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Abstract

Efficient importance sampling methods are proposed
for the simulation of a single server queue with server
breakdowns. The server is assumed to alternate be-
tween the operational and failure states according
to a continuous time Markov chain. Both, continu-
ous (fluid flow) and discrete (single arrivals) sources
are considered. In the fluid flow model, we consider
Markov-modulated fluid sources and a constant out-
put rate when the server is operational. In the discrete
arrivals model, we consider Markov-modulated Pois-
son sources and exponential service time when the
server is operational.

We show how known results on Markov additive
processes may be applied to determine the optimal
(exponentially tilted) change of measure for both
models. The concept of effective bandwidth is used
in models with multiple independent sources. Empir-
ical studies demonstrate the effectiveness of the pro-
posed change of measures when used in importance
sampling simulations.

Keywords: Analysis methodology, rare event sim-
ulation, importance sampling, overflow probability,
Markov-modulated rate processes, Markov additive
processes, effective bandwidth.

1 Introduction

Many models for communication and manufacturing
systems consider the behaviour of a reservoir (buffer
or queue) which operates in a random environment.
One usually distinguishes between continuous and
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discrete models. In the first case the content of the
reservoir is viewed as a continuous fluid, in the sec-
ond case the reservoir contains only discrete items,
e.g., customers or packets. Examples of such mod-
els and their applications may be found in [10] and
Chapter 6 of [9], respectively. Typically, in these mod-
els the net input ‘rate’ into the buffer depends (only)
on the current state of a ‘regulating’ Markov process
(which we refer to as the environment process). For
example, in a fluid flow queue the net input rate into
the buffer depends on the state of the input source
(e.g., ‘on’ or ‘off’) and the state of the server (e.g.,
‘operational’ or ‘failed’). The stochastic process that
describe the temporal evolution of the content of the
buffer is sometimes called a Markov-modulated rate
process (MMRP).

The literature abounds with exact analytical re-
sults for MMRPs whose environment processes have
finite state spaces. It is often possible to derive ex-
act formulas, e.g., for the steady-state distribution of
the reservoir. On the other hand, the analysis is of-
ten complicated by various computational difficulties.
For example, when the overall environment process is
composed of a large number of sub-processes, the cor-
responding state space ‘explodes,” leading to exces-
sive memory requirements and very large computa-
tion times. Other numerical problems arise in connec-
tion with rare event probabilities. To compute these
small probabilities, one typically has to solve a set
of linear equations which are ill-conditioned, leading
to unreliable answers. Based on the concept of effec-
tive bandwidth, a major reduction in computational
effort for so-called separable MMRPs was reported
in [4] and [10]. Basically, a MMRP is separable if it
is composed of independent sub-processes. Usually,
these sub-processes are modelled as reversible Markov
processes with small state spaces.

Exact analysis of a general MMRP is often not
possible, and one has to resort to either simulation
or approximation techniques. However, since overflow
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probabilities are typically small, standard simulation
is very inefficient. One way to improve the efficiency
of the simulation is to use importance sampling, which
requires determining an appropriate change of mea-
sure (see, e.g., [3] for simulation of ATM intree net-
works.) In this paper we show how such a change of
measure can be obtained for certain MMRPs that can
be used to model queues with breakdowns. The con-
cept of Markov additive processes serves as a unifying
theory for the continuous and discrete flow models.
The concept of effective bandwidth can be used to
reduce the computational complexity for models with
multiple independent sources.

Section 3 briefly outlines the relevant theory for
the continuous fluid flow model, along with numeri-
cal procedures to determine the change of measure to
be used in simulation. Similar treatment for the dis-
crete queueing model is given in Section 4. Empirical
results for examples of both models demonstrate the
validity and effectiveness of our methodology.

2 Preliminaries

In this paper we focus on two related MMRP mod-
els, both describing a single server queue with server
breakdowns, operating in a random environment. In
the first model the content of the queue is viewed as
a fluid, in the second model the queue contains only
discrete items. We will refer to these queues as the
fluid queue and the discrete queue respectively.

