Markov Chains: An Introduction/Review

David Sirl
dsirl@maths.uq.edu.au
http://www.maths.uq.edu.au/~dsirl/

The University
Of Queensland
A USTRALIA

AUSTRALIAN RESEARCH COUNCIL
Centre of Excellence for Mathematics and Statistics of Complex Systems

Andrei A. Markov (1856 - 1922)

Random Processes

A random process is a collection of random variables indexed by some set I, taking values in some set S.

- I is the index set, usually time, e.g. $\mathbb{Z}^{+}, \mathbb{R}, \mathbb{R}^{+}$.
- S is the state space, e.g. $\mathbb{Z}^{+}, \mathbb{R}^{n},\{1,2, \ldots, n\},\{a, b, c\}$.

We classify random processes according to both the index set (discrete or continuous) and the state space (finite, countable or uncountable/continuous).

Markov Processes

- A random process is called a Markov Process if, conditional on the current state of the process, its future is independent of its past.
- More formally, $X(t)$ is Markovian if has the following property:

$$
\begin{aligned}
& \mathbb{P}\left(X\left(t_{n}\right)=j_{n} \mid X\left(t_{n-1}\right)=j_{n-1}, \ldots, X\left(t_{1}\right)=j_{1}\right) \\
= & \mathbb{P}\left(X\left(t_{n}\right)=j_{n} \mid X\left(t_{n-1}\right)=j_{n-1}\right)
\end{aligned}
$$

for all finite sequences of times $t_{1}<\ldots<t_{n} \in I$ and of states $j_{1}, \ldots, j_{n} \in S$.

Time Homogeneity

A Markov chain $(X(t))$ is said to be time-homogeneous if

$$
\mathbb{P}(X(s+t)=j \mid X(s)=i)
$$

is independent of s. When this holds, putting $s=0$ gives

$$
\mathbb{P}(X(s+t)=j \mid X(s)=i)=\mathbb{P}(X(t)=j \mid X(0)=i) .
$$

Time Homogeneity

A Markov chain $(X(t))$ is said to be time-homogeneous if

$$
\mathbb{P}(X(s+t)=j \mid X(s)=i)
$$

is independent of s. When this holds, putting $s=0$ gives

$$
\mathbb{P}(X(s+t)=j \mid X(s)=i)=\mathbb{P}(X(t)=j \mid X(0)=i) .
$$

Probabilities depend on elapsed time, not absolute time.

Discrete-time Markov chains

- At time epochs $n=1,2,3, \ldots$ the process changes from one state i to another state j with probability $p_{i j}$.

Discrete-time Markov chains

- At time epochs $n=1,2,3, \ldots$ the process changes from one state i to another state j with probability $p_{i j}$.
- We write the one-step transition matrix $P=\left(p_{i j}, i, j \in S\right)$.

Discrete-time Markov chains

- At time epochs $n=1,2,3, \ldots$ the process changes from one state i to another state j with probability $p_{i j}$.
- We write the one-step transition matrix $P=\left(p_{i j}, i, j \in S\right)$.
- Example: a frog hopping on 3 rocks. Put $S=\{1,2,3\}$.

$$
P=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

DTMC example

- Example: A frog hopping on 3 rocks. Put $S=\{1,2,3\}$.

$$
P=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

- We can gain some insight by drawing a picture:

DTMCs: n-step probabilities

- We have P, which tells us what happens over one time step; lets work out what happens over two time steps:

$$
\begin{aligned}
p_{i j}^{(2)} & =\mathbb{P}\left(X_{2}=j \mid X_{0}=i\right) \\
& =\sum_{k \in S} \mathbb{P}\left(X_{1}=k \mid X_{0}=i\right) \mathbb{P}\left(X_{2}=j \mid X_{1}=k, X_{0}=i\right) \\
& =\sum_{k \in S} p_{i k} p_{k j} .
\end{aligned}
$$

DTMCs: n-step probabilities

- We have P, which tells us what happens over one time step; lets work out what happens over two time steps:

$$
\begin{aligned}
p_{i j}^{(2)} & =\mathbb{P}\left(X_{2}=j \mid X_{0}=i\right) \\
& =\sum_{k \in S} \mathbb{P}\left(X_{1}=k \mid X_{0}=i\right) \mathbb{P}\left(X_{2}=j \mid X_{1}=k, X_{0}=i\right) \\
& =\sum_{k \in S} p_{i k} p_{k j} .
\end{aligned}
$$

- So $P^{(2)}=P P=P^{2}$.

DTMCs: n-step probabilities

- We have P, which tells us what happens over one time step; lets work out what happens over two time steps:

$$
\begin{aligned}
p_{i j}^{(2)} & =\mathbb{P}\left(X_{2}=j \mid X_{0}=i\right) \\
& =\sum_{k \in S} \mathbb{P}\left(X_{1}=k \mid X_{0}=i\right) \mathbb{P}\left(X_{2}=j \mid X_{1}=k, X_{0}=i\right) \\
& =\sum_{k \in S} p_{i k} p_{k j} .
\end{aligned}
$$

- So $P^{(2)}=P P=P^{2}$.
- Similarly, $P^{(3)}=P^{2} P=P^{3}$ and $P^{(n)}=P^{n}$.

DTMC: Arbitrary initial distributions

- We may wish to start the chain according to some initial distribution $\pi^{(0)}$.

DTMC: Arbitrary initial distributions

- We may wish to start the chain according to some initial distribution $\pi^{(0)}$.
- We can then calculate the state probabilities
$\pi^{(n)}=\left(\pi_{j}^{(n)}, j \in S\right)$ of being in state j at time n as follows:

$$
\begin{aligned}
\pi_{j}^{(n)} & =\sum_{k \in S} \mathbb{P}\left(X_{0}=k\right) \mathbb{P}\left(X_{n}=j \mid X_{0}=k\right) \\
& =\sum_{k \in S} \pi_{j}^{(0)} p_{i j}^{(n)}
\end{aligned}
$$

DTMC: Arbitrary initial distributions

- We may wish to start the chain according to some initial distribution $\pi^{(0)}$.
- We can then calculate the state probabilities
$\pi^{(n)}=\left(\pi_{j}^{(n)}, j \in S\right)$ of being in state j at time n as follows:

$$
\begin{aligned}
\pi_{j}^{(n)} & =\sum_{k \in S} \mathbb{P}\left(X_{0}=k\right) \mathbb{P}\left(X_{n}=j \mid X_{0}=k\right) \\
& =\sum_{k \in S} \pi_{j}^{(0)} p_{i j}^{(n)}
\end{aligned}
$$

- Or, in matrix notation, $\pi^{(n)}=\pi^{(0)} P^{n}$; similarly we can show that $\pi^{(n+1)}=\pi^{(n)} P$.

Class structure

- We say that a state i leads to j (written $i \rightarrow j$) if it is possible to get from i to j in some finite number of jumps: $p_{i j}^{(n)}>0$ for some $n \geq 0$.

Class structure

- We say that a state i leads to j (written $i \rightarrow j$) if it is possible to get from i to j in some finite number of jumps: $p_{i j}^{(n)}>0$ for some $n \geq 0$.
- We say that i communicates with j (written $i \leftrightarrow j$) if $i \rightarrow j$ and $j \rightarrow i$.

Class structure

- We say that a state i leads to j (written $i \rightarrow j$) if it is possible to get from i to j in some finite number of jumps: $p_{i j}^{(n)}>0$ for some $n \geq 0$.
- We say that i communicates with j (written $i \leftrightarrow j$) if $i \rightarrow j$ and $j \rightarrow i$.
- The relation \leftrightarrow partitions the state space into communicating classes.

Class structure

- We say that a state i leads to j (written $i \rightarrow j$) if it is possible to get from i to j in some finite number of jumps: $p_{i j}^{(n)}>0$ for some $n \geq 0$.
- We say that i communicates with j (written $i \leftrightarrow j$) if $i \rightarrow j$ and $j \rightarrow i$.
- The relation \leftrightarrow partitions the state space into communicating classes.
- We call the state space irreducible if it consists of a single communicating class.

Class structure

- We say that a state i leads to j (written $i \rightarrow j$) if it is possible to get from i to j in some finite number of jumps: $p_{i j}^{(n)}>0$ for some $n \geq 0$.
- We say that i communicates with j (written $i \leftrightarrow j$) if $i \rightarrow j$ and $j \rightarrow i$.
- The relation \leftrightarrow partitions the state space into communicating classes.
- We call the state space irreducible if it consists of a single communicating class.
- These properties are easy to determine from a transition probability graph.

Classification of states

- We call a state i recurrent or transient according as $\mathbb{P}\left(X_{n}=i\right.$ for infinitely many $\left.n\right)$ is equal to one or zero.

Classification of states

- We call a state i recurrent or transient according as $\mathbb{P}\left(X_{n}=i\right.$ for infinitely many $\left.n\right)$ is equal to one or zero.
- A recurrent state is a state to which the process always returns.
- A transient state is a state which the process eventually leaves for ever.

Classification of states

- We call a state i recurrent or transient according as $\mathbb{P}\left(X_{n}=i\right.$ for infinitely many $\left.n\right)$ is equal to one or zero.
- A recurrent state is a state to which the process always returns.
- A transient state is a state which the process eventually leaves for ever.
- Recurrence and transience are class properties; i.e. if two states are in the same communicating class then they are recurrent/transient together.
- We therefore speak of recurrent or transient classes

Classification of states

- We call a state i recurrent or transient according as $\mathbb{P}\left(X_{n}=i\right.$ for infinitely many $\left.n\right)$ is equal to one or zero.
- A recurrent state is a state to which the process always returns.
- A transient state is a state which the process eventually leaves for ever.
- Recurrence and transience are class properties; i.e. if two states are in the same communicating class then they are recurrent/transient together.
- We therefore speak of recurrent or transient classes
- We also assume throughout that no states are periodic.

