distribution
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Substituting P into π = πP gives

π1 = 5
8π2 + 2

3π3,

π2 = 1
2π1 + 1

8π2 + 1
3π3,

π3 = 1
2π1 + 1

4π2,

which together with
∑

i πi = 1 yields

π =
(

38
97

32
97

27
97

)

≈
(

0.39 0.33 0.28
)

.
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DTMCs: The Limiting Conditional Dist’n

Assume that the state space is consists of an absorbing
state and a transient class (S = {0} ∪ C).

The limiting distribution is (1, 0, 0, . . .).
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DTMCs: The Limiting Conditional Dist’n

Assume that the state space is consists of an absorbing
state and a transient class (S = {0} ∪ C).

The limiting distribution is (1, 0, 0, . . .).

Instead of looking at the limiting behaviour of

P(Xn = j |X0 = i) = p
(n)
ij ,

we need to look at

P(Xn = j |Xn 6= 0 , X0 = i) =
p
(n)
ij

1 − p
(n)
i0

for i, j ∈ C.
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DTMCs: The Limiting Conditional Dist’n

It turns out we need a solution m = (mi, i ∈ C) of

mPC = rm,

for some r ∈ (0, 1).
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DTMCs: The Limiting Conditional Dist’n

It turns out we need a solution m = (mi, i ∈ C) of

mPC = rm,

for some r ∈ (0, 1).

If C is a finite set, there is a unique such r.
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DTMCs: The Limiting Conditional Dist’n

It turns out we need a solution m = (mi, i ∈ C) of

mPC = rm,

for some r ∈ (0, 1).

If C is a finite set, there is a unique such r.

If C is infinite, there is r∗ ∈ (0, 1) such that all r in the
interval [r∗, 1) are admissible; and the solution
corresponding to r = r∗ is the LCD.
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Example: Limiting Conditional Dist’n
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Example: Limiting Conditional Dist’n
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Example: Limiting Conditional Dist’n
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Solving mPC = rm, we get

r1 ≈ 0.773 and m ≈ (0.45, 0.30, 0.24)
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DTMCs: Summary

From the one-step transition probabilities we can calculate:

n-step transition probabilities,

hitting probabilities,

expected hitting times,

limiting distributions, and

limiting conditional distributions.
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Continuous Time

In the real world, time is continuous — things do not
happen only at prescribed, equally spaced time points.
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Continuous Time

In the real world, time is continuous — things do not
happen only at prescribed, equally spaced time points.

Continuous time is slightly more difficult to deal with as
there is no real equivalent to the one-step transition
matrix from which one can calculate all quantities of
interest.
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Continuous Time

In the real world, time is continuous — things do not
happen only at prescribed, equally spaced time points.

Continuous time is slightly more difficult to deal with as
there is no real equivalent to the one-step transition
matrix from which one can calculate all quantities of
interest.

The study of continuous-time Markov chains is based
on the transition function.
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CTMCs: Transition Functions

If we denote by pij(t) the probability of a process
starting in state i being in state j after elapsed time t,
then we call P (t) = (pij(t), i, j ∈ S, t > 0) the transition
function of that process.
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CTMCs: Transition Functions

If we denote by pij(t) the probability of a process
starting in state i being in state j after elapsed time t,
then we call P (t) = (pij(t), i, j ∈ S, t > 0) the transition
function of that process.

P (t) is difficult/impossible to write down in all but the
simplest of situations.

Markov Chains: An Introduction/Review — MASCOS Workshop on Markov Chains, April 2005 – p. 28



CTMCs: Transition Functions

If we denote by pij(t) the probability of a process
starting in state i being in state j after elapsed time t,
then we call P (t) = (pij(t), i, j ∈ S, t > 0) the transition
function of that process.

P (t) is difficult/impossible to write down in all but the
simplest of situations.

