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Habitat dynamics

“Classical” patch-occupancy metapopulation
models assume that habitat is a constant
component of the model.
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Habitat dynamics

“Classical” patch-occupancy metapopulation
models assume that habitat is a constant
component of the model.

• Many patchy habitats are not static:

• Some species appear to have a negative impact on
their local habitat;

• Species utilising successional habitat depend on
habitat dynamics;

• Habitat may be affected by environmental events...
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A metapopulation with habitat dynamics
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Transition rates...

For (x, y) ∈ N
2, such that 0 ≤ y ≤ x ≤ N ,
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Difficulties asN ↑

When N is finite, we can hope to evaluate measures of
interest (hitting times, QSDs, etc) directly.

Direct computation of hitting times, etc., becomes
infeasible as N gets large! Size of the problem is O(N 4).
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Difficulties asN ↑

When N is finite, we can hope to evaluate measures of
interest (hitting times, QSDs, etc) directly.

Direct computation of hitting times, etc., becomes
infeasible as N gets large! Size of the problem is O(N 4).

• To make progress, we need good approximations: e.g.
stochastic differential equations for the limit as
N → ∞?
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Simulations
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Simulations
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Interlude: (i) density dependent processes

If a family of Markov chains indexed by n has rates

qij = nβj

(

i

n

)

,

then we call this a density dependent family.
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Interlude: (i) density dependent processes

If a family of Markov chains indexed by n has rates

qij = nβj

(

i

n

)

,

then we call this a density dependent family.

Strong law of large numbers. If {Xn} is a density
dependent family, if F (x) =

∑

j jβj(x), and

X(t) = x0 +
∫ t

0
F (X(s))dt, then sups≤t |Xn(s) − X(s)| → 0,

almost surely (under mild conditions on the βj ’s and F ).
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Interlude: (ii) central limit

The strong law of large numbers results from a
proportional scaling of the process (i.e. by 1/n), which
reduces the variability to 0. We might want to understand
the fluctuations about the deterministic path:
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Interlude: (ii) central limit

The strong law of large numbers results from a
proportional scaling of the process (i.e. by 1/n), which
reduces the variability to 0. We might want to understand
the fluctuations about the deterministic path:

Central limit theorem. If {Xn} and X are as above, and
if Vn =

√
n(Xn −X), then if Vn(0) → V (0), Vn ⇒ V where V

is a particular diffusion process with drift (under additional
continuity conditions).
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Simulation
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A central limit scaling (i)

Let XN(t) = [XN YN ]⊤. We hope to find a process X̂

‘tracked’ by XN , but:
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A central limit scaling (i)

Let XN(t) = [XN YN ]⊤. We hope to find a process X̂

‘tracked’ by XN , but:

- catastrophes must occur at the same times!

Define X̂ as the piecewise deterministic process:

• deterministic between catastrophes (SLLN);

• catastrophes occur according to Poisson arrivals, but
with size pX̂.
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A central limit scaling (ii)

Define ZN =
√

N(XN/N − X̂), where we assume that
catastrophes in XN and X̂ occur at arrival times of the
same Poisson process.

Then, we hope




ZN

X̂



 ⇒





Z

X̂



 ,

for some Z.
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A central limit scaling (ii)

Define ZN =
√

N(XN/N − X̂), where we assume that
catastrophes in XN and X̂ occur at arrival times of the
same Poisson process.

Then, we hope




ZN

X̂



 ⇒





Z

X̂



 ,

for some Z.

What is the form of Z?
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Generators

The generator of [Z⊤
N X̂

⊤]⊤, GNf → Gf as N → ∞, where
Gf has:
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Generators

The generator of [Z⊤
N X̂

⊤]⊤, GNf → Gf as N → ∞, where
Gf has:

• Drift components derived from
[

∂Fi

∂zj

]

=





−r 0

cz2 cz1 − 2cz2 − e



.

• Diffusion components 1

2
r(1 − z1)fz1z1

and
1

2
[cz2(z1 − z2) + ez2]fz2z2

.

• Catastrophe component obtained by
E[f(Z1 + U1, Z2 + U2, ·) − f(Z1, Z2, ·)], where (U1, U2) is
bivariate normal.
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Proving convergence in distribution

GNf → Gf does not guarantee convergence in distribution
of the scaled process! It is necessary to:
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Proving convergence in distribution

GNf → Gf does not guarantee convergence in distribution
of the scaled process! It is necessary to:

• Construct the martingale problem corresponding to G;

• Show that it has at most one solution;

• Establish a ‘compact containment’ condition on ZN ,
and convergence conditions on GN and G.

We do this to establish (by theorems of Ethier & Kurtz,
1986) that [Z⊤

N X̂
⊤]⊤ ⇒ [Z⊤

X̂
⊤]⊤.
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So what now? Hitting times.

If G is the generator of a diffusion process subject to jumps
at Poisson arrival times and H is an open set, then the
minimal, non-negative solution h(x, y) to

Gh(x, y) = −1, (x, y) ∈ H ⊂ S,

h(x, y) = 0, (x, y) /∈ H,

gives the expected time to depart H, i.e. to hit S\H
(Gihman & Skorohod, 1972).
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So what now? Hitting times.

If G is the generator of a diffusion process subject to jumps
at Poisson arrival times and H is an open set, then the
minimal, non-negative solution h(x, y) to

Gh(x, y) = −1, (x, y) ∈ H ⊂ S,

h(x, y) = 0, (x, y) /∈ H,

gives the expected time to depart H, i.e. to hit S\H
(Gihman & Skorohod, 1972).

Let G be the generator of X̂ +
√

NZ; we could approximate
expected times to extinction of the metapopulation.
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Future directions

• Extension of this approach to general density
dependent processes subject to a wider class of
catastrophes.

• Investigation of the accuracy of the approximations and
their properties (e.g. hitting times).

• When do features of small-N processes remain in
large-N approximations?
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