Assignment 5

Insert author

Insert date

Abstract

Instructions: Please set the following. Make sure to load the amsmath package. Experiment with

\parindentOmm \liminf \inf

Suppose that $\{X_n\}$ is a sequence of random variables which converges (pointwise) to a random variable X.

Theorem 1 (The Monotone Convergence Theorem) If, for each n, $X_n(\omega) \ge 0$ and $X_n(\omega) \le X_{n+1}(\omega)$, $\omega \in \Omega$, then $\{E(X_n)\}$ converges to E(X).

Now suppose that $\{X_n\}$ is a sequence of *non-negative* random variables. Define $\{Y_n\}$ by

$$Y_n(\omega) = \inf_{m \ge n} \{X_m(\omega)\}, \qquad \omega \in \Omega.$$

On applying Theorem 1 to $\{Y_n\}$ we get Fatou's lemma:

Corollary 1 (Fatou's lemma)

$$\liminf_{n \to \infty} \mathcal{E}(X_n) \ge \mathcal{E}\left(\liminf_{n \to \infty} X_n\right).$$

Both of these results can be found in Williams [1].

References

[1] D. Williams, *Probability with Martingales*. Cambridge University Press (1991).