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Abstract
The poset G(n) comprises the unlabelled simple graphs of

order n, with partial ordering G ≤ H whenever G is a spanning
subgraph of H. We define a modified Steinbach numbering of
the graphs in G(n), apply this numbering to each G(n) with
n ≤ 8, and use it to tabulate the Hasse diagram structure
of the posets with 4 ≤ n ≤ 8 together with key aspects of
the independence structure of these posets. In particular, the
Hasse diagram of G(8) is a directed graph of order 12346 and
size 125066; the poset G(8) has 51952895 independent pairs of
graphs, and 96775426396 independent triples. We present 14
tables of descriptive data for G(n) with 4 ≤ n ≤ 8. All of the
underlying data can be found on our webpage

www.maths.uq.edu.au/~pa/research/posets4to8.html
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1 Introduction

Let G(n) be the set of unlabelled simple graphs of order n, or “the
set of graphs of order n” for simplicity. The set G(n) is a partially
ordered set (poset) under the relation G ≤ H, defined whenever
G,H ∈ G(n) and G is isomorphic to a subgraph of H. For conve-
nience, we shall regard all graphs in G(n) as having the same vertex
set, and so interpret G ≤ H as meaning that G is a spanning sub-
graph of H. Experience shows that using the set notation G(n) to
also denote the poset does not cause confusion, so we shall follow
that practice. Since the graphs of small order are the fundamental
structures of graph theory, their structural relationships are of great
interest. Motivated by this fact, our objective here is to present pre-
cise computational data on various structural characteristics of the
posets G(n) for small values of n.

The posets G(1), G(2) and G(3) have orders 1, 2 and 4 respec-
tively, and each is linearly ordered, so their structure is completely
transparent. The first member of the family that is not linearly
ordered is the poset G(4), of order 11. Subsequent members have
orders

|G(5)| = 34, |G(6)| = 156, |G(7)| = 1044, |G(8)| = 12346, · · · .

Indeed, the orders |G(n)| for n ≥ 1 are the terms of sequence A000088
in Sloane’s Encyclopedia of Integer Sequences [5]. The structural
complexity of G(n) grows correspondingly rapidly, and properties
which are easily determined by inspection for G(4) may be compu-
tationally challenging to determine for G(n) when n = 8, or even
sooner.

In each poset G(n), the complete graph Kn is the unique maximal
element. The complement Gc of any graph G ∈ G(n) is the graph
Gc := Kn−E(G), where E(G) is the edge set of G. In particular, the
empty graph Kc

n is the unique minimal element of G(n). If G,H ∈
G(n) and G ≤ H, then Hc ≤ Gc, so the complementation map
c : G(n)→G(n), mapping each graph G to its complement Gc, is
an anti-automorphism of the poset G(n). Thus G(n) has a type of
central symmetry.
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2 Numbering the graphs of order n

To discuss the poset structure of G(n) we must first have a method of
specifying the graphs of order n. In his Field Guide to Simple Graphs
[6], Steinbach illustrates every graph of order n ≤ 7 (a total of 1252
graphs), and to each such graph G he assigns a number N(G), which
we call the Steinbach number of G. With four exceptions, Steinbach
numbers satisfy the complementation rule

N(G) +N(Gc) = |G(n)|+ 1,

so a graph and its complement occupy complementary positions
within the listing in [6]. Because Steinbach numbers reflect the anti-
automorphism of G(n) produced by complementation, they are well
suited to our purposes. (In their Atlas of Graphs [4], Read and Wil-
son give a different numbering system and set of illustrations for the
members of G(n) with n ≤ 7, but their numbering has no simple
relationship with complementation, so is not as well suited to poset
description.)

