Unbounded integrands

This file contains explanations for choices of gauges in the Maple worksheet examples.mw.

Example 1 The integrand is $f_{1}(x)=-\ln |x|$. In the worksheet the definition is extended at zero as zero. Let the expected value of the integral over an interval $[u, v]$ be $F(v)-F(u)$. Assume that the tagged division D of $[-1,1]$ is d_{1}-fine, for some not yet specified d_{1} which ensures that zero tags every interval which contains it. Let D_{0} be the part of D which does not contain any interval tagged by zero. Then we have, for some $z \in[u, v]$,

$$
\begin{aligned}
& W=\mid \sum_{D_{0}}(F(v)-F(u)- f(x)(v-u) \mid \\
& \leq\left|\sum_{D_{0}}\left((v-u) \ln \frac{z}{x}\right)\right| \\
& \leq \sum_{D_{0}}(v-u) \ln \frac{|x|+d_{1}(x)}{|x|-d_{1}(x)}
\end{aligned}
$$

If we can choose d_{1} in such a way that

$$
\begin{equation*}
\ln \frac{|x|+d_{1}(x)}{|x|-d_{1}(x)} \leq \varepsilon \tag{1}
\end{equation*}
$$

then $W \leq 2 \varepsilon$. Luckily, it is possible to satisfy the inequality (1) by defining $(0<\varepsilon<1)$

$$
d_{1}(x)=|x| \frac{e^{\varepsilon}-1}{e^{\varepsilon}+1} \quad \text { for } \quad x \neq 0
$$

This choice also forces zero to be the tag of the subinterval which contains it. If $d_{1}(0)=\varepsilon$ with $0<\varepsilon<1$ then we have altogether

$$
\mid \sum_{D}(F(v)-F(u)-f(x)(v-u) \mid \leq 4 \varepsilon-2 \varepsilon \ln \varepsilon
$$

For the display we have choosen $\varepsilon=0.12$.
Example 2 The integrand is $f_{2}(x)=\frac{1}{\sqrt{|x|}}$. In the worksheet the definition is extended at zero to be 0 . Let $F_{2}(x)=\kappa \sqrt{|x|}$ with $\kappa=2$ for $x \geq 0$ and $\kappa=-2$ for $x<0$. The expected value of the integral over an interval

Figure 1: \ln on $[-1,1]$
$[u, v]$ is $F_{2}(v)-F_{2}(u)$. Assume that the tagged division of $[-1,1]$ is d_{2}-fine, for some not yet specified d_{2}. We consider the interval $[0,1]$ first. Then we have

$$
\begin{aligned}
& W=\mid \sum\left[F_{2}(v)-\right.\left.F_{2}(u)-\frac{1}{\sqrt{x}}(v-u)\right] \mid \\
& \leq\left|\sum \frac{2 \sqrt{x}-(\sqrt{(v)}+\sqrt{(} u))}{\sqrt{x}}\right|(\sqrt{v}-\sqrt{u}) \\
& \leq \sum(\sqrt{v}-\sqrt{u})\left(\sqrt{1+\frac{d_{2}(x)}{x}}-\sqrt{1-\frac{d_{2}(x)}{x}}\right)
\end{aligned}
$$

The choice $d_{2}=\varepsilon_{2}|x|$ with $0<\varepsilon_{2}<1$ is now fairly obvious and we obtain

$$
W \leq \sqrt{1+\varepsilon_{2}}-\sqrt{1-\varepsilon_{2}} \leq 2 \varepsilon_{2}
$$

The choice of d_{2} also forces zero to be the tag of the subinterval which contains it. If $d_{2}(0)=\varepsilon_{2}$ then we have altogether

$$
\begin{equation*}
\mid \sum\left(F_{2}(v)-F_{2}(u)-f_{2}(x)(v-u) \mid<2 \varepsilon_{2}+2 \sqrt{\varepsilon_{2}} .\right. \tag{2}
\end{equation*}
$$

The resoning for the interval $[-1,0]$ is similar. For the display we have choosen $\varepsilon_{2}=0.1$.

