
Springer Nature 2021 LATEX template

A Surprisingly Simple Continuous-Action

POMDP Solver: Lazy Cross-Entropy Search

Over Policy Trees

Marcus Hoerger1*, Hanna Kurniawati2, Dirk Kroese1

and Nan Ye1

1School of Mathematics and Physics, The University of
Queensland, Brisbane, Queensland, Australia.

2School of Computing, Australian National University, Canberra,
ACT, Australia.

*Corresponding author(s). E-mail(s): m.hoerger@uq.edu.au;
Contributing authors: hanna.kurniawati@anu.edu.au;

kroese@maths.uq.edu.au; nan.ye@uq.edu.au;

Abstract

The Partially Observable Markov Decision Process (POMDP) pro-
vides a principled framework for decision making in stochastic partially
observable environments. However, computing good solutions for prob-
lems with continuous action spaces remains challenging. To ease this
challenge, we propose a simple online POMDP solver, called Lazy Cross-
Entropy Search Over Policy Trees (LCEOPT). At each planning step,
our method uses a lazy Cross-Entropy method to search the space of
policy trees, which provide a simple policy representation. Specifically,
we maintain a distribution on promising finite-horizon policy trees. The
distribution is iteratively updated by sampling policies, evaluating them
via Monte Carlo simulation, and refitting them to the top-performing
ones. Our method is lazy in the sense that it exploits the policy tree
representation to avoid redundant computations in policy sampling,
evaluation, and distribution update. This leads to computational sav-
ings of up to two orders of magnitude. Our LCEOPT is surprisingly
simple as compared to existing state-of-the-art methods, yet empir-
ically outperforms them on several continuous-action POMDP prob-
lems, particularly for problems with higher-dimