Inductive Equational Reasoning

Michael Bulmer

Department of Mathematics, University of Tasmania,
GPO Box 252C, Hobart, 7001, Australia
Michael. Bulmer@maths.utas.edu.au

Abstract. We present a simple learning algorithm for equational rea-
soning. The Knuth-Bendix algorithm can produce deductive consequences
from sets of function equations but cannot deduce anything from grounded
equations alone. This motivates an inductive procedure which conjec-
tures function equations from a given database of grounded equations.

1 Introduction

Equational systems, together with the Knuth-Bendix procedure [5], give a frame-
work for deductive reasoning. For example, from the equational system

wife husband = i, wife John = Jill,

where i is the identity function, we are able to deduce that husband Jill = John.
In this paper we give a procedure for inductive equational reasoning, so that
from the system

wife John = Jill, husband Jill = John

we may conjecture that wife husband = i. We have evidence for this new fact
since whenever we apply the composite function wife husband to a person we get
the same result as applying the identity function i. This observation leads to an
induction procedure for learning general equations from a database of ground
knowledge.

In Section 1.1 we give a brief overview of the term language with which
we represent our equational knowledge. It should be noted that this language
is variable-free, placing the emphasis on function evaluation rather than the
predicate unification of standard ILP. Section 2 presents the induction algorithm
and states an important termination result. The behaviour of the algorithm is
then illustrated using a dialogue with a prototype reasoner in Section 3 and
then with a larger example in Section 4. Our ultimate interest in this work lies
in the things we can then say about the pragmatic and philosophical notions of
consistency and changing belief. We touch briefly on this aspect in the example
dialogue.

1.1 Language

Our language will be that of a ground (i.e. variable free) term algebra T gener-
ated by a signature Y. We typically view Tx as a category with terminal object
Ground, products, and set constructors. We call the objects of the category the
sorts of Tx and say that an arrow from o to 7 is a term of type ¢ — 7. The
number of single arrows in a composite arrow f is the length, §(f), of f. For
example, d(wife husband) = 2.

A term f : 0 — 7 has domain dom(f) = ¢ and codomain cod(f) = 7. If a
term f is of type Ground — o we write f € o and say that f is grounded. If a term
is not grounded it is called a function. For each sort o there are two distinguished
operators, the identity i : ¢ — o and the erasing operator ! : ¢ — Ground. For
any terms f and g we have the structural rules fi— f,i f — f, and

f, if dom(g) = Ground;
|
fleg— {f 1, if dom(g) # Ground

The set constructor we use is a special instance of a boolean affine combi-
nation [3] where the coefficients of the combinations are suppressed. For every
collection of terms fy, fa,..., fn with common type ¢ — 7 we can form the set
{f17 fZa .. 7fn} with type o—T.

The basic structural rules for T, are given in [8]. Structural rules for sets are
inherited from the boolean affine combinations, giving the following:

f{gla"'agn}_){fgla"'afgn}a
{fla"'afn}g_){flga"'afn g}a
{"'7fk‘7{gla"'agm}afk+la"'}_){"'7fkagla"'7gm7fk‘+la"'}7
{fafagla"'agn}_){fagla"'agn}‘

Sets are important in rewrite-based reasoning as they give a means of capturing
multi-valued functions, as in the example of Section 4, and recursive definitions.

We represent knowledge as equations between terms in 7Tx. For example,
to capture the statement that ‘Alice’s father is John’ we introduce to X the
sort Person and the function father : Person — Person and grounded words
Alice, John € Person. Then we can assert the equation father Alice = John.
A negative predicate statement such as ‘Alice is not male’ is represented by
male Alice = False.

If F is a set of equations then we write F = (f = g), or f =F g, if the
equation f = g is a deductive consequence [1] of F.

If f arises from a single arrow in X, i.e. d(f) = 1, then f is called a X-word.
Grounded 3-words may be declared to represent an entity in the modelled world.
For example, we represent the two classical notions of truth as the grounded
words True, False € Sentence, or three different people as Alice, John, Paul €
Person. We call such declared words the X-entities of X.

The important property is that these entities are distinct. Having declared
a collection of X-entities we implicitly require that any system F contains the
inequation @ # b for all X-entities @ and b with @ Z b. Thus if we declare True
and False to be Y-entities then every system will contain True # False. A system

F is then inconsistent if a =p b for some distinct entities @ and b. We will usually
declare grounded words to be entities by writing them with an uppercase letter
(reflecting the similarity with a proper noun).

An equation between two grounded terms (such as the above father Alice =
John) is called a grounded equation, or a datum, and a set of such equations
is called a database. An equation which is not grounded is called a function
equation.