DTMCs: Two examples

- S irreducible:

$$
P=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

- $S=\{0\} \cup C$, where C is a transient class:

DTMCs: Quantities of interest

Quantities of interest include:

- Hitting probabilities.
- Expected hitting times.
- Limiting (stationary) distributions.
- Limiting conditional (quasistationary) distributions.

DTMCs: Hitting probabilities

Let α_{i} be the probability of hitting state 1 starting in state i.

- Clearly $\alpha_{1}=1$; and for $i \neq 1$,

$$
\begin{aligned}
\alpha_{i} & =\mathbb{P}(\text { hit } 1 \mid \text { start in } i) \\
& =\sum_{k \in S} \mathbb{P}\left(X_{1}=k \mid X_{0}=i\right) \mathbb{P}(\text { hit } 1 \mid \text { start in } k) \\
& =\sum_{k \in S} p_{i k} \alpha_{k}
\end{aligned}
$$

DTMCs: Hitting probabilities

Let α_{i} be the probability of hitting state 1 starting in state i.

- Clearly $\alpha_{1}=1$; and for $i \neq 1$,

$$
\begin{aligned}
\alpha_{i} & =\mathbb{P}(\text { hit } 1 \mid \text { start in } i) \\
& =\sum_{k \in S} \mathbb{P}\left(X_{1}=k \mid X_{0}=i\right) \mathbb{P}(\text { hit } 1 \mid \text { start in } k) \\
& =\sum_{k \in S} p_{i k} \alpha_{k}
\end{aligned}
$$

- Sometimes there may be more than one solution $\alpha=\left(\alpha_{i}, i \in S\right)$ to this system of equations.
If this is the case, then the hitting probabilites are given by the minimal such solution.

Example: Hitting Probabilities

Let α_{i} be the probability of hitting state 3 starting in state i.
So $\alpha_{3}=1$ and $\alpha_{i}=\sum_{k} p_{i k} \alpha_{k}$:

$$
\begin{aligned}
& \alpha_{0}=\alpha_{0} \\
& \alpha_{1}=\frac{1}{2} \alpha_{0}+\frac{1}{4} \alpha_{2}+\frac{1}{4} \alpha_{3} \\
& \alpha_{2}=\frac{5}{8} \alpha_{1}+\frac{1}{8} \alpha_{2}+\frac{1}{4} \alpha_{3}
\end{aligned}
$$

Example: Hitting Probabilities

Let α_{i} be the probability of hitting state 3 starting in state i.

$$
\alpha=\left(\begin{array}{c}
0 \\
\frac{9}{23} \\
\frac{13}{23} \\
1
\end{array}\right) \approx\left(\begin{array}{c}
0 \\
0.39 \\
0.57 \\
1
\end{array}\right) .
$$

DTMCs: Hitting probabilities II

Let β_{i} be the probability of hitting state 0 before state N, starting in state i.

- Clearly $\beta_{0}=1$ and $\beta_{N}=0$.
- For $0<i<N$,
$\beta_{i}=\mathbb{P}($ hit 1 before $n \mid$ start in i)

$$
\begin{aligned}
& =\sum_{k \in S} \mathbb{P}\left(X_{1}=k \mid X_{0}=i\right) \mathbb{P}(\text { hit } 1 \text { before } n \mid \text { start in } k) \\
& =\sum_{k \in S} p_{i k} \beta_{k}
\end{aligned}
$$

- Again, we take the minimal solution of this system of equations.

Example: Hitting Probabilities II

$$
P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
0 & \frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Let β_{i} be the probability of hitting 0 before 3 starting in i.
So $\beta_{0}=1, \beta_{3}=0$ and $\beta_{i}=\sum_{k} p_{i k} \beta_{k}$:

$$
\begin{aligned}
& \beta_{1}=\frac{1}{2} \beta_{0}+\frac{1}{4} \beta_{2}+\frac{1}{4} \beta_{3} \\
& \beta_{2}=\frac{5}{8} \beta_{1}+\frac{1}{8} \beta_{2}+\frac{1}{4} \beta_{3}
\end{aligned}
$$

Example: Hitting Probabilities II

$$
P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
0 & \frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Let β_{i} be the probability of hitting 0 before 3 starting in i.

$$
\beta=\left(\begin{array}{c}
1 \\
\frac{14}{23} \\
\frac{10}{23} \\
1
\end{array}\right) \approx\left(\begin{array}{c}
0 \\
0.61 \\
0.43 \\
1
\end{array}\right) .
$$

DTMCs: Expected hitting times

Let τ_{i} be the expected time to hit state 1 starting in state i.