For each n ≤ 7, Steinbach’s numbering of the graphs in G(n)
first sorts them by increasing size (number of edges). Once a graph
G in the “first half” of G(n) has been assigned a Steinbach num-
ber, if Gc 6= G then Gc lies in the “second half” of G(n), and the
Steinbach number of Gc follows from the complementation rule. Let
G(n,m) denote the level set comprising all graphs of size m in G(n).
If m < n(n − 1)/4, then all graphs in G(n,m) are clearly in the
“first half” of G(n) and none is self-complementary. The Steinbach
numbering of graphs in G(n,m) sorts them by lexicographic order
of increasing degree sequence, and for those with the same degree
sequence, lists the disconnected graphs before the connected graphs.
(Steinbach’s final listing within these classes is rather subjective.)
When n = 4 or 5 and m = n(n − 1)/4, the middle level set G(n,m)
is split between the “first half” and the “second half” of G(n), and
the self-complementary graphs present an added complication. It
seems natural to place the self-complementary graphs in the “mid-
dle” of G(n,m), and to place the other pairs of graphs G, Gc (with
Gc 6= G) symmetrically about the middle, assigning G to the “first
half” if its increasing degree sequence lexicographically precedes that
of Gc and making some “tie-breaking” assignment if G and Gc have
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the same degree sequence, then sorting the “first half” of G(n,m)
by lexicographic order of increasing degree sequence and ordering
the “second half” of G(n,m) in accordance with the complementa-
tion rule. This procedure yields Steinbach’s numbering of G(4, 3).
However for G(5, 5) Steinbach uses lexicographic order of increas-
ing degree sequence before placing the self-complementary graphs
in the “middle”, so the two self-complementary graphs end up be-
ing separated by one graph which is not self-complementary (though
it does have the same degree sequence as its complement). Thus
Steinbach’s numbering of G(5, 5) has four exceptions to the comple-
mentation rule, whereas the alternative procedure would have had
the two self-complementary graphs as its only exceptions.

We now propose a modified Steinbach numbering system for
any G(n), in the spirit of Steinbach’s system but eliminating quirks
arising from the subjectivity of its “fine structure”. Our modified
numbering system (“SEAM numbering”) slightly adjusts Steinbach’s
rules and extends them so that it objectively assigns a number N∗(G)
to each graph G ∈ G(n) and preserves the complementation rule for
every graph that is not self-complementary.

Given G(n), the SEAM numbering of the graphs in G(n) is a
bijection N∗ : G(n)→[1.. |G(n)|] defined implicitly by the following
rules. The “first half” F , the “middle” M and the “second half”
S of G(n) are disjoint subsets with union equal to G(n), such that
if G ∈ M then Gc = G, and G ∈ F if and only if Gc ∈ S. Note
that M can be empty, so technically this may not be a partition of
G(n); also note that ifM is nonempty then F and S are not strictly
halves of G(n).

With each graph G ∈ G(n) associate the signature, defined to be
the sequence

Σ(G) := m; 0d(0), 1d(1), · · · , (n− 1)d(n−1);n− c;
1c(1), 2c(2), · · · , nc(n); g, f ; e(1), e(2), · · · , e(m)

where
(a) m is the size of G;
(b) d(r) is the number of vertices of degree r, so the increasing

degree sequence for G is 0d(0), 1d(1), · · · , (n − 1)d(n−1) where
the indices denote multiplicities (terms with 0 multiplicity are
omitted in practice);
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(c) c is the number of components of G, so n− c is the size of any
spanning forest in G;

(d) c(r) is the number of components of order r, so the increasing
component order sequence for G is 1c(1), 2c(2), · · · , nc(n) where
again the indices denote multiplicities (terms with 0 multiplic-
ity are omitted in practice);

(e) g is the girth (order of the smallest cycle) of G, and f is the
frequency (number) of cycles of order g in G (if G is acyclic
then g = f = 0);

(f) e(1), e(2), · · · , e(m) is the canonical edge sequence ofG, namely,
the lexicographically earliest sequence specifying the edge set
of G under all possible bijections from the vertex set of G to
[1..n], and we write ij to denote an edge between vertices la-
belled i and j, with i < j.

The signatures determine which graphs belong to F and which
belong to S. If G ∈ G(n)\M then G ∈ F precisely when the signa-
ture Σ(G) is lexicographically earlier than the signature Σ(Gc). If
G ∈ F then N∗(G) < N∗(Gc) and the complementation rule

N∗(G) +N∗(Gc) = |G(n)|+ 1

holds. If G ∈ F and H ∈ M then N∗(G) < N∗(H). Finally, if
G,H ∈ F or G,H ∈ M then N∗(G) < N∗(H) precisely when the
signature Σ(G) is lexicographically earlier than the signature Σ(H).