Example 3 The basic interval is $[-1,1]$. The integrand f_{3} is defined as follows

$$
f_{3}(x)= \begin{cases}0.1 & \text { if } x \leq-1 \\ \frac{1}{\sqrt{1-x^{2}}} & \text { if } x<1 \\ 0.1 & \text { if } x \geq 1\end{cases}
$$

Inspired by the previous examples we choose the gauge to be an ε_{3} multiple of the distance to the points where the integrand is unbounded. More precisely

$$
d_{3}(x)= \begin{cases}\varepsilon_{3} & \text { if }|x|=1 \\ \varepsilon_{3}(1-|x|) & \text { if }|x|<1\end{cases}
$$

Assume that the tagged division of $[-1,1]$ is d_{3}-fine, with $0<\varepsilon_{3}<1$. Then

Figure 2: $(\sqrt{x})^{-1}$ on $[0,1]$

Figure 3: $(\sqrt{|x|})^{-1}$ on $[-1,1]$
we have, for some z with $u \leq z \leq v$,

$$
\begin{aligned}
& W=\mid \sum_{-1<u, v<1}(\arcsin (v)\left.-\arcsin (u)-\frac{v-u}{\sqrt{1-x^{2}}}\right) \mid \\
& \leq \sum_{-1<u, v<1}(\arcsin (v)-\arcsin (u))\left|1-\sqrt{\frac{1-z^{2}}{1-x^{2}}}\right|
\end{aligned}
$$

The absolute value in the sum can be estimated as follows (noting that $|1-\sqrt{X}| \leq|1-X|$ for $X>0)$

$$
\begin{aligned}
&\left|1-\sqrt{\frac{1-z^{2}}{1-x^{2}}}\right| \leq\left|1-\frac{1-z^{2}}{1-x^{2}}\right| \\
& \leq \frac{\left|z^{2}-x^{2}\right|}{1-x^{2}} \leq \frac{|z-x|}{1-|x|} \leq \frac{d_{3}(x)}{1-|x|} \leq \varepsilon_{3}
\end{aligned}
$$

This together with the choises for d_{3} at ± 1 gives

$$
\begin{aligned}
& \left|\sum\left(\arcsin (v)-\arcsin (u)-f_{3}(x)(v-u)\right)\right| \\
& \leq 2 \varepsilon_{3} \arcsin (1)+2\left(\arcsin (1)-\arcsin \left(1-\varepsilon_{3}\right)\right)
\end{aligned}
$$

This proves that $\int_{-1}^{1} f_{3}=2 \arcsin (1)$.
For the display we have chosen $\varepsilon_{3}=0.09$.
Example 4 The integrand f_{4} is defined as follows:

$$
f_{4}(x)= \begin{cases}\frac{1-\lfloor x\rfloor}{\sqrt{1-|x|}}-\frac{1}{\sqrt{|x|}} & \text { if } x(1-|x|) \neq 0 \\ 0 & \text { if } x(1-|x|)=0\end{cases}
$$

Let F_{2} be defined as in Example 2. Let

$$
G(x)= \begin{cases}4 \sqrt{1+x} & \text { if }-1 \leq x \leq 0 \\ -2 \sqrt{1-x}+6 & \text { if } 0<x \leq 1\end{cases}
$$

Note that G is continuous at 0 . If $F_{4}=G-F_{2}$ then we expect $\int_{u}^{v} f_{4}=$ $F_{4}(v)-F_{4}(u)$. Similarly as in the previous examples we choose the gauge

Figure 4: Singularities at both ends
proportional to the distance to the points in neighborhood of which the integrand is not bounded, more precisely

$$
d_{4}(x)=\varepsilon_{4}(\operatorname{Min}(1-|x|,|x|)+\lfloor 1+x\rfloor-\lceil x\rceil)
$$