- Clearly $\tau_{1}=0$; and for $i \neq 0$,
$\tau_{i}=\mathbb{E}($ time to hit $1 \mid$ start in $i)$

$$
\begin{aligned}
& =1+\sum_{k \in S} \mathbb{P}\left(X_{1}=k \mid X_{0}=i\right) \mathbb{E}(\text { time to hit } 1 \mid \text { start in } k) \\
& =1+\sum_{k \in S} p_{i k} \tau_{k}
\end{aligned}
$$

- If there are multiple solutions, take the minimal one.

Example: Expected Hitting Times

$$
P=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Let τ_{i} be the expected time to hit 2 starting in i.
So $\tau_{2}=0$ and $\tau_{i}=1+\sum_{k} p_{i k} \tau_{k}$:

$$
\begin{aligned}
\tau_{1} & =1+\frac{1}{2} \tau_{2}+\frac{1}{2} \tau_{3} \\
\tau_{3} & =1+\frac{2}{3} \tau_{1}+\frac{1}{3} \tau_{2}
\end{aligned}
$$

Example: Expected Hitting Times

$$
P=\left(\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Let τ_{i} be the expected time to hit 2 starting in i.

$$
\tau=\left(\begin{array}{c}
\frac{9}{4} \\
0 \\
\frac{5}{2}
\end{array}\right)=\left(\begin{array}{c}
2.25 \\
0 \\
2.5
\end{array}\right) .
$$

DTMCs: Hitting Probabilities and Times

- Just systems of linear equations to be solved.
- In principle can be solved analytically when S is finite.
- When S is an infinite set, if P has some regular structure ($p_{i j}$ same/similar for each i) the resulting systems of difference equations can sometimes be solved analytically.
- Otherwise we need numerical methods.

DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and recurrent.

- What happens to the state probabilities $\pi_{j}^{(n)}$ as $n \rightarrow \infty$?

DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and recurrent.

- What happens to the state probabilities $\pi_{j}^{(n)}$ as $n \rightarrow \infty$?
- We know that $\pi^{(n+1)}=\pi^{(n)} P$.

DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and recurrent.

- What happens to the state probabilities $\pi_{j}^{(n)}$ as $n \rightarrow \infty$?
- We know that $\pi^{(n+1)}=\pi^{(n)} P$.
- So if there is a limiting distribution π, it must satisfy

$$
\pi=\pi P \quad\left(\text { and } \sum_{i} \pi_{i}=1\right) .
$$

(Such a distribution is called stationary.)

DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and recurrent.

- What happens to the state probabilities $\pi_{j}^{(n)}$ as $n \rightarrow \infty$?
- We know that $\pi^{(n+1)}=\pi^{(n)} P$.
- So if there is a limiting distribution π, it must satisfy

$$
\pi=\pi P \quad\left(\text { and } \sum_{i} \pi_{i}=1\right) .
$$

(Such a distribution is called stationary.)

- This limiting distribution does not depend on the initial distribution.

DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and recurrent.

- What happens to the state probabilities $\pi_{j}^{(n)}$ as $n \rightarrow \infty$?
- We know that $\pi^{(n+1)}=\pi^{(n)} P$.
- So if there is a limiting distribution π, it must satisfy

$$
\pi=\pi P \quad\left(\text { and } \sum_{i} \pi_{i}=1\right) .
$$

(Such a distribution is called stationary.)

- This limiting distribution does not depend on the initial distribution.
- When the state space is infinite, it may happen that $\pi_{j}^{(n)} \rightarrow 0$ for all j.

Example: The Limiting Distribution

$$
P=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Substituting P into $\pi=\pi P$ gives

$$
\begin{aligned}
& \pi_{1}=\frac{5}{8} \pi_{2}+\frac{2}{3} \pi_{3}, \\
& \pi_{2}=\frac{1}{2} \pi_{1}+\frac{1}{8} \pi_{2}+\frac{1}{3} \pi_{3}, \\
& \pi_{3}=\frac{1}{2} \pi_{1}+\frac{1}{4} \pi_{2},
\end{aligned}
$$

which together with $\sum_{i} \pi_{i}=1$ yields

$$
\pi=\left(\frac{38}{97} \frac{32}{97} \frac{27}{97}\right) \approx\left(\begin{array}{lll}
0.39 & 0.33 & 0.28
\end{array}\right) .
$$

DTMCs: The Limiting Conditional Dist'n

Assume that the state space is consists of an absorbing state and a transient class ($S=\{0\} \cup C$).

- The limiting distribution is $(1,0,0, \ldots)$.

DTMCs: The Limiting Conditional Dist'n

Assume that the state space is consists of an absorbing state and a transient class ($S=\{0\} \cup C$).

- The limiting distribution is $(1,0,0, \ldots)$.
- Instead of looking at the limiting behaviour of

$$
\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)=p_{i j}^{(n)},
$$

we need to look at

$$
\mathbb{P}\left(X_{n}=j \mid X_{n} \neq 0, X_{0}=i\right)=\frac{p_{i j}^{(n)}}{1-p_{i 0}^{(n)}}
$$

for $i, j \in C$.

