Assignment 3

Insert author

Insert date

Abstract

Instructions: Please set the following. Make sure to load the amsmath package. Experiment with the following commands: ```\usepackage{times} \omega \mathcal{F} \omega \leq \{ \} \Pr {\bf bold text}```

If F is a random variable on a probability space (Ω, \mathcal{F}, P), then

$$
\begin{aligned}
\operatorname{Pr}(X \leq x): & =P(\{X \leq x\}) \\
& =P(\{\omega \in \Omega: X(\omega) \leq x\})
\end{aligned}
$$

For example,

$$
\operatorname{Pr}(X \leq x)= \begin{cases}0, & \text { if } x<0 \\ \frac{x}{2 \pi}, & \text { if } 0 \leq x<2 \pi \\ 1, & \text { if } x \geq 2 \pi\end{cases}
$$

The two state Markov chain. Let $S=\{0,1\}$ and let

$$
P=\left(\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right)
$$

where $p, q \in(0,1)$. After diagonalizing P, we see that

$$
\begin{aligned}
P^{(n)} & =\left[\frac{1}{p+q}\left(\begin{array}{cc}
1 & p \\
1 & -q
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & r
\end{array}\right)\left(\begin{array}{cc}
q & p \\
1 & -1
\end{array}\right)\right]^{n} \\
& =\frac{1}{p+q}\left(\begin{array}{cc}
1 & p \\
1 & -q
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & r^{n}
\end{array}\right)\left(\begin{array}{cc}
q & p \\
1 & -1
\end{array}\right) \\
& =\frac{1}{p+q}\left(\begin{array}{cc}
q+p r^{n} & p-p r^{n} \\
q-q r^{n} & p+q r^{n}
\end{array}\right),
\end{aligned}
$$

where $r=1-p-q$. Thus, we have an explicit expression for the n-step transition probabilities.

