Unbounded integrands

This file contains explanations for choices of gauges in the Maple worksheet
examples.mw.

Example 1 The integrand is fi(z) = —In|z|. In the worksheet the
definition is extended at zero as zero. Let the expected value of the integral
over an interval [u, v] be F'(v) — F(u). Assume that the tagged division D of
[—1,1] is d;-fine, for some not yet specified d; which ensures that zero tags
every interval which contains it. Let Dy be the part of D which does not
contain any interval tagged by zero. Then we have, for some z € [u, v],

If we can choose d; in such a way that

d
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then W < 2e. Luckily, it is possible to satisfy the inequality (1) by defining
(0<e<1)
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This choice also forces zero to be the tag of the subinterval which contains
it. If di(0) = e with 0 < € < 1 then we have altogether

for x #0.

Z(F(v) — F(u) — f(z)(v —u)| <4e —2clne.

D

For the display we have choosen ¢ = 0.12.
Example 2 The integrand is f5() = ——. In the worksheet the defini-
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tion is extended at zero to be 0. Let Fy(x) = ky/|z| with k = 2 for > 0
and k = —2 for x < 0. The expected value of the integral over an interval
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Figure 1: In on [—1,1]



[u, v] is Fy(v) — Fy(u). Assume that the tagged division of [—1,1] is dy-fine,
for some not yet specified do. We consider the interval [0, 1] first. Then we
have

W— ‘Z {Fg(v) — Fy(u) - %(“ B “)} ‘
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<> (Vv — V) Q/H@—%—@).

The choice dy = e3|x| with 0 < &5 < 1 is now fairly obvious and we obtain

<

WS\/1+€2—\/1—€2§2€2.

The choice of ds also forces zero to be the tag of the subinterval which contains
it. If d2(0) = e5 then we have altogether

S (B) - Baw) — h@)e - w)| < 20+ 25 2)

The resoning for the interval [—1,0] is similar. For the display we have
choosen €9 = 0.1.

Example 3 The basic interval is [—1,1]. The integrand f3 is defined as
follows

0.1 ifx < -1
1
={ — ife<l1
(@) =\ =
0.1 ifz>1

Inspired by the previous examples we choose the gauge to be an €3 multiple of
the distance to the points where the integrand is unbounded. More precisely

T Nes(i— 2 itz <1

Assume that the tagged division of [—1,1] is ds-fine, with 0 < 5 < 1. Then
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Figure 2: (v/z)~ " on [0,1]
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Figure 3: (\/W) on [—1,1]
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we have, for some 2z with u < z < w,

)
W = arcsin(v) — arcsin(u) — ———
o O =

< Y (aresin) — avesin(u)) [1 - /1=,

resin(v) — arcsin(w — )

B —1l<u,v<1 1 - xQ

The absolute value in the sum can be estimated as follows (noting that

11— VX| <|1—X|for X >0)

1 — 22
1—22

1—

|22 — 2% |z — 7| ds(z)
T e

This together with the choises for ds at £1 gives
‘Z (arcsin(v) — arcsin(u) — f3(z)(v — u))
< 2egarcsin(1) + 2 (arcsin(1) — arcsin(1 — €3)) .

This proves that f_ll f3 = 2arcsin(1).
For the display we have chosen g3 = 0.09.
Example 4 The integrand f; is defined as follows:

1 —lz] 1 it 2(1—|z) £0
I Svie= v L
0 if z(1 — |z|) = 0.

Let F5, be defined as in Example 2. Let

Glx) 441+ it -1<2<0
€Tr) =
—2y/1—-2+4+6 if0<z <1

Note that G is continuous at 0. If Fy, = G — F5 then we expect f; fi =
Fy(v) — Fy(u). Similarly as in the previous examples we choose the gauge



Figure 4: Singularities at both ends



proportional to the distance to the points in neighborhood of which the
integrand is not bounded, more precisely

dy() = g4 (Min(1 — |2[, [z]) + |1 + ]| = [2])

Let D be dy-fine tagged division of [—1,1]. We break the sum

W = Z (Fy(v — fa(@)(v —u))]| (3)

into several parts. Firstly we consider the tagged partial division Dy in
which the subintervals are tagged by —1,0,1. Let [—1,V_;] and [Uy, 1] be
the intervals tagged by —1 and 1, respectively. Denote by [Up, Vp] the interval
or the union of intervals (if they are two) tagged by 0. Then we have

Y (Fa(v) = Fi(u) = fa@)(v —w)| < Y (Fa(v) = Fi(u))

Do DO

<AVIF Vo +2 (1= VIVAD) + [G0) = GU0)| + [Fa(Vh) - Fa(Un)]

+2/1= U +2(1- V1)
<4y 424+ 6(VItes—1) +4eg+2/Es + 264 < 1leg + 625 (4)

Denote by D, that part of D in which the tags are not equal to —1 or 0 or
1. Similarly as in Example 2. we have

< 4(ea+Vea) (5)

>R ~ fol@) (v — )

We obtain for some 2z € [u, v]

)~ Gl ~ o~ )| < [606) G >]‘ Y= ©
Since
VIH| [l Bl
‘1 bk < )




we have by inequalities (6) and (7)

Y (G(v) = G(u) = g(z)(v — u))| < G(L)es = 624

Dy

Combining inequalities (5) and (8) leads to

— fa(z) (v — u)| < 10e4 + 44/E4.

Finaly we have by (4) and the last inequality

— fa(@)(v —u)

For the display ¢4 = 0.1

S 2164 + 10\/5



Figure 5: Singularities at both ends and in the centre
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