DTMCs: The Limiting Conditional Dist'n

- It turns out we need a solution $m=\left(m_{i}, i \in C\right)$ of

$$
m P_{C}=r m,
$$

for some $r \in(0,1)$.

DTMCs: The Limiting Conditional Dist'n

- It turns out we need a solution $m=\left(m_{i}, i \in C\right)$ of

$$
m P_{C}=r m,
$$

for some $r \in(0,1)$.

- If C is a finite set, there is a unique such r.

DTMCs: The Limiting Conditional Dist'n

- It turns out we need a solution $m=\left(m_{i}, i \in C\right)$ of

$$
m P_{C}=r m,
$$

for some $r \in(0,1)$.

- If C is a finite set, there is a unique such r.
- If C is infinite, there is $r^{*} \in(0,1)$ such that all r in the interval $\left[r^{*}, 1\right)$ are admissible; and the solution corresponding to $r=r^{*}$ is the LCD.

Example: Limiting Conditional Dist'n

$$
P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
0 & \frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Example: Limiting Conditional Dist'n

$$
P_{C}=\left(\begin{array}{lll}
0 & \frac{1}{4} & \frac{1}{4} \\
\frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Example: Limiting Conditional Dist'n

$$
P_{C}=\left(\begin{array}{ccc}
0 & \frac{1}{4} & \frac{1}{4} \\
\frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Solving $m P_{C}=r m$, we get

$$
r_{1} \approx 0.773 \quad \text { and } \quad m \approx(0.45,0.30,0.24)
$$

DTMCs: Summary

From the one-step transition probabilities we can calculate:

- n-step transition probabilities,
- hitting probabilities,
- expected hitting times,
- limiting distributions, and
- limiting conditional distributions.

Continuous Time

- In the real world, time is continuous - things do not happen only at prescribed, equally spaced time points.

Continuous Time

- In the real world, time is continuous - things do not happen only at prescribed, equally spaced time points.
- Continuous time is slightly more difficult to deal with as there is no real equivalent to the one-step transition matrix from which one can calculate all quantities of interest.

Continuous Time

- In the real world, time is continuous - things do not happen only at prescribed, equally spaced time points.
- Continuous time is slightly more difficult to deal with as there is no real equivalent to the one-step transition matrix from which one can calculate all quantities of interest.
- The study of continuous-time Markov chains is based on the transition function.

CTMCs: Transition Functions

- If we denote by $p_{i j}(t)$ the probability of a process starting in state i being in state j after elapsed time t, then we call $P(t)=\left(p_{i j}(t), i, j \in S, t>0\right)$ the transition function of that process.

CTMCs: Transition Functions

- If we denote by $p_{i j}(t)$ the probability of a process starting in state i being in state j after elapsed time t, then we call $P(t)=\left(p_{i j}(t), i, j \in S, t>0\right)$ the transition function of that process.
- $P(t)$ is difficult/impossible to write down in all but the simplest of situations.

CTMCs: Transition Functions

- If we denote by $p_{i j}(t)$ the probability of a process starting in state i being in state j after elapsed time t, then we call $P(t)=\left(p_{i j}(t), i, j \in S, t>0\right)$ the transition function of that process.
- $P(t)$ is difficult/impossible to write down in all but the simplest of situations.
- However all is not lost: we can show that there exist quantities $q_{i j}, i, j \in S$ satisfying

$$
q_{i j}=p_{i j}^{\prime}\left(0^{+}\right)= \begin{cases}\lim _{t \downarrow 0} \frac{p_{i j}(t)}{t}, & i \neq j, \\ \lim _{t \downarrow 0} \frac{1-p_{i i}(t)}{t}, & i=j .\end{cases}
$$

CTMCs: The q-matrix

- We call the matrix $Q=\left(q_{i j}, i, j \in S\right)$ the q-matrix of the process and can interpret it as follows:
- For $i \neq j, q_{i j} \in[0, \infty)$ is the instantaneous rate the process moves from state i to state j, and
- $q_{i}=-q_{i i} \in[0, \infty]$ is the rate at which the process leaves state i.
- We also have $\sum_{j \neq i} q_{i j} \leq q_{i}$.

CTMCs: The q-matrix

- We call the matrix $Q=\left(q_{i j}, i, j \in S\right)$ the q-matrix of the process and can interpret it as follows:
- For $i \neq j, q_{i j} \in[0, \infty)$ is the instantaneous rate the process moves from state i to state j, and
- $q_{i}=-q_{i i} \in[0, \infty]$ is the rate at which the process leaves state i.
- We also have $\sum_{j \neq i} q_{i j} \leq q_{i}$.
- When we formulate a model, it is Q that we can write down; so the question arises, can we recover $P(\cdot)$ from $Q=P^{\prime}(0)$?