To clarify these rules, let us note how lexicographic order applies
to sequences such as those of the form 0d(0), 1d(1), · · · , (n − 1)d(n−1).
The indices denote multiplicities so this represents a sequence in
which the first d(0) terms are 0, then the next d(1) terms are 1,
and so on. Let a(0), a(1), · · · , a(n − 1) and b(0), b(1), · · · , b(n − 1)
be two given sequences of non-negative integers. Then the sequence
0a(0), 1a(1), · · · , (n− 1)a(n−1) lexicographically precedes the sequence
0b(0), 1b(1), · · · , (n−1)b(n−1) precisely when there is some non-negative
integer k ≤ n − 1 such that a(k) > b(k) and a(r) = b(r) for every
non-negative integer r < k.

Note that we use n−c rather than c in the signature of any graph
since, following Steinbach, we want the disconnected realizations of
a given degree sequence to precede its connected realizations in the
SEAM listing.
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Clearly SEAM numbering is definitive, since every graph has a
unique canonical edge sequence and non-isomorphic graphs cannot
have the same edge sequence. In fact, we could use just the canoni-
cal edge sequence of each graph to linearly order G(n). However, the
resultant ordering would be not nearly as “natural” as the SEAM or-
dering. For example, under canonical edge sequence ordering, when
n ≥ 4 the complete graph Kn would precede the path Pn, which in
turn would precede any linear forest of two or more components.

Under the rules for SEAM numbering of G(n), self-complementary
graphs of order n (if there are any) are ordered by signature, and
assigned middle SEAM numbers. The graphs which are not self-
complementary are assigned SEAM numbers which satisfy the com-
plementation rule, and are arranged so that each complementary
pair is ordered by signature, and all graphs with SEAM numbers
preceding those of their complements are ordered by signature.

As a service to fellow graph-theorists, on the web page [3] we
tabulate the signature Σ(G) and the SEAM number N∗(G) of each
graph G ∈ G(n) for 4 ≤ n ≤ 8, cross-referenced with the Steinbach
number N(G) when 4 ≤ n ≤ 7 (which is as far as Steinbach’s tables
go). In G(5) only three graphs have Steinbach number different from
their SEAM number, while there are 20 displacements in G(6) and
563 in G(7). The largest displacement is a shift by two places in G(5),
a shift by one place in G(6) and a shift by 15 places in G(7).

Is the full signature ever needed to find the relative ranking of
two graphs in order to assign their SEAM numbers? Certainly! Let
A,B ∈ G(6) be the two trees with degree sequence 132231. The
signatures Σ(A) and Σ(B) differ only at the very last edge in their
canonical edge sequences, so the full signatures are needed to decide
the SEAM numbers N∗(A) and N∗(B). (These SEAM numbers turn
out to be 6:29 and 6:30. Note that for definiteness we can use the
order as prefix, but in contexts where the order is understood we
usually omit the prefix.) In fact A,B is the first pair of graphs
requiring the full signature for SEAM discrimination, and it is easy
to see that such pairs exist for every n ≥ 6.

From our signature tabulations for all graphs in G(n) with 4 ≤
n ≤ 8 we can deduce in particular many facts about degree sequences.
If there are exactly r graphs in G(n) with the same degree sequence,
we say that r is the multiplicity of the degree sequence they have in
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common. Let f(r) denote the number of degree sequences for G(n)
that have multiplicity r. Then

1f(1), 2f(2), · · · , rf(r), · · ·

is the degree sequence multiplicity distribution for G(n). Table 1
gives the number of distinct degree sequences and their multiplicity
distributions for 4 ≤ n ≤ 8. For each order n, the column “First
max” specifies the first degree sequence that attains maximum mul-
tiplicity. Our tabulations independently confirm the listing of degree
sequences of order n ≤ 8, with multiplicities, given in [4]. (Many fea-
tures not apparent in that format are highlighted by the frequency
distributions in Table 1.) The column “Total” indicates the number
of distinct graphic degree sequences of order n. This confirms the
terms with n ≤ 8 in sequence A004251 of Sloane’s listing [5].