However all is not lost: we can show that there exist
quantities qij, i, j ∈ S satisfying

qij = p′ij(0
+) =















lim
t↓0

pij(t)

t
, i 6= j,

lim
t↓0

1 − pii(t)

t
, i = j.
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CTMCs: The q-matrix

We call the matrix Q = (qij , i, j ∈ S) the q-matrix of the
process and can interpret it as follows:

For i 6= j, qij ∈ [0,∞) is the instantaneous rate the
process moves from state i to state j, and
qi = −qii ∈ [0,∞] is the rate at which the process
leaves state i.
We also have

∑

j 6=i qij ≤ qi.
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CTMCs: The q-matrix

We call the matrix Q = (qij , i, j ∈ S) the q-matrix of the
process and can interpret it as follows:

For i 6= j, qij ∈ [0,∞) is the instantaneous rate the
process moves from state i to state j, and
qi = −qii ∈ [0,∞] is the rate at which the process
leaves state i.
We also have

∑

j 6=i qij ≤ qi.

When we formulate a model, it is Q that we can write
down; so the question arises, can we recover P (·) from
Q = P ′(0)?
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CTMCs: The Kolmogorov DEs

If we are given a conservative q-matrix Q, then a
Q-function P (t) must satisfy the backward equations

P ′(t) = QP (t), t > 0,

and may or may not satisfy the forward (or master)
equations

P ′(t) = P (t)Q, t > 0,

with the initial condition P (0) = I.
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CTMCs: The Kolmogorov DEs

If we are given a conservative q-matrix Q, then a
Q-function P (t) must satisfy the backward equations

P ′(t) = QP (t), t > 0,

and may or may not satisfy the forward (or master)
equations

P ′(t) = P (t)Q, t > 0,

with the initial condition P (0) = I.

There is always one such Q-function, but there may
also be infinitely many such functions — so Q does not
necessarily describe the whole process.
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CTMCs: Interpreting the q-matrix

Suppose X(0) = i:

The holding time Hi in state i is exponentially
distributed with parameter qi, i.e.

P(Hi ≤ t) = 1 − e−qit, t ≥ 0.
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CTMCs: Interpreting the q-matrix

Suppose X(0) = i:

The holding time Hi in state i is exponentially
distributed with parameter qi, i.e.

P(Hi ≤ t) = 1 − e−qit, t ≥ 0.

After this time has elapsed, the process jumps to state j
with probability qij/qi.
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CTMCs: Interpreting the q-matrix

Suppose X(0) = i:

The holding time Hi in state i is exponentially
distributed with parameter qi, i.e.

P(Hi ≤ t) = 1 − e−qit, t ≥ 0.

After this time has elapsed, the process jumps to state j
with probability qij/qi.

Repeat...
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CTMCs: Interpreting the q-matrix

Suppose X(0) = i:

The holding time Hi in state i is exponentially
distributed with parameter qi, i.e.

P(Hi ≤ t) = 1 − e−qit, t ≥ 0.

After this time has elapsed, the process jumps to state j
with probability qij/qi.

Repeat...

Somewhat surprisingly, this recipe does not always
describe the whole process.
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CTMCs: An Explosive Process

Consider a process described by the q-matrix

qij =











λi if j = i + 1,

−λi if j = i,

0 otherwise.

Assume λi > 0, ∀i ∈ S.
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Consider a process described by the q-matrix

qij =











λi if j = i + 1,

−λi if j = i,

0 otherwise.

Assume λi > 0, ∀i ∈ S.

Suppose we start in state i0.
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CTMCs: An Explosive Process

Consider a process described by the q-matrix

qij =











λi if j = i + 1,

−λi if j = i,

0 otherwise.

Assume λi > 0, ∀i ∈ S.

Suppose we start in state i0.

Stay for time Hi0 ∼ exp(λi0) then move to state i0 + 1,
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CTMCs: An Explosive Process

Consider a process described by the q-matrix

qij =











λi if j = i + 1,

−λi if j = i,

0 otherwise.

Assume λi > 0, ∀i ∈ S.

Suppose we start in state i0.

Stay for time Hi0 ∼ exp(λi0) then move to state i0 + 1,

Stay for time Hi0+1 ∼ exp(λi0+1) then move to i0 + 2, ...
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CTMCs: An Explosive Process

Consider a process described by the q-matrix

qij =











λi if j = i + 1,

−λi if j = i,

0 otherwise.