As noted in [5], the Knuth-Bendix completion procedure applied to a database
will never use critical-pair deduction to produce new information. Our initial
motivation for looking at induction is to find a notion of reasoning which does
produce new information from a database.

2 Induction Method

The induction procedure IND takes a complete set of rewrite rules A (the
database) and returns a set of function equations (the conjectures). These func-
tion equations will be of two kinds; facts and conjectures.

Definition1 (Fact). A fact from a database A is a function equation f =g
such that A # (f = g) and fz =a gz for all X-entities 2 € dom(f).

Definition2 (Conjecture). A conjecture from a database A is a function
equation f ~ g such that A & (f = g) and fz = gz for at least one X-entity
z € dom(f) and there is no X-entity y € dom(f) such that A = (fy # gy).

That is, a fact is a function equation which holds when applied to any entity
of appropriate type. A conjecture is an incomplete fact, a function equation
which holds for at least one entity and is not falsified by any other entity. A
conjecture is not a fact because information is absent in A about the meaning
of the composition of one of the functions and some entity.

This illustrates well why we don’t adopt a closed-world assumption. We in-
stead take the scientific view that the truth of some equations may simply be
unknown. Truth or falsity, if not the deductive consequence of a system of beliefs,
can only be established by carrying out new experiments.

From these definitions it is clear that facts can never produce new database
information, capturing only truth that is always present. In this sense, a fact
represents summative induction, the equation summarizing the complete infor-
mation we have about the data. Although a fact can generate no new data, it
can be used to compress the database by eliminating data which are implied by
it. This process is equivalent to an axiomatization of the system [11].

If a conjecture is accepted by a reasoner it can then produce new database in-
formation by essentially filling in the gaps which prevented it from being called a
fact in the first place. A conjecture is a form of ampliative induction, the equation
providing new information and thus amplifying our knowledge [4]. Conjectures
will be our main focus as they have close and interesting parallels with scientific
method.

Proof by consistency [9] can be used to prove, rather than merely conjecture,
that an equation is an inductive consequence of system in the sense of mathemat-
tcal induction. The following two results give a concrete relationship between our
inductive process and such inductive theorems, that is, between scientific and
mathematical induction.

Theorem 1. A fact from a system A is an inductive theorem of A.
Theorem 2. If A gives rise to a conjecture then A is ambiguous.

This second result is perhaps our “fundamental theorem”. If a system is
ambiguous then we are unable to prove an inductive theorem by consistency.
Thus a conjecture can be simply characterized as an inductive theorem that
cannot be proved.

2.1 Algorithm

Let X, denote the vector (ordered set) of all X-entities of type o and let
27 (A) denote the set of all A-normal forms of X-functions with type o — 7
and length at most n.

For a function term f, a vector of entities X = {z;}, and a given rewrite

system A, define fX | A to be the vector {n;}, with each n; defined as follows:

I if fax; —)*A s for some entity s
: * otherwise

The condition that s is an entity in the first case will correspond to the require-
ment that we must have complete knowledge about the function value before we
make any conjecture. The special term * in the second case indicates that no
complete information is present in A about the value of the function for that
particular entity.

Finally, for vectors Sy, Sy from T’x; U {*} having equal length, we say S1 = Sy
if §1 and Sy are identical at each position and both are free of the element x.
We write S; ~ Sy if S; and Sy are identical at each position where neither has
a * and there is at least one such position.

With these definitions, we can now give the following definition of IND:

procedure IND(A, n)
EA,n = ¢
for each sort o
for each f,g € X7, (A), f# g,
if f¥ la= gXs lathen Ea,:=Ea,U{f =g}
if f¥ la~ gX; lathen Ea, = Ea,U{f~g}
IND := Ea,,
end.

For each X-sort o we look at the set of parallel X-functions with domain
o, reduced by A. We take pairs of distinct f,g from this set and apply each of
them to the vector of all entities with codomain o. These applications are then
reduced by A, using * for any whose normal form is not an entity. If the reduced
lists are free of * and identical then we generate f = g as a fact. If they are
identical at each element where neither list has *, and there is at least one such
element, then we generate f = g as a conjecture, written f ~ g.

In an implementation of the procedure there are many efficiency improve-
ments that can be made to reduce the number of functions to be considered and
the number of normal form reductions to be performed. For example, if we have
found the normal form f, f,_1 - - fiz — y then the normal form of gf,, - - - fiz is
obtained by reducing gy. In general though, the number of functions to be con-
sidered grows exponentially with n, the maximum function length. To work with
this we apply the induction algorithm iteratively. Starting with A, = IND(A, 1),
we evaluate Aj 4 = A; UIND(AU Ay, j + 1), the conjectures arising from the
result of induction for length j being used to reduce the candidate functions of
length j + 1. We then say that the result of the induction of A is then set Ay.
The following result shows that Ay, is finite.

