Simple unbounded integrand

The integrand f in this example is simple but unbounded and hence not Riemann integrable. For $x=2^{-n}$ the function value $f(x)=n+1$, otherwise $f(x)=0$. A suitable gauge would be equal to $\frac{\epsilon}{\left(2^{n}\right)(n+1)}$ if $x=1 / 2^{n}$ and 1 otherwise. The definition of the Kurzweil inegral requires that for all tagged divisions which are gauge-fine the Riemann sum is within ε of the expected value of the integral. Unfortunately and inevitably the computer will display only one sum. With the above choice our program will produce 0 for the Riemann sum, a rather uninteresting result. Therefore we aim below for the worst possible scenario for the Riemann sum. For a good display we choose a fairly large ε. This might cause the contribution from the subinterval which is tagged by 1 becoming too large. In order to prevent this we make an adjustment in our definition of gauge. Our choice of ε below causes a fairly large error. However we are interested in a good graphical display rather than in accuracy. First we denote $n=\log _{2}(x)$ and then we define the integrand as

$$
f(x)=\left\{\begin{array}{lr}
0 & \text { if } x=0 \\
(\lfloor n+1\rfloor-\lceil n\rceil)(-n+1) & \text { otherwise }
\end{array}\right.
$$

The gauge δ is defined as follows:

$$
\delta(x)=\left\{\begin{array}{lr}
\eta & \text { if } x=0 \\
\min (0.1,\lfloor n+1\rfloor-\lceil n\rceil) \frac{x \varepsilon}{-n+1}+0.9\left(2^{\lceil n\rceil}-x\right) & \text { otherwise } .
\end{array}\right.
$$

For the display we choose

$$
\varepsilon=0.9 \quad \text { and } \quad \eta=0.05
$$