Table 1: Degree sequence multiplicity distribution for G(n)

n Total Multiplicity distribution First max

4 11 111 04

5 31 128 23 1223

6 102 172 216 36 46 52 122232

7 342 1170 256 328 426 516 66 710 84 92 118 124 132

142 172 182 192 202 11223341

8 1213 1407 2165 386 488 560 630 740 821 924 108 1128 1222 1316

1416 158 164 176 188 1910 2013 212 225 236 244 254

264 278 288 2912 304 316 352 362 372 394 406 412

425 436 452 462 501 512 562 572 582 602 612 642

652 662 672 692 714 752 794 862 872 944 962 992

1092 1102 1152 1172 1491 1843 22334251

From Table 1 we have

Theorem 1 For each G(n) with n ≥ 1, the maximum number of
graphs with the same degree sequence is

1, 1, 1, 1, 2, 5, 20, 184, · · ·

and the number of distinct degree sequences is

1, 2, 4, 11, 31, 102, 342, 1213, · · ·
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For n ≤ 6, Table 1 shows that the vast majority of degree se-
quences of order n have unique realizations, but by order 8 the ma-
jority of sequences have at least 3 realizations. At order 7 the fine
structure of the multiplicity distribution begins to become appar-
ent, and at order 8 it is both surprising and striking how irregu-
larly the multiplicities are distributed. For G(8) the maximum mul-
tiplicity of 184 is attained by the complementary sequences 22334251

and 21324352, and the self-complementary sequence 21334351, while
the second highest multiplicity of 149 is attained only by the self-
complementary sequence 22324252. None of the 184 realizations of
21334351 is self-complementary, and exactly three of the 149 realiza-
tions of 22324252 are self-complementary.

Note that a degree sequence and its complement always have
the same multiplicity, so for any order n the number f(r) is odd just
when there is an odd number of self-complementary degree sequences
with multiplicity r. When n ≡ 2 or 3 (mod 4) no degree sequence of
order n can be self-complementary (since the size of Kn is odd), so in
these cases f(r) is even for every r. When n ≡ 0 or 1 (mod 4) there
always exist self-complementary graphs of order n, so there certainly
are self-complementary degree sequences of order n. In fact, for such
n it appears that there are increasingly many self-complementary
degree sequences which have no self-complementary realizations. We
note that f(r) is odd if n = 4 and r = 1, if n = 5 and r = 2, and if
n = 8 and r ∈ {1, 2, 8, 20, 22, 42, 50, 149, 184}. For n ≡ 0 or 1 (mod
4), we conjecture that there is always an r for which f(r) is odd.

3 Hasse diagrams

Suppose G,H ∈ G(n). If G ≤ H, then G + E = H for some set
of edges E. If |E| = r, we call H an r-extension of G, and G an
r-reduction of H. In particular, the Hasse diagram of G(n) is a
digraph HG(n) in which G(n) is the vertex set, and G → H is a
directed edge precisely when H is a 1-extension of G. Evidently
HG(n) fully represents the poset G(n), since there is a directed path
from G to H in HG(n) if and only if G ≤ H in G(n). The Hasse
diagram HG(n) has the empty graph Kc

n as its unique source vertex
and the complete graph Kn as its unique sink vertex. The vertices
at distance m from Kc

n in HG(n) comprise the level set G(n,m). The
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complementation map is a digraph anti-automorphism of HG(n).
Steinbach [6] specified the structure of HG(n) for n ≤ 7 by

listing the in-neighbours (that is, the immediate predecessors or 1-
reductions) and the out-neighbours (that is, the immediate successors
or 1-extensions) of each G ∈ G(n) for n ≤ 6, and of each G in the
“first half” of G(7), that is, each G ∈ G(7) with N(G) ≤ 522, the
structure of the “second half” of G(7) being implied by the comple-
mentation rule. Steinbach’s tables contained some sporadic errors,
all of which were corrected in our paper [1]. Full tables of the in-
neighbours and out-neighbours of each G ∈ G(n) for n ≤ 7, utilizing
Steinbach numbers, are given on the webpage for that paper.

Our new webpage [3] includes tables of the in-neighbours and
out-neighbours of each G ∈ G(n) for n ≤ 8, utilizing SEAM num-
bers. The inclusion of HG(8) takes us significantly beyond earlier
tabulations, since G(8) contains almost ten times as many graphs
as belong to all HG(n) with n ≤ 7. Clearly the table for HG(8) is
too extensive for publication in a hardcopy journal article. However,
outdegree sequences allow us to include here summary information
about HG(n). The outdegree sequence at level m for HG(n) is the
sequence