CTMCs: The Kolmogorov DEs

- If we are given a conservative q-matrix Q, then a Q-function $P(t)$ must satisfy the backward equations

$$
P^{\prime}(t)=Q P(t), \quad t>0,
$$

and may or may not satisfy the forward (or master) equations

$$
P^{\prime}(t)=P(t) Q, \quad t>0,
$$

with the initial condition $P(0)=I$.

CTMCs: The Kolmogorov DEs

- If we are given a conservative q-matrix Q, then a Q-function $P(t)$ must satisfy the backward equations

$$
P^{\prime}(t)=Q P(t), \quad t>0,
$$

and may or may not satisfy the forward (or master) equations

$$
P^{\prime}(t)=P(t) Q, \quad t>0,
$$

with the initial condition $P(0)=I$.

- There is always one such Q-function, but there may also be infinitely many such functions - so Q does not necessarily describe the whole process.

CTMCs: Interpreting the q-matrix

Suppose $X(0)=i$:

- The holding time H_{i} in state i is exponentially distributed with parameter q_{i}, i.e.

$$
\mathbb{P}\left(H_{i} \leq t\right)=1-e^{-q_{i} t}, \quad t \geq 0 .
$$

CTMCs: Interpreting the q-matrix

Suppose $X(0)=i$:

- The holding time H_{i} in state i is exponentially distributed with parameter q_{i}, i.e.

$$
\mathbb{P}\left(H_{i} \leq t\right)=1-e^{-q_{i} t}, \quad t \geq 0 .
$$

- After this time has elapsed, the process jumps to state j with probability $q_{i j} / q_{i}$.

CTMCs: Interpreting the q-matrix

Suppose $X(0)=i$:

- The holding time H_{i} in state i is exponentially distributed with parameter q_{i}, i.e.

$$
\mathbb{P}\left(H_{i} \leq t\right)=1-e^{-q_{i} t}, \quad t \geq 0 .
$$

- After this time has elapsed, the process jumps to state j with probability $q_{i j} / q_{i}$.
- Repeat...

CTMCs: Interpreting the q-matrix

Suppose $X(0)=i$:

- The holding time H_{i} in state i is exponentially distributed with parameter q_{i}, i.e.

$$
\mathbb{P}\left(H_{i} \leq t\right)=1-e^{-q_{i} t}, \quad t \geq 0 .
$$

- After this time has elapsed, the process jumps to state j with probability $q_{i j} / q_{i}$.
- Repeat...
- Somewhat surprisingly, this recipe does not always describe the whole process.

CTMCs: An Explosive Process

Consider a process described by the q-matrix

$$
q_{i j}= \begin{cases}\lambda_{i} & \text { if } j=i+1, \\ -\lambda_{i} & \text { if } j=i, \\ 0 & \text { otherwise }\end{cases}
$$

- Assume $\lambda_{i}>0, \quad \forall i \in S$.

CTMCs: An Explosive Process

Consider a process described by the q-matrix

$$
q_{i j}= \begin{cases}\lambda_{i} & \text { if } j=i+1, \\ -\lambda_{i} & \text { if } j=i, \\ 0 & \text { otherwise } .\end{cases}
$$

- Assume $\lambda_{i}>0, \quad \forall i \in S$.
- Suppose we start in state i_{0}.

CTMCs: An Explosive Process

Consider a process described by the q-matrix

$$
q_{i j}= \begin{cases}\lambda_{i} & \text { if } j=i+1, \\ -\lambda_{i} & \text { if } j=i, \\ 0 & \text { otherwise }\end{cases}
$$

- Assume $\lambda_{i}>0, \quad \forall i \in S$.
- Suppose we start in state i_{0}.
- Stay for time $H_{i_{0}} \sim \exp \left(\lambda_{i_{0}}\right)$ then move to state $i_{0}+1$,

CTMCs: An Explosive Process

Consider a process described by the q-matrix

$$
q_{i j}= \begin{cases}\lambda_{i} & \text { if } j=i+1, \\ -\lambda_{i} & \text { if } j=i, \\ 0 & \text { otherwise } .\end{cases}
$$

- Assume $\lambda_{i}>0, \quad \forall i \in S$.
- Suppose we start in state i_{0}.
- Stay for time $H_{i_{0}} \sim \exp \left(\lambda_{i_{0}}\right)$ then move to state $i_{0}+1$,
- Stay for time $H_{i_{0}+1} \sim \exp \left(\lambda_{i_{0}+1}\right)$ then move to $i_{0}+2, \ldots$

CTMCs: An Explosive Process

Consider a process described by the q-matrix

$$
q_{i j}= \begin{cases}\lambda_{i} & \text { if } j=i+1, \\ -\lambda_{i} & \text { if } j=i, \\ 0 & \text { otherwise } .\end{cases}
$$

- Assume $\lambda_{i}>0, \quad \forall i \in S$.
- Suppose we start in state i_{0}.
- Stay for time $H_{i_{0}} \sim \exp \left(\lambda_{i_{0}}\right)$ then move to state $i_{0}+1$,
- Stay for time $H_{i_{0}+1} \sim \exp \left(\lambda_{i_{0}+1}\right)$ then move to $i_{0}+2, \ldots$
- Define $T_{n}=\sum_{i=i_{0}}^{i_{0}+n-1} H_{i}$ to be the time of the nth jump. We would expect $T:=\lim _{n \rightarrow \infty} T_{n}=\infty$.