Assume λi > 0, ∀i ∈ S.

Suppose we start in state i0.

Stay for time Hi0 ∼ exp(λi0) then move to state i0 + 1,

Stay for time Hi0+1 ∼ exp(λi0+1) then move to i0 + 2, ...

Define Tn =
∑i0+n−1

i=i0
Hi to be the time of the nth jump.

We would expect T := limn→∞ Tn = ∞.
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CTMCs: An Explosive Process

Lemma: Suppose {Sn, n ≥ 1} is a sequence of
independent exponential rv’s with respective rates ai, and
put S =

∑∞
n=1 Sn.

Then either S = ∞ a.s. or S < ∞ a.s., according as
∑∞

i=1
1
ai

diverges or converges.

We identify Sn with the holding times Hi0+n and S with
T .
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CTMCs: An Explosive Process

Lemma: Suppose {Sn, n ≥ 1} is a sequence of
independent exponential rv’s with respective rates ai, and
put S =

∑∞
n=1 Sn.

Then either S = ∞ a.s. or S < ∞ a.s., according as
∑∞

i=1
1
ai

diverges or converges.

We identify Sn with the holding times Hi0+n and S with
T .

If, for example, λi = i2, we have

∞
∑

i=i0

1

λi
=

∞
∑

i=i0

1

i2
< ∞,

so P(T < ∞) = 1.
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CTMCs: Reuter’s Uniqueness Condition

For there to be no explosion possible, we need the
backward equations to have a unique solution.
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CTMCs: Reuter’s Uniqueness Condition

For there to be no explosion possible, we need the
backward equations to have a unique solution.

When Q is conservative, this is equivalent to
∑

j∈S

qijxj = νxi i ∈ S

having no bounded non-negative solution (xi, i ∈ S)
except the trivial solution xi ≡ 0 for some (and then all)
ν > 0.
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CTMCs: Ruling Out Explosion

Analysis of a continuous-time Markov process is greatly
simplified if it is regular, that is non-explosive.
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Analysis of a continuous-time Markov process is greatly
simplified if it is regular, that is non-explosive.

A process is regular if
The state space is finite.

Markov Chains: An Introduction/Review — MASCOS Workshop on Markov Chains, April 2005 – p. 35



CTMCs: Ruling Out Explosion

Analysis of a continuous-time Markov process is greatly
simplified if it is regular, that is non-explosive.
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The state space is finite.
The q-matrix is bounded, that is supi qi < ∞.
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A process is regular if
The state space is finite.
The q-matrix is bounded, that is supi qi < ∞.
X0 = i and i is recurrent.
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CTMCs: Ruling Out Explosion

Analysis of a continuous-time Markov process is greatly
simplified if it is regular, that is non-explosive.

A process is regular if
The state space is finite.
The q-matrix is bounded, that is supi qi < ∞.
X0 = i and i is recurrent.

Reuter’s condition simplifies considerably for a
birth-death process, a process where from state i, the
only possible transitions are to i − 1 or i + 1.

We now assume that the process we are dealing with is
non-explosive, so Q is enough to completely specify the
process.
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CTMCs: The Birth-Death Process

A Birth-Death Process on {0, 1, 2, . . .} is a CTMC with
q-matrix of the form

qij =































λi if j = i + 1

µi if j = i − 1, i ≥ 1

−(λi + µi) if j = i ≥ 1

−λ0 if j = i = 0

0 otherwise

where λi, µi > 0, ∀i ∈ S.
We also set π1 = 1, and πi = λ1λ2···λi−1

µ2µ3···µi

.
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CTMCs: Quantities of interest

Again we look at

Hitting probabilities.

Expected hitting times.

Limiting (stationary) distributions.

Limiting conditional (quasistationary) distributions.