0d(m,0), 1d(m,1), · · · , rd(m,r), · · ·

where d(m, r) is the number of graphsG ∈ G(n,m) with r 1-extensions,
and the outdegree sequence for HG(n) is the corresponding sequence
in which the index of r is d(r) = Σmd(m, r). Tables 2−4 present
these outdegree sequences for HG(n) when 4 ≤ n ≤ 6, and Table
5 presents summary information for 4 ≤ n ≤ 8. In Tables 2−4 the
order and size at level m are the order of G(n,m) and the size of
the digraph between G(n,m) and G(n,m + 1), equal to Σrrd(m, r).
In Table 5 the order and size at n are the order and size of HG(n),
equal to Σrd(r) and Σrrd(r), respectively. In Tables 2−4, the “All
min” column records by SEAM number each graph which achieves
the minimum outdegree within its level, and “First max” records by
SEAM number the first graph which achieves the maximum outde-
gree within its level. The complement of any graph with outdegree 1
is edge-transitive, so these graphs can be found in the “All min” col-
umn; every other entry in this column is recorded in square brackets.

Because of the complementation anti-automorphism of HG(n),
each indegree sequence forHG(n), specifying numbers of 1-reductions,
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Table 2: Outdegree sequences for HG(4)

m Order Size Outdegree sequence All min First max

0 1 1 11 1 1
1 1 2 10 21 [ 2 ] 2
2 2 4 11 20 31 4 3
3 3 4 12 21 5 7 6
4 2 2 12 8 9 8
5 1 1 11 10 10
6 1 0 01 [ 11 ] 11

Table 3: Outdegree sequences for HG(5)

m Order Size Outdegree sequence All min First max

0 1 1 11 1 1
1 1 2 10 21 [ 2 ] 2
2 2 6 10 21 30 41 [ 4 ] 3
3 4 12 10 21 32 41 [ 5 ] 7
4 6 16 12 21 30 43 11 13 9
5 6 16 11 21 33 41 18 19
6 6 12 12 22 32 24 25 23
7 4 6 12 22 29 30 27
8 2 2 12 31 32 31
9 1 1 11 33 33

10 1 0 01 [ 34 ] 34

Table 4: Outdegree sequences for HG(6)

First
m Order Size Outdegree sequence All min max

0 1 1 11 1 1
1 1 2 10 21 [ 2 ] 2
2 2 7 10 20 31 41 [ 4 ] 3
3 5 18 11 21 30 41 51 61 9 8
4 9 40 10 20 34 42 51 60 71 81 [ 11 12 14 16 ] 13
5 15 68 11 22 32 43 51 63 72 81 25 23
6 21 96 11 24 32 42 55 63 73 80 91 53 46
7 24 107 11 22 32 49 55 62 71 82 63 68
8 24 96 10 22 310 45 53 61 73 [ 94 101 ] 85
9 21 68 14 23 33 47 53 61 103 104 118 123 111

10 15 40 12 24 36 43 132 133 127
11 9 18 13 23 33 139 145 146 140
12 5 7 13 22 148 151 152 149
13 2 2 12 153 154 153
14 1 1 11 155 155
15 1 0 01 [ 156 ] 156
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Table 5: The outdegree sequence for HG(n)

n Order Size Outdegree sequence

4 11 14 01 17 22 31

5 34 74 01 111 29 37 46

6 156 571 01 120 224 333 433 519 611 710 84 91

7 1044 6558 01 125 254 392 4133 5140 6139 7130 8107

978 1058 1139 12261316144152

8 12346 125066 01 137 2110 3235 4428 5600 6798 7997 81135 91196 101176

111124 121051 13967 14826 15652 16467 17293 18158

1971 2021 212 221

is equal to an appropriate outdegree sequence, so we need not list
indegree sequences explicitly.

Tables 2–5 tell us much about the Hasse diagrams of the posets
of graphs of orders n ≤ 8. Theorems 2, 3 and 4 summarize some of
this information.

Theorem 2 For n ≥ 1, the Hasse diagram HG(n) has size

0, 1, 3, 14, 74, 571, 6558, 125066, · · ·

We say that any graph G ∈ G(n) has productivity d if it has
exactly d distinct 1-extensions: evidently d is the outdegree of G as
a vertex of HG(n). A graph G has productivity 1 precisely when
its complement Gc is nonempty and edge-transitive, so the number
of edge-transitive graphs in G(n) is one greater than the number of
vertices of outdegree 1 in HG(n), because the empty graph Kc

n is
trivially edge-transitive.

Theorem 3 For n ≥ 1, the number of edge-transitive graphs in G(n)
is

1, 2, 4, 8, 12, 21, 26, 38, · · ·

For each n ≥ 1, the number of maximally productive graphs, with
their productivity, is

1:0, 1:1, 3:1, 1:3, 6:4, 1:9, 2:15, 1:22, · · ·

The data in Theorem 3 suggest that the productivity of the max-
imally productive graphs grows quadratically: is O(n2) the correct
order of magnitude?

11



It is natural to define the productivity of G(n,m) to be the total
number of edges from G(n,m) to G(n,m+ 1) in HG(n). The produc-
tivity sequence for G(n) is the sequence with dth term equal to the
total number of graphs G ∈ G(n) having productivity d. Theorem
4 gives descriptive information about these quantities, which follows
from the outdegree sequences for HG(n), but first we introduce some
terminology. We say that a sequence a(0), a(1), · · · , a(k) is unimodal
if

a(0) ≤ a(1) ≤ · · · ≤ a(r) ≥ a(r + 1) ≥ · · · ≥ a(k)

for some integer r such that 0 ≤ r ≤ k. In this case the peak
of the sequence is its maximum value, and its peak support is the
set (interval) of all values of r for which a(r) is equal to the peak.
If a(0), a(1), · · · , a(k) is unimodal, with peak A and peak support
{r0, · · · , r1}, then the sequence 0a(0), 1a(1), · · · , ka(k) is index unimodal,
with index peak A and peak support {r0, · · · , r1}. In each case, if the
peak support is a singleton, we simply specify it as an integer.

Theorem 4 Each G(n) with n ≤ 8 has an index unimodal produc-
tivity sequence. The peak supports and index peaks are

0:1, 1:1, 1:3, 1:7, 1:11, {3,4}:33, 5:140, 9:1196.

The productivities of the level sets of each G(n) form a unimodal
sequence for each n ≤ 8. The peak supports and peak values are

0:0, 0:1, {0,1,2}:1, {2,3}:4, {4,5}:16, 7:107, 10:1066, {13,14}:17739.

It is natural to conjecture that every G(n) has an index unimodal
productivity sequence and that the sequence of productivities of its
level sets is unimodal.

4 Independence digraphs

A subset S ⊆ G(n) is an independent set (or antichain) if none of its
members is a subgraph of any other member. Trivially any singleton
is independent. The number of independent subsets in G(n) grows
rapidly with n. For example, G(3) has only the trivial independent
subsets, but G(4) has 24 independent subsets, and G(5) has 862 in-
dependent subsets [2]. Certain natural operations on independent
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subsets of G(n) produce other independent subsets of G(n). Such
operations may be studied as digraphs on the family A of all inde-
pendent subsets of G(n), so A is of considerable interest. In [2] we
studied two such operations on the independent subsets of G(5), but
the proliferation of independent sets makes it impractical to extend
such comprehensive studies to G(6). However, we shall now introduce
a structure that gives some insights into the family of all independent
subsets of G(n) without explicitly listing them all.

The independence digraph IG(n) is a directed graph with G(n)
as its vertex set, and a directed edge G→H precisely when N∗(G) <
N∗(H) and {G,H} is an independent subset of G(n). Because N∗

imposes a linear ordering on the graphs of order n, every directed
clique in IG(n) is transitively directed. Any subset S ⊆ G(n) is inde-
pendent precisely when it induces a complete subgraph in IG(n), and
the cliques of IG(n) correspond to the maximal independent subsets
of G(n).

As for HG(n), the outdegree sequence at level m for IG(n) is the
sequence

0d(m,0), 1d(m,1), · · · , rd(m,r), · · ·

where now d(m, r) is the number of graphs G ∈ G(n,m) for which
there are exactly r graphs with larger SEAM number than G that are
not extensions of G, that is, the number of vertices with outdegree r
in IG(n) that lie in G(n,m). The outdegree sequence for IG(n) is the
corresponding sequence in which the index of r is d(r) = Σmd(m, r).
Also Σrd(m, r) is the level m outsize of IG(n). Tables 6−8 present
summary information about these descriptors for IG(n) when 4 ≤
n ≤ 6, and Table 9 presents an even more condensed summary for
IG(n) with 4 ≤ n ≤ 8. In particular, the outdegree sequences are
too lengthy for full presentation, so just the minimum and maximum
terms from these sequences, and the mean term (to one decimal
place) are given in Tables 6−8. In each case, the column “First
max” records by SEAM number the first graph to achieve maximum
outdegree within its level.