Theorem 3. (Termination). For a given database A there exists some K such
that Ay = Ag for allk > K.

Even though this theorem shows that the inductive knowledge will be finite,
the number of conjectures of general length can be quite large. This is especially
so early on in a series of experiments when often many wild conjectures appear
before later being refuted by further observations. In most cases we concentrate
on finding IND(A, 2) only, conjecturing simple relationships between functions.
In essence this is Occam’s razor at work; we first look for simple explanations
of the data and only if we cannot find any do we search for more complex
hypotheses.

3 Dialogue

We illustrate the induction process with a simple dialogue from an implemen-
tation of a reasoner which uses the algorithm presented in Section 2.1. This
reasoner takes simple sentences from an external oracle and converts them into
equational beliefs. Each time the reasoner’s belief set is enlarged or revised we
apply IND to the corresponding canonical rewrite system (which needs to be
generated in establishing consistency). The resulting conjectures may in fact be
inconsistent with the given beliefs [1]. If this is the case we can view the maxi-
mal subsets that are consistent with the beliefs as competing theories, different
explanations of the observed data [2]. We use Popper’s falsifiability criterion [10]
to choose a single working set of conjectured beliefs from these theories.

For compactness, at each stage of the dialogue we only give newly declared
beliefs, rather than repeating the whole set of beliefs. Whenever the belief set

changes we additionally give the resulting set of conjectured beliefs, although in
practice this need only be generated when a question is asked of the reasoner.

When asked a question the reasoner attempts to find an answer based on its
given beliefs, such as ‘Yes’ if the question corresponds to an equational conse-
quence of the belief system. If it cannot find such an answer, it then looks for an
answer by augmenting its beliefs with the working set of conjectures. If, for in-
stance, the question is then a consequence of the augmented system, it responds
with ‘Yes, I think so’ to indicate the answer is based on tentative information.

The dialogue in Tables 1 and 2 involves competing theories in the reasoner’s
conjectures. When asked a question, the answers which rely on conjectures are
augmented by requests for the results of any experiments the reasoner determines
will resolve the inconsistency.

Human Reasoner Belief Set

Peter is male. Okay. male Peter = True
male ~ True !

Peter is Paul’s father. Okay. father Paul = Peter

male father ~ True !
male ~ True !

Is Alice’s father male? Yes, I think so.

John is Alice’s father. Okay. father Alice = John
male father ~ True !
male ~ True !

Is John male? Yes, I think so.

Peter is not female. Okay. female Peter = False
male father ~ True !
male ~ True !
female father ~ False !
female ~ False !

Alice is not male. Okay. male Alice = False
male father ~ True !
female father ~ False !
female ~ False !

Is Paul male? I don’t know.

Is Paul female? No, I don’t think so.

Table 1. Example dialogue with the implemented reasoner

Here an inconsistency arises when told ‘The not of False is True’. Table 3
shows the two competing theories and their predictions. The theories disagree on
the prediction for female Alice and so it is suggested as an experiment. Meanwhile

Human Reasoner Belief Set

The not of True is False. Okay. not True = False
male father ~ True !
female father ~ False !
female ~ False !
not male ~ female
not male ~ False !
not ~ False !

The not of False is True. Okay. not False = True
male father ~ True !
female father ~ False !
female ~ False !
not female ~ True !
not not =i

Is Paul male? I don’t know.

Is Paul female? No, I don’t think so,

but it would be useful to
know if Alice is female.

Alice is female. Okay. female Alice = False
not male ~ female
not female ~ male
female father ~ False !
male father ~ True !
not not =i

Is Paul female? I don’t know.

Table 2. Example dialogue (continued)

the strongest theory, the one making the most predictions, is taken as the working
set of conjectured beliefs.

4 Comparison

A larger example comes from trying to learn the structure of family trees. This
was first given by Hinton [7] as an example of learning using a neural represen-
tation, and then by Quinlan [12] as a comparison for FOIL. The aim is not just
to learn definitions but to learn definitions from incomplete data and use them
to predict the missing information.

The family trees in Figure 1 give information about twelve family relation-
ships: wife, husband, mother, father, daughter, son, sister, brother, aunt, uncle,
niece, and nephew. We represent this knowledge as an equational database with
rules such as wife Marco = Lucia. Multivalued functions, such as aunt and uncle,

Conjectures Predictions Falsifiability

not not =i female Alice = False 0.9375
female ~ False ! female John = False
not female ~ True ! male John = True

female father ~ False | female Paul = False
male father ~ True !

not not =i female Alice = True 0.875
not male ~ female female John = False
not female ~ male male John = True

female father ~ False !
male father ~ True !

