A polynomial

The polynomial P we have choosen in this example is nothing special but it suits our purposes because it changes fairly rapidly on $[0,8]$.

$$
\begin{array}{r}
P(x)=8.7283509 .10^{-3} x^{7}-0.2626950683 x^{6}+3.147340034 x^{5}-18.98393186 x^{4} \\
+59.68279449 x^{3}-89.75801494 x^{2}+47.66577899 x+1 \tag{1}
\end{array}
$$

In order to choose a suitable gauge we estimate

$$
\left|\int_{u}^{v} P-P(x)(v-u)\right| \leq|P(\xi)-P(x)|(v-u)
$$

with some $\xi \in[u, v]$. Now we use the Taylor formula in which we neglect all terms of order 3 and higher and have:

$$
|P(\xi)-P(x)| \leq\left|P^{\prime}(x)(\xi-x)+\frac{P^{\prime \prime}(x)}{2}(\xi-x)^{2}\right|
$$

If a tagged division $\{[u, v], x\}$ is δ-fine (for some not yet specified δ) then $|\xi-x| \leq \delta(x)$. We now decide (a bit arbitrarily but quite reasonably) that we shall have $\delta \leq 0.6$. Then

$$
|P(\xi)-P(x)| \leq \operatorname{Min}\left(0.6,\left(\left|P^{\prime}(x)\right|+0.3\left|P^{\prime \prime}(x)\right|\right)\right) \delta(x)
$$

For an arbitrary $\varepsilon>0$ the choice for δ as

$$
\delta(x)=\operatorname{Min}\left(0.6, \frac{\varepsilon}{\left|P^{\prime}(x)\right|+0.3\left|P^{\prime \prime}(x)\right|}\right)
$$

seems quite natural. Unfortunately, even with $\varepsilon=1$ some of the subintervals of the δ-fine tagged division become too small for the display. To correct this we made the length of the smallest subinterval at least half a mm. Finally we have

$$
\delta(x)=\operatorname{Max}\left(0.05, \operatorname{Min}\left(0.6, \frac{1}{\left|P^{\prime}(x)\right|+0.3\left|P^{\prime \prime}(x)\right|}\right)\right) .
$$