Markov Chains: An Introduction/Review — MASCOS Workshop on Markov Chains, April 2005 – p. 37



CTMCs: Hitting Probabilities

Using the same reasoning as for discrete-time processes,
we can show that the hitting probabilites αi of a state κ,
starting in state i, are given by the minimal non-negative
solution to the system ακ = 1 and, for i 6= κ,

∑

j∈S

qijαj = 0.
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CTMCs: Hitting Probabilities

Using the same reasoning as for discrete-time processes,
we can show that the hitting probabilites αi of a state κ,
starting in state i, are given by the minimal non-negative
solution to the system ακ = 1 and, for i 6= κ,

∑

j∈S

qijαj = 0.

For a BDP, we can show that the probability of hitting 0 is
one if and only if

A :=
∞

∑

i=1

1

λnπn
= ∞.
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CTMCs: Hitting times

Again, we can use an argument similar to that for
discrete-time processes to show that the expected hitting
times τi of state κ, starting in i, are given by the minimal
non-negative solution of the system τκ = 0 and, for i 6= κ,

∑

j∈S

qijτj = −1.

Markov Chains: An Introduction/Review — MASCOS Workshop on Markov Chains, April 2005 – p. 39



CTMCs: Hitting times

Again, we can use an argument similar to that for
discrete-time processes to show that the expected hitting
times τi of state κ, starting in i, are given by the minimal
non-negative solution of the system τκ = 0 and, for i 6= κ,

∑

j∈S

qijτj = −1.

For a BDP, the expected time to hit zero, starting in state i is
given by

τi =

i
∑

j=1

1

µjπj

∞
∑

k=j

πk.
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CTMCs: Limiting Behaviour

As with discrete-time chains, the class structure is
important in determining what tools are useful for analysing
the long term behaviour of the process.

Markov Chains: An Introduction/Review — MASCOS Workshop on Markov Chains, April 2005 – p. 40



CTMCs: Limiting Behaviour

As with discrete-time chains, the class structure is
important in determining what tools are useful for analysing
the long term behaviour of the process.

If the state space is irreducible and positive recurrent,
the limiting distribution is the most useful device.
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CTMCs: Limiting Behaviour

As with discrete-time chains, the class structure is
important in determining what tools are useful for analysing
the long term behaviour of the process.

If the state space is irreducible and positive recurrent,
the limiting distribution is the most useful device.

If the state space consists of an absorbing state and a
transient class, the limiting conditional distribution is of
most use.
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CTMCs: Limiting Distributions

Assume that the state space S is irreducible and recurrent.
Then there is a unique (up to constant multiples) solution
π = (πi, i ∈ S) such that

πQ = 0,

where 0 is a vector of zeros. If
∑

i πi < ∞, then π is can be
normalised to give a probability distribution which is the
limiting distribution. (If π is not summable then there is no
proper limiting distribution.)
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CTMCs: Limiting Distributions

Assume that the state space S is irreducible and recurrent.
Then there is a unique (up to constant multiples) solution
π = (πi, i ∈ S) such that

πQ = 0,

where 0 is a vector of zeros. If
∑

i πi < ∞, then π is can be
normalised to give a probability distribution which is the
limiting distribution. (If π is not summable then there is no
proper limiting distribution.)

For the BDP, the potential coefficients π1 = 1, πi = λ1λ2···λi−1

µ2µ3···µi

are the essentially unique solution of πQ = 0.
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CTMCs: Limiting Conditional Dist’ns

If the S = {0} ∪ C and the absorbing state zero is reached
with probability one, the limiting conditional distribution is
given by m = (mi, i ∈ C) such that

mQC = −νm,

for some ν > 0.
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CTMCs: Limiting Conditional Dist’ns

If the S = {0} ∪ C and the absorbing state zero is reached
with probability one, the limiting conditional distribution is
given by m = (mi, i ∈ C) such that

mQC = −νm,

for some ν > 0.

When C is a finite set then there is a unique such ν.
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CTMCs: Summary

Countable state Markov chains are stochastic modelling
tools which have been analysed extensively.

Where closed form expressions are not available there
are accurate numerical methods for approximating
quantities of interest.

They have found application in fields as diverse as
ecology, physical chemistry and telecommunications
systems modelling.
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