CTMCs: An Explosive Process

Lemma: Suppose $\left\{S_{n}, n \geq 1\right\}$ is a sequence of independent exponential rv's with respective rates a_{i}, and put $S=\sum_{n=1}^{\infty} S_{n}$.
Then either $S=\infty$ a.s. or $S<\infty$ a.s., according as $\sum_{i=1}^{\infty} \frac{1}{a_{i}}$ diverges or converges.

- We identify S_{n} with the holding times $H_{i_{0}+n}$ and S with T.

CTMCs: An Explosive Process

Lemma: Suppose $\left\{S_{n}, n \geq 1\right\}$ is a sequence of independent exponential rv's with respective rates a_{i}, and put $S=\sum_{n=1}^{\infty} S_{n}$.
Then either $S=\infty$ a.s. or $S<\infty$ a.s., according as $\sum_{i=1}^{\infty} \frac{1}{a_{i}}$ diverges or converges.

- We identify S_{n} with the holding times $H_{i_{0}+n}$ and S with T.
- If, for example, $\lambda_{i}=i^{2}$, we have

$$
\sum_{i=i_{0}}^{\infty} \frac{1}{\lambda_{i}}=\sum_{i=i_{0}}^{\infty} \frac{1}{\hat{z}^{2}}<\infty,
$$

so $\mathbb{P}(T<\infty)=1$.

CTMCs: Reuter's Uniqueness Condition

- For there to be no explosion possible, we need the backward equations to have a unique solution.

CTMCs: Reuter's Uniqueness Condition

- For there to be no explosion possible, we need the backward equations to have a unique solution.
- When Q is conservative, this is equivalent to

$$
\sum_{j \in S} q_{i j} x_{j}=\nu x_{i} \quad i \in S
$$

having no bounded non-negative solution ($x_{i}, i \in S$) except the trivial solution $x_{i} \equiv 0$ for some (and then all) $\nu>0$.

CTMCs: Ruling Out Explosion

- Analysis of a continuous-time Markov process is greatly simplified if it is regular, that is non-explosive.

CTMCs: Ruling Out Explosion

- Analysis of a continuous-time Markov process is greatly simplified if it is regular, that is non-explosive.
- A process is regular if

CTMCs: Ruling Out Explosion

- Analysis of a continuous-time Markov process is greatly simplified if it is regular, that is non-explosive.
- A process is regular if
- The state space is finite.

CTMCs: Ruling Out Explosion

- Analysis of a continuous-time Markov process is greatly simplified if it is regular, that is non-explosive.
- A process is regular if
- The state space is finite.
- The q-matrix is bounded, that is $\sup _{i} q_{i}<\infty$.

CTMCs: Ruling Out Explosion

- Analysis of a continuous-time Markov process is greatly simplified if it is regular, that is non-explosive.
- A process is regular if
- The state space is finite.
- The q-matrix is bounded, that is $\sup _{i} q_{i}<\infty$.
- $X_{0}=i$ and i is recurrent.

CTMCs: Ruling Out Explosion

- Analysis of a continuous-time Markov process is greatly simplified if it is regular, that is non-explosive.
- A process is regular if
- The state space is finite.
- The q-matrix is bounded, that is $\sup _{i} q_{i}<\infty$.
- $X_{0}=i$ and i is recurrent.
- Reuter's condition simplifies considerably for a birth-death process, a process where from state i, the only possible transitions are to $i-1$ or $i+1$.

We now assume that the process we are dealing with is non-explosive, so Q is enough to completely specify the process.

CTMCs: The Birth-Death Process

A Birth-Death Process on $\{0,1,2, \ldots\}$ is a CTMC with q-matrix of the form

$$
q_{i j}= \begin{cases}\lambda_{i} & \text { if } j=i+1 \\ \mu_{i} & \text { if } j=i-1, i \geq 1 \\ -\left(\lambda_{i}+\mu_{i}\right) & \text { if } j=i \geq 1 \\ -\lambda_{0} & \text { if } j=i=0 \\ 0 & \text { otherwise }\end{cases}
$$

where $\lambda_{i}, \mu_{i}>0, \quad \forall i \in S$.
We also set $\pi_{1}=1$, and $\pi_{i}=\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{i-1}}{\mu_{2} \mu_{3} \cdots \mu_{i}}$.