In both models, the input (continuous or discrete)
to the queue is ‘modulated’ by a continuous time
Markov chain (CTMC) (I}), with finite state space
E and infinitesimal generator (Q-matrix) Q. How the
input ‘rate’ to the queue depends on this modulating
chain will be specified later. The server is assumed to
alternate between the operational and failure state ac-
cording to an alternating renewal process (M;). The
environment process is defined to be the stochastic
process (Ji) := (Iy, M;). Finally, the content of the
queue at time ¢ will be denoted by X;.

Two performance measures are of particular inter-
est: the probability of a buffer overflow and the sta-
tionary distribution of the content of a buffer. In this
paper we concentrate on the probability of overflow,
starting from a certain buffer level and a given state
for the environment process, before the buffer empties
again. We will denote the overflow level by K. For the
fluid queue the overflow probability, p(K) say, has an
exponential decay, i.e. we have

. logp(K) 5
lim I = —0.

K—o0

For the discrete queue we have, similarly, a geometric
decay, such that
1 K
i 08PE)

=logZ.
K—oo 08 %

We call f and z the (assymptotic) decay rates for the
fluid and discrete queue, respectively. Notice that by
definition # > 0 and 0 < z < 1.

Notation Throughout this paper we will use the no-
tation A(a) to denote the diagonal matrix derived
from a vector a.

3 Fluid queues

Consider a fluid queue in which the reservoir (buffer)
is filled at rates which vary according to the current
state of the CTMC (I;) defined in Section 2. Specif-
ically, the input rate is r; > 0 whenever state i € E
is visited. The buffer has a constant output rate c
(when not empty). Let r be the vector of input rates,
and let R := A(r) denote the corresponding diag-
onal matrix. Finally, let Iy := {i € E : r; > ¢},
I ={ieE:ri<ctand lp:={i € E:r; =c}.
We assume that |I;| > 0 (otherwise, an overflow can
never happen.)

Remark 1 Notice that we can easily include break-
down of the server into the above (standard) model.
We simply take the entire environment process (J;)
as our regulating process — instead of just (I;) — and
adapt the input rates; this of course provided that
(J¢) is a CTMC. In particular, (M;) needs to have
a Markov structure. A server with exponential fail-
ure and repair times (independent of everything else)
would expand the state space of the regulating pro-
cess by a factor of 2. Note that the notion of server
breakdown could be included in the framework of [8].

3.1 Overflow probabilities

Next, we consider the overflow probabilities as defined
in Section 2. Specifically, starting at level  and the
environment Markov chain in state i, let p;(x),i € E,
be the probability that the buffer reaches overflow
level K before it becomes empty. The reader may
verify that the vector p(z) of overflow probabilities
satisfies the following differential equation:

(R—cI)p'(x) =-Qp(z), 0<z<K. (1)

Note that p;(z),7 € Iy, can be expressed in terms of
pi(x),i € {I+ + I_}, which are obtained by solving
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a reduced system of differential equations, with the
boundary conditions:

pi(0+)=0,i€l_, and p;(K)=1,i€ I,.

In order to find p(x), we need to specify p;(0) for
i € Iy; these can be determined by setting x = K
in the reduced system of (1). This yields a system
of |I4 + I_| linear equations, exactly |I;| of which
have the left-hand-side equal to 1, thus giving just
enough equations to be able to determine the un-
knowns boundary probabilities.

3.2 Efficient simulation

Although (1) and the corresponding boundary con-
ditions give us complete knowledge of the overflow
vector p(x), in practice we may run quickly into nu-
merical problems. For example, when K grows large,
the system of |I;| linear equations to determine p(0)
becomes ill-conditioned, leading to unreliable numer-
ical results. The dimension of the state space may
cause other numerical problems. In such cases, sim-
ulation may be a valid option. But, since overflow is
typically a rare event, we need an efficient simulation
procedure, such as those based on importance sam-
pling.

The appropriate exponential change of measure to
be used in importance sampling follows from Markov
additive theory. Below we just describe the basics; for
details we refer to [2].