Let D be d_{4}-fine tagged division of $[-1,1]$. We break the sum

$$
\begin{equation*}
W=\sum_{D}\left(F_{4}(v)-F_{4}(u)-f_{4}(x)(v-u)\right) \mid \tag{3}
\end{equation*}
$$

into several parts. Firstly we consider the tagged partial division D_{0} in which the subintervals are tagged by $-1,0,1$. Let $\left[-1, V_{-1}\right]$ and $\left[U_{1}, 1\right]$ be the intervals tagged by -1 and 1 , respectively. Denote by $\left[U_{0}, V_{0}\right]$ the interval or the union of intervals (if they are two) tagged by 0 . Then we have

$$
\begin{align*}
& \left\lvert\, \begin{array}{|l}
\left|\sum_{D_{0}}\left(F_{4}(v)-F_{4}(u)-f_{4}(x)(v-u)\right)\right| \leq\left|\sum_{D_{0}}\left(F_{4}(v)-F_{4}(u)\right)\right| \\
\leq 4 \sqrt{1+V_{-1}}+2\left(1-\sqrt{\left|V_{-1}\right|}\right)+ \\
\left.+G\left(V_{0}\right)-G\left(U_{0}\right)\right]+\left[F_{2}\left(V_{0}\right)-F_{2}\left(U_{0}\right)\right] \\
+2 \sqrt{1-U_{1}}+2\left(1-\sqrt{U_{1}}\right)
\end{array}\right. \\
& \leq 4 \sqrt{\varepsilon_{4}}+2 \varepsilon_{4}+6\left(\sqrt{1+\varepsilon_{4}}-1\right)+4 \varepsilon_{4}+2 \sqrt{\varepsilon_{4}}+2 \varepsilon_{4} \leq 11 \varepsilon_{4}+6 \sqrt{\varepsilon_{4}}
\end{align*}
$$

Denote by $D_{ \pm}$that part of D in which the tags are not equal to -1 or 0 or 1. Similarly as in Example 2. we have

$$
\begin{equation*}
\left|\sum_{D \pm} F_{2}(v)-F_{2}(u)-f_{2}(x)(v-u)\right| \leq 4\left(\varepsilon_{4}+\sqrt{\varepsilon_{4}}\right) \tag{5}
\end{equation*}
$$

We obtain for some $z \in[u, v]$

$$
\begin{equation*}
\left|G(v)-G(u)-\frac{1-\lfloor x\rfloor}{\sqrt{1-|x|}}(v-u)\right| \leq[G(v)-G(u)]\left|1-\frac{\sqrt{1-|z|}}{\sqrt{1-|x|} \mid}\right| \tag{6}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left|1-\frac{\sqrt{1-|z|}}{\sqrt{1-|x|}}\right| \leq\left|\frac{|x|-|z|}{1-|x|}\right| \leq \varepsilon_{4} \tag{7}
\end{equation*}
$$

we have by inequalities (6) and (7)

$$
\begin{equation*}
\left|\sum_{D_{ \pm}}(G(v)-G(u)-g(x)(v-u))\right| \leq G(1) \varepsilon_{4}=6 \varepsilon_{4} \tag{8}
\end{equation*}
$$

Combining inequalities (5) and (8) leads to

$$
\left|\sum_{D \pm} F_{4}(v)-F_{4}(u)-f_{4}(x)(v-u)\right| \leq 10 \varepsilon_{4}+4 \sqrt{\varepsilon_{4}}
$$

Finaly we have by (4) and the last inequality

$$
\left|\sum_{D} F_{4}(v)-F_{4}(u)-f_{4}(x)(v-u)\right| \leq 21 \varepsilon_{4}+10 \sqrt{\varepsilon_{4}}
$$

For the display $\varepsilon_{4}=0.1$

Figure 5: Singularities at both ends and in the centre