Since the complementation map c : G(n)→G(n) maps indepen-
dent subsets of G(n) to independent subsets, it readily follows that
if G→H is a directed edge in IG(n), then Hc→Gc is also a di-
rected edge, and therefore complementation is an anti-automorphism
of IG(n).
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Table 6: Outdegrees in IG(4)

m Outsize Min Max Mean First min First max

0 0 0 0 0.0 1 1
1 0 0 0 0.0 2 2
2 3 1 2 1.5 3 4
3 5 1 3 1.7 6 5
4 1 0 1 0.5 9 8
5 0 0 0 0.0 10 10
6 0 0 0 0.0 11 11

Table 7: Outdegrees in IG(5)

m Outsize Min Max Mean First min First max

0 0 0 0 0.0 1 1
1 0 0 0 0.0 2 2
2 4 1 3 2.0 3 4
3 24 3 10 6.0 7 5
4 48 3 13 8.0 14 11
5 39 3 9 6.5 19 18
6 28 1 7 4.7 26 21
7 8 1 3 2.0 30 27
8 1 0 1 0.5 32 31
9 0 0 0 0.0 33 33

10 0 0 0 0.0 34 34

Table 8: Outdegrees in IG(6)

m Outsize Min Max Mean First min First max

0 0 0 0 0.0 1 1
1 0 0 0 0.0 2 2
2 6 2 4 3.0 3 4
3 111 7 47 22.2 8 9
4 299 16 51 33.2 15 12
5 701 28 98 46.7 23 25
6 1084 33 87 51.6 46 34
7 1142 30 73 47.6 72 63
8 928 24 55 38.7 96 80
9 567 17 43 27.0 122 104

10 229 8 23 15.3 137 125
11 64 2 12 7.1 147 139
12 13 1 5 2.6 152 148
13 1 0 1 0.5 154 153
14 0 0 0 0.0 155 155
15 0 0 0 0.0 156 156
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Table 9: Outdegrees in IG(n)

n Outsize Mean Max First max

4 9 0.8 3 5
5 152 4.5 13 11
6 5145 33.0 98 25
7 303191 290.4 827 62
8 51952895 4208.1 11137 166

It follows that any indegree information about IG(n) can be de-
duced from the corresponding outdegree information, so we do not
tabulate it explicitly. Tables 6–9, or the calculations used to produce
them, yield the following structural theorems about the independence
digraphs IG(n) for n ≤ 8.

Theorem 5 For n ≥ 1, the size of IG(n) is

0, 0, 0, 9, 152, 5145, 303191, 51952895, · · ·

and its maximum outdegree is

0, 0, 0, 3, 13, 98, 827, 11137, · · ·

Theorem 6 The level sets of each IG(n) with n ≤ 8 have a uni-
modal sequence of outsizes. The peak supports and peak values are

0:0, {0,1}:0, {0,1,2,3}:0, 3:5, 4:48, 7:1142, 10:59563, 13:9356461.

We conjecture that the level sets of every IG(n) have a unimodal
sequence of outsizes.

Let us now introduce some terminology that gives a different
perspective on the structure of IG(n) from that given by outdegree.
If G→ H is a directed edge of IG(n), with size(G) = m ≤ size(H) =
m′, we define the height of G → H to be m′ − m. The level sets
G(n,m) are independent subsets of G(n), so any two graphs G,H ∈
G(n,m) determine a directed edge of height 0 in IG(n). If G → H
is a directed edge of height h in IG(n), then Hc → Gc is also a
directed edge of height h, so complementation is a height-preserving
anti-automorphism of IG(n). For any integers h,m ≥ 0, let e(m,h)
be the number of edges in IG(n) with one vertex in the level set
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G(n,m) and the other in the level set G(n,m + h). We call the
sequence

0e(m,0), 1e(m,1), · · · , he(m,h), · · ·

the edge height sequence at level m for IG(n). Note that the com-
plementation anti-automorphism of IG(n) results in the identity

e(m,h) = e(m′, h) whenever m+m′ + h =
(n

2

)
.

The edge height sequence for IG(n) is the corresponding sequence in
which the index of h is e(h) = Σme(m,h). Note that Σhe(m,h) is
equal to the level m outsize of IG(n). In Tables 10–12 we specify
these height sequences for IG(n) when 4 ≤ n ≤ 6, and in Table 13
we present summary information for IG(n) when 4 ≤ n ≤ 8. In each
table, the column “First max” records the SEAM numbers of the
graphs at the start and end of the first directed edge of maximum
height originating at level m.