CTMCs: Quantities of interest

Again we look at

- Hitting probabilities.
- Expected hitting times.
- Limiting (stationary) distributions.
- Limiting conditional (quasistationary) distributions.

CTMCs: Hitting Probabilities

Using the same reasoning as for discrete-time processes, we can show that the hitting probabilites α_{i} of a state κ, starting in state i, are given by the minimal non-negative solution to the system $\alpha_{\kappa}=1$ and, for $i \neq \kappa$,

$$
\sum_{j \in S} q_{i j} \alpha_{j}=0
$$

CTMCs: Hitting Probabilities

Using the same reasoning as for discrete-time processes, we can show that the hitting probabilites α_{i} of a state κ, starting in state i, are given by the minimal non-negative solution to the system $\alpha_{\kappa}=1$ and, for $i \neq \kappa$,

$$
\sum_{j \in S} q_{i j} \alpha_{j}=0 .
$$

For a BDP, we can show that the probability of hitting 0 is one if and only if

$$
\mathcal{A}:=\sum_{i=1}^{\infty} \frac{1}{\lambda_{n} \pi_{n}}=\infty .
$$

CTMCs: Hitting times

Again, we can use an argument similar to that for discrete-time processes to show that the expected hitting times τ_{i} of state κ, starting in i, are given by the minimal non-negative solution of the system $\tau_{\kappa}=0$ and, for $i \neq \kappa$,

$$
\sum_{j \in S} q_{i j} \tau_{j}=-1
$$

CTMCs: Hitting times

Again, we can use an argument similar to that for discrete-time processes to show that the expected hitting times τ_{i} of state κ, starting in i, are given by the minimal non-negative solution of the system $\tau_{\kappa}=0$ and, for $i \neq \kappa$,

$$
\sum_{j \in S} q_{i j} \tau_{j}=-1 .
$$

For a BDP, the expected time to hit zero, starting in state i is given by

$$
\tau_{i}=\sum_{j=1}^{i} \frac{1}{\mu_{j} \pi_{j}} \sum_{k=j}^{\infty} \pi_{k} .
$$

CTMCs: Limiting Behaviour

As with discrete-time chains, the class structure is important in determining what tools are useful for analysing the long term behaviour of the process.

CTMCs: Limiting Behaviour

As with discrete-time chains, the class structure is important in determining what tools are useful for analysing the long term behaviour of the process.

- If the state space is irreducible and positive recurrent, the limiting distribution is the most useful device.

CTMCs: Limiting Behaviour

As with discrete-time chains, the class structure is important in determining what tools are useful for analysing the long term behaviour of the process.

- If the state space is irreducible and positive recurrent, the limiting distribution is the most useful device.
- If the state space consists of an absorbing state and a transient class, the limiting conditional distribution is of most use.

CTMCs: Limiting Distributions

Assume that the state space S is irreducible and recurrent. Then there is a unique (up to constant multiples) solution $\pi=\left(\pi_{i}, i \in S\right)$ such that

$$
\pi Q=\mathbf{0},
$$

where $\mathbf{0}$ is a vector of zeros. If $\sum_{i} \pi_{i}<\infty$, then π is can be normalised to give a probability distribution which is the limiting distribution. (If π is not summable then there is no proper limiting distribution.)

CTMCs: Limiting Distributions

Assume that the state space S is irreducible and recurrent. Then there is a unique (up to constant multiples) solution $\pi=\left(\pi_{i}, i \in S\right)$ such that

$$
\pi Q=\mathbf{0},
$$

where $\mathbf{0}$ is a vector of zeros. If $\sum_{i} \pi_{i}<\infty$, then π is can be normalised to give a probability distribution which is the limiting distribution. (If π is not summable then there is no proper limiting distribution.)

For the BDP, the potential coefficients $\pi_{1}=1, \pi_{i}=\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{i-1}}{\mu_{2} \mu_{3} \cdots \mu_{i}}$ are the essentially unique solution of $\pi Q=\mathbf{0}$.

CTMCs: Limiting Conditional Dist'ns

If the $S=\{0\} \cup C$ and the absorbing state zero is reached with probability one, the limiting conditional distribution is given by $m=\left(m_{i}, i \in C\right)$ such that

$$
m Q_{C}=-\nu m,
$$

for some $\nu>0$.

CTMCs: Limiting Conditional Dist'ns

If the $S=\{0\} \cup C$ and the absorbing state zero is reached with probability one, the limiting conditional distribution is given by $m=\left(m_{i}, i \in C\right)$ such that

$$
m Q_{C}=-\nu m,
$$

for some $\nu>0$.
When C is a finite set then there is a unique such ν.

CTMCs: Summary

- Countable state Markov chains are stochastic modelling tools which have been analysed extensively.
- Where closed form expressions are not available there are accurate numerical methods for approximating quantities of interest.
- They have found application in fields as diverse as ecology, physical chemistry and telecommunications systems modelling.