The decay rate 6, as defined in Section 2, is the
smallest strictly positive eigenvalue of the eigenvalue
equation

—-Qw=0(R—cl)w. (2)

Let W denote the corresponding right-eigenvector.
Define the conjugate Q-matrix of the fluid queue,
Q@ = (gi;) by putting

_ w; o, .

ij — Qi —, 1 )

qij qij o, 7é J
where w; is the ith element of W. Importance sam-
pling involves simulating the system with () instead
of @, and weighing the simulated events by the cor-
responding likelihood ratios.

3.3 Decay rate

The decay rate  has been the subject of numerous
studies, not only because of its relevance for efficient
simulation based on importance sampling, but also
because it gives important information about asymp-
totics of the overflow probabilities and steady-state

distributions. We describe two numerically efficient
methods to find the decay rate and the correspond-
ing right-eigenvector in (2).

Power method

The first method is useful for general MMRPs
(also non-separable, e.g., those representing models
with single or multiple/correlated Markov modulated
sources), particularly when the matrix @ is sparse.
The decay rate 6 of (2) can be found by power iter-
ation as follows. For ¢ > 0,let A := Q + e (R —cI).
Next, put w(®) := 1 (vector of 1’s) and, for n > 0,
define

(n)
W(n+1) = Aw 9
|| Aw(n) ||
YO = Aw )

When ¢ is ‘close enough’ to 6, the sequence {y™}
converges to € — #, and {w(™} to the corresponding
eigenvector w. An obvious difficulty is that we need

to choose the ‘shift’ £ properly.

Effective bandwidth method

The second method uses the concept of effective
bandwidth and applies to separable MMRPs (e.g.,
those representing models with multiple independent
Markov modulated sources.) The basis of the method
was laid in [6] and [8] and generalizations were made
in [4]. The effective bandwidth of a fluid source char-
acterized by (@, R) is the function g such that g(6)
is the output capacity required to give the overflow
probabilities a decay rate 6, for any initial environ-
ment state ¢ and a starting level z. In particuler, it
can be shown that ¢g(#) is the maximal real eigenvalue
of the matrix

1
ZQ+R.

We note that for a two-state source, an expression
for the effective bandwidth as a function of the decay
rate is given in [4]. (In this paper we refer to the decay
rate as a strictly positive quantity.)

We may now determine the optimal exponential
change of measure in (2) as follows. First we deter-
mine the decay rate @ by solving

g(0) =c.

Then, we determine the right-eigenvalue W of the ma-
trix Q/6+ R corresponding to the eigenvalue g(f) = c.

The power of the effective bandwidth concept lies in
the fact that a similar procedure can be followed when
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dealing with a separable MMRP. Specifically, suppose
we have an input source that consists of many inde-
pendent sub-sources; the kth sub-source is defined by
the matrices Q*) and R, respectively, and has ef-
fective bandwidth ¢(¥). The decay rate 8 of the total
system is the unique € > 0 satisfying

> gW0) =c, (3)
k

where the summation is over all sources. The conju-
gate transition rates for each source are given by

© _ T
(k) _ (k)

G- = % (&
i

g|

L F ]

=

g|

where W(*) is the right-eigenvector of Q™ /6 + R™*)
corresponding to the eigenvalue g*) (f).

Remark 2 Notice that we may view a server with
exponential on and off times (independent of every-
thing else) as a two-state source with a input rate 0
when the server is operational, and input rate ¢ when
the server is failed. See Figure 1 for an illustration.

no breakdowns

fluid queue

Figure 1: A fluid queue with server breadowns

3.4 A fluid queue with breakdowns

As an illustration of validity of the approach de-
scribed above, we consider a fluid queue consisting
of 10 independent on-off sources, 5 of Type 1 and 5 of
Type 2, and an unreliable server. Sources of Type ¢
(i = 1,2) have exponential on- and off-times with pa-
rameters «; and f;, respectively. When a source of
type 4 is active (‘on’) it sends fluid to the buffer at
rate r;. The up- and down-times of the server have
exponential distributions with parameters v and ¢
respectively, independent of the input process. The
capacity of the buffer is denoted by c.