Table 10: Edge height sequences for IG(4)

m Size Edge height sequence First max

0 0 00

1 0 00

2 3 01 12 4,5
3 5 03 12 5,8
4 1 01 8,9
5 0 00

6 0 00

Table 11: Edge height sequences for IG(5)

m Size Edge height sequence First max

0 0 00

1 0 00

2 4 01 12 21 4,11
3 24 06 112 24 32 5,22
4 48 015 120 211 32 11,27
5 39 015 120 24 16,30
6 28 015 112 21 24,31
7 8 06 12 29,31
8 1 01 31,32
9 0 00

10 0 00
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Table 12: Edge height sequences for IG(6)

m Size Edge height sequence First max

0 0 00

1 0 00

2 6 01 13 21 31 4,25
3 111 010 127 228 323 412 57 63 71 9,132
4 299 036 195 287 348 420 510 63 16,132
5 701 0105 1247 2184 398 446 517 63 71 25,148
6 1084 0210 1408 2272 3135 446 510 63 34,148
7 1142 0276 1469 2272 398 420 57 55,148
8 928 0276 1408 2184 348 412 79,152
9 567 0210 1247 287 323 103,151

10 229 0105 195 228 31 132,153
11 64 036 127 21 145,153
12 13 010 13 148,154
13 1 01 153,154
14 0 00

15 0 00

Table 13: The edge height sequence for IG(n).

n Size Edge height sequence First max

4 9 05 14 4,5
5 152 059 168 221 34 5,22
6 5145 01276 12029 21144 3475 4156 551 612 72 9,132
7 303191 054430 199744 275160 343365 419346 57380 62564 7848

8260 976 1016 112 19,983
8 51952895 07121581 113734944 212102437 39163174 45536492

52635630 61057576 7389458 8138233 948308 1016700

115692 121864 13582 14172 1542 168 172 20,12181

Theorem 7 Each IG(n) with n ≤ 8 has an index unimodal edge
height sequence. The peak supports and the index peaks are

0:0, 0:0, 0:0, 0:5, 1:68, 1:2029, 1:99744, 1:13734944.

We conjecture that every IG(n) has an index unimodal edge
height sequence, and perhaps the peak support is 1 for every n ≥ 5.

Again, for any integer h ≥ 0, let t(h) be the number of transitively
directed triangles of height h in IG(n), that is, oriented 3-cycles for
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which h is the maximum of the heights of the three directed edges.
We call the sequence

0t(0), 1t(1), · · · , ht(h), · · ·

the triangle height sequence for IG(n). Table 14 gives the triangle
height sequence for each IG(n) with 4 ≤ n ≤ 8.

Table 14: The triangle height sequence for IG(n).

n Total Triangle height sequence First max

4 3 01 12 4,5,7
5 290 068 1154 262 36 5,11,22
6 83970 07806 131192 227214 312368 43992 51160 6196 742 9,16,132
7 47998164 02197562 111408828 215418546 311032360

45138998 51909632 6632542 7193478 852120

912510 101536 1152 19,35,983
8 96775426396 03183817290 118122040894 230988057738

332798374390 423239287708 511552154228

64532438526 71581909774 8525404152 9172139476

1055895834 1117458378 124900842 131226188

14275170 1539816 164214 171778 20,42,12181

From Table 14 we deduce the following theorems:

Theorem 8 For n ≥ 1, the number of independent triples in G(n)
is

0, 0, 0, 3, 290, 83970, 47998164, 96775426396, · · ·

Theorem 9 For n ≤ 8, the triangle height sequence of IG(n) is
index unimodal. The peak supports and index peaks are

0:0, 0:0, 0:0, 1:2, 1:154, 1:31192, 2:15418546, 3:32798374390.

We conjecture that the triangle height sequence of every IG(n)
is index unimodal.

This concludes our descriptive summary of the structure of the
posets G(n) for 4 ≤ n ≤ 8. We hope that it will motivate readers to
seek proofs of the conjectures, and to conjecture and prove other gen-
eral theorems suggested by the data. Once again, we remind readers
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that extensive data used to produce our summaries is available for
reference or downloading at [3].
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