Table 3. Competing theories from the dialogue in Tables 1 and 2

are expressed using the set constructor, so that aunt Sophia = {Gina, Angela},
etc.

Chri st opher T Penel ope AndrewIChristine
Mar gar et — Art hur \ActoriaIJames Jenni fer — Charl es

Glin Charlotte

beertoI Mari a FierroIFrancesca
Gna—HBmlio Luci a T Mar co Angel a— Tomaso

A fonso Sophi a

Fig. 1. Two family trees

In both FOIL and the neural representation of Hinton, it is necessary to give
negative information , usually in the form of a closed world assumption. For in-
stance, we would include that the mother of Penelope is not Sophia since it is
not specified by the tree. For equational induction we only use positive infor-
mation , assuming that we simply have no knowledge about unspecified function
values. This can lead to some wild conjectures but such conjectures are often
the basis of scientific progress, and indeed in this example we find they help in
recovering missing information (while at the same time producing much spurious

information).

The two trees in Figure 1 specify 104 data equations. Hinton used 100 of
these as a training set and then tested to see if the remaining 4 relationships
could be found by the trained network. Doing this twice he recorded 7 successes
out of 8. Quinlan performed the same experiment 20 times and recorded 78
successes out of 80. Repeating these 20 trials with equational induction, all 80
missing relationships were recovered.

We can repeat this comparison for smaller training sets, where instead of re-
moving just 4 data, we remove 10, 20, 30, ..., 90 of the data. Testing each case 8
times for both FOIL and equational induction gave the proportions of recovered
data presented in Figure 2. The obvious balance is in the efficiency of the two
methods. The additional conjectures generated by equational induction are ex-
pensive. As a rough estimate of this difference, running FOIL on a SparcStation
10 to learn rules for the complete family tree took 3.5 seconds, while the current
implementation of IND (in LISP) required 22.9 seconds.

S o o
D o [ee)

Predi ctive Accuracy

©
N

20 20 60 80 100
Dat a Renoved

Fig. 2. Predictive performance of FOIL and equational induction.

5 Concluding Remarks

As seen in the dialogue of Section 3, notions of consistency and belief dynamics
arise immediately from the induction procedure. The implementation of the rea-
soner has provided an empirical means of exploring these notions, some of which
are summarized in [2]. Standard ideas from scientific philosophy, such as Pop-
per’s falsifiability criterion, are found to have simple expressions in equational
terms and obvious relations to pragmatic reasoning.

Here we have assumed that the belief system we are making conjectures

from is provided by a consistent oracle. However the issue of noise is somewhat
meaningless for the induction algorithm, whose main interest is in the reduction
of function applications to normal forms. If, through noisy data, the reasoner
has more than one value for a given function application then its beliefs will be
inconsistent. The task of resolving the inconsistency is deductive, rather than
inductive, as described in [6] and [1].

References

1.

2.

10.

11.
12.

M. Bulmer. Reasoning by Term Rewriting. PhD thesis, University of Tasmania,
1995.

M. Bulmer. Inductive Theories from Equational Systems. Submitted for publica-
tion, 1996.

M. Bulmer, D. Fearnley-Sander, and T. Stokes. Towards a Calculus of Algorithms.
Bulletin of the Australian Mathematical Society, 50(1):81-89, 1994.

L. J. Cohen. An Introduction to the Philosophy of Induction and Probability. Ox-
ford University Press, 1989.

N. Dershowitz. Completion and its Applications. In H. At Kaci and M. Nivat,
editors, Resolution of Equations in Algebraic Structures, volume 2, pages 31-85.
Academic Press, London, 1989.

P. Gardenfors. Knowledge in Fluz: Modelling the Dynamics of Epistemic Stales.
MIT Press, 1988.

G. Hinton. Learning Distributed Representations of Concepts. In L. Erlbaum,
editor, Program of the Eight Annual Conference of the Cognitive Science Society.
Ambhearst, MA, 1986.

G. Huet. Cartesian Closed Categories and Lambda-Calculus. In G. Huet, edi-
tor, Logical Foundations of Functional Programming, pages 7-23. Addison-Wesley,
Reading, Mass., 1990.

D. Kapur and D. R. Musser. Proof by Consistency. Artificial Intelligence, 31:125—
157, 1987.

K. Popper. Conjectures and Refutations - The Growth of Scientific Knowledge.
Routledge and Kegan Paul, London, 1974.

K. Popper. The Logic of Scientific Discovery. Hutchinson, London, 1974.

J. R. Quinlan. Learning Logical Definitions from Relations. Machine Learning,
5:239-266, 1990.

This article was processed using the WTEX macro package with LLNCS style