For the simulation we have taken the following
parameters: ay = 3, as = 1, f1 = 2, B = 4,

|k || pas) |[RE@S)| 5(SS) |RE(SS) |

5 || 1.888e-01 | 5.0e-03 || 1.87e-01 | 2.1e-02
10 || 6.220e-02 | 5.5e-03 || 6.25e-02 | 3.9e-02
20 || 7.853e-03 | 5.7e-03 || 8.60e-03 | 1.1e-01
40 || 1.368e-04 | 5.7e-03 || 2.00e-04 | 7.1e-01

80 || 4.143e-08 | 5.9e-03 - -
160 || 3.815e-15 | 5.8e-03 - -
320 || 3.279e-29 | 5.9e-03 - -
640 || 2.397e-57 | 5.9e-03 - -

Table 1: Estimation of overflow probabilities for a
fluid queue with breakdowns. Importance sampling
(IS) versus standard simulation (SS) results. RE de-
notes the relative error of the estimate, i.e., standard
deviation/mean.

rn =3, r, =6, v =23 0 =4, ¢c = 100. Using
the separability of the system and the effective band-
width method, we easily find that the decay rate 6
is 0.20243. Already for an overflow level of K = 5
it is difficult to solve equation (1) using standard
(numerical) methods due to badly conditioned matri-
ces. Instead, we use importance sampling in a simula-
tion procedure to estimate the overflow probabilities,
starting from the following system state: the buffer is
empty, the server is ‘down’, one source of Type 2 is
‘on’ and the rest of the sources are ‘off.’

For each estimate we perform a simulation of 10000
independent replications, all starting from the same
system state, as described above. Each replication
ends when either the overflow level is reached or the
buffer empties. Each simulation (to obtain one esti-
mate) lasted less than two minutes. Table 1 lists the
estimates of the overflow probabilities and their rela-
tive errors for different overflow levels, K.

The results clearly indicate the efficiency of impor-
tance sampling (IS) which maintains a bounded rel-
ative error for estimates of extremely small values of
overflow probabilities. (Compare with standard sim-
ulation (SS).)

4 A single server queue in a
random environment

Next, we consider a discrete flow queueing model.
Let (I) be the CTMC of Section 2. This chain reg-
ulates the arrivals to, and departures from, an ordi-
nary queue in such a way that when () is in state
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i € E customers arrive according to a Poisson process
at rate \;, and are served singly (for an exponential
time) at rate p;. Let A and p denote the vectors of
arrival rates and service rates, respectively. The con-
tent of the queue at time t is again denoted by Xj;.
Obviously, the joint process (I}, X¢) is a Markov pro-
cess with an infinite block diagonal Q-matrix. The
diagonal elements of each (|E| x |E|) block are given
by the vector —7 = —(q + p + A), where —q is the
vector of diagonal elements of Q.

4.1 Overflow probabilities

We wish to calculate (or estimate) the probability
of overflow of some level K, as defined in Section 2.
Starting with the buffer at level Xo = = and the reg-
ulating process in state Iy = i, define T' as the first
time that the queue either hits level K or becomes
empty. We are interested in the probabilities

]P(JT:ja XT:K|J0:7:7 X():.’L'), 'L,]EE,

which we collect (in the obvious way) into a ma-
trix P(z). To find P(z) we first define the matrices
Sk, k =1,2,...,such that the (7, j)th element of Sy, is
the probability of entering level k + 1 at environment
state j before reaching level 0, starting from level k
at environment state i. Let Sy be the O-matrix, the
reader my verify that for K =1,2,...

A(T) Sk = AA) + (@ + A(@) Sk + A(p) Sk-15k,

It follows that Si, £k = 1,2,...
recursively from

Sp=(AA+p)—Q—Ap)Sk1) " AN). (@)

, can be determined

Moreover, the matrix P(x) is given by

P(:L’) = Sm SI+1 SKfl. (5)

4.2 Efficient simulation

Solving P(z) from (4) and (5) may in practice be dif-
ficult due to numerical problems similar to those dis-
cussed in the previous section. Here too, we may use
importance sampling to avoid these problems. As in
the fluid queue case, the appropriate change of mea-
sure follows from the general theory of Markov ad-
ditive processes. Next we give the main results; for
details we refer to Section 17.5.2 of [1].
Consider the matrix

G(2) = Q + A((1/2 — DA+ (2 — D).

The decay rate Z, as defined in Section 2, is the largest
z € (0,1) such that |G(z)| = 0. Let W denote the

eigenvector of G(2) corresponding to the eigenvalue
0. As before, define the conjugate Q-matrix @ = (g;;)
by setting

_ wy; . .
qij = Qij U_Z’ i # ]
Moreover, define conjugate arrival and service rates
Ni = \i/Z, fi=p;z, i€E.

Importance sampling involves simulating the system
with @, X and fi instead of the original parameters
and weighing the simulated events by the correspond-
ing likelihood ratios.

4.3 Decay rate

The decay rate zZ may be viewed as a dominant eigen-
value (Perron-Frobenius eigenvalue) of a certain ma-
trix. Consider the definition of Sj, and suppose that
S — S as k — oo, for some fixed matrix S. For large
K, equation (5) suggests that the overflow probabili-
ties decay geometrically, at a rate which is determined
by the dominant eigenvalue of S. Moreover, from (4),
S should satisfy

Ap)S* +(Q = AN +p) S +ARX) =0.  (6)

It turns out that z is indeed the dominant eigen-
value of S, and that W is the corresponding right-
eigenvector. Notice that S is closely related (but is
not identical) to the rate matriz R of [9].

Power method

We may determine S,z and W by the following it-
erative (power) method. Put S(®) := A(0) (0-matrix)

and w(® := 1. For n = 0,1,..., define the recursions
o= @t - {AG 57+ A,
Gnt1) y(n)
(n+1) . _
w = S0 wm||
and let 2(™ := ||S( w(™||. Then the sequences

{2} and {w(™} converge to Z and the correspond-
ing eigenvector w, respectively.

Effective bandwidth method

As in the fluid queue case we may determine Z
for separable MMRPs using the effective bandwidth
concept. In Section 7 of [4], the effective bandwidth
of a single MMPP (Markov-modulated Poisson pro-
cess) source is given only for the case in which the
service requirement is exponentially distributed and
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the server is reliable with a constant capacity or rate
(i.e., independent of the environment.) Clearly, if we
include server breakdowns in the model, then the ser-
vice rate depends on the state of the server, and thus
it is no longer a constant. However, we still can use
the concept of effective bandwidth by considering the
workload process (amount of work in the system),
rather than the queue length process (number in the
system.) In particular, consider the workload process
in an MMPP/G/1 queue. Work arrives according to
a MMPP and is released at constant rate 1. Let Lg
denote the Laplace Stieltjes transform (LST) of the
service time (i.e., the size of the workload increment
at an arrival epoch) distribution G. In Section 17.5.2
of [1], Markov additive process theory is used to de-
termine the decay rate, say §, of the stationary dis-
tribution of the workload in the MMPP/G/1 system.
Now, suppose that the system is composed of many
independent input sources, where the kth source is
characterized by Q%) and A®) := AA®). We de-
fine the effective bandwidth for the workload of the
kth source as the real function ¢(*) on R, , such that
g™®)(s) is the maximal real eigenvalue of the matrix

QW n (La(=s) = 1)

S

AR

This is analogous to the definitions in [5] for the effec-
tive bandwidth of the workload in an M/G/1 queue.
It turns out that the decay rate s of the workload
overflow probability is identical to the decay rate of
the stationary workload distribution, and satisfies

S g =1. 7
k

The conjugate transition rates are given by
(k)
BN (O Rl B
4;;° = 45 &)’ i £ J,

w;

where W(*) is the right-eigenvector of matrix Q™) +
(La(=5) — 1)A®]/5 corresponding to the eigenvalue
g™*)(5). Moreover, the conjugate arrival rates are
given by

AR = \P Lo(—s),ieE

and the conjugate service time distribution G(*) has
LST

k), _
LW (s) = M
¢ Ly (5)

Finally, the decay rate z of the queue length over-
flow probabilities (as defined in Section 1) is given by
(see Section 1 of [11])

Z=1/La(—3). 8)

Remark 3 It remains to note that active server
breakdowns (during a customer’s service) may be in-
cluded in the above model by considering another
MMPP/G/1 system, in which the service time (work-
load increment) is modified to include the breakdown
periods during a customer’s service. For Poisson fail-
ures, the distribution of this modified service time
(sometimes referred to as the completion time or vir-
tual service time) can be easily derived as a special
case of [7]. If the server breakdowns are independent
(i.e., they may also occur when the server is idle),
then, strictly speaking, the system can be viewed as
an MMPP/G/1 system in which the first (virtual) ser-
vice time in a busy period has a different distribution.
However, it is interesting to note that the (asymp-
totic) decay rates are identical to those of the (same)
system with active server breakdowns. See Figure 2
for an illustration.

no breakdowns

MMPP/G' /1 queue MMPP/G/1 queue

Figure 2: A discrete queue with server breadowns

44 An MMPP/M/1
breakdowns

queue with

We illustrate the validity of our approach by consid-
ering a single server in a random environment which
is identical to that considered in Section 3.4. That is,
the server has a failure rate v = 3 and a repair rate
6 = 4. The arrival process is the aggregate of 10 inde-
pendent on-off sources, 5 of Type 1 (with oy = 3 and
B1 =2), and 5 of Type 2 (with as = 1 and 2 = 4).
When a source of is active (‘on’) it sends customers
to the buffer according to a Poisson process at rate
A1 = 3 (for Type 1 source) or A2 = 6 (for Type 2
source). The service time is exponentially distributed
with a parameter y = 100. It follows that the LST
of the modified service time distribution (including
server breakdowns) is given by [7]

p (8 + s)
(p+8)(d+s)+ys

Lg(s) =

Using the effective bandwidth method described in
Section 4.3, we find that the (geometric) decay rate
z is 0.836993.
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We use importance sampling to estimate the over-
flow probabilities for different overflow levels K, start-
ing from the state in which one Type 2 source has just
sent a ‘customer’ to an empty queue, all other nine
sources are ‘off’, and the server is down. As in Sec-
tion 3.4, the method of replication is used for simu-
lating the system. Each replication starts at the same
initial state and ends when either the overflow level
is reached or the buffer empties. Table 2 lists esti-
mates of the overflow probabilities and their relative
errors, for both importance sampling and standard
simulation. The number of replications used in each
simulation to obtain one estimate is 10000, and each
simulation lasted only a few minutes.

Again, the results indicate the efficiency of impor-
tance sampling (IS) which maintains a bounded rel-
ative error for estimates of extremely small values of
overflow probabilities. (Compare with standard sim-
ulation (SS).)

| k| »as) |RE@S)| p(SS) | RE(SS) |
5| 2.979¢-01 | 5.9-¢03 [ 2.97e-01 | 1.5e-02
10 || 1.052¢-01 | 7.3¢-03 | 1.10e-01 | 2.9e-02
20 || 1.626e-02 | 7.2-03 | 1.63e-02 | 7.8e-02
40 || 4.599¢-04 | 7.5e-03 | 9.00e-04 | 3.3e-01
80 || 3.675¢-07 | 7.5¢-03 - -
160 || 2.453¢-13 | 7.3¢-03 - -
320 || 1.056e-25 | 7.4¢-03 - -
640 || 1.975e-50 | 7.2¢-03 - -

Table 2: Estimation of overflow probabilities for
an MMPP/M/1 queue with breakdowns. Importance
sampling (IS) versus standard simulation (SS) results
and their relative errors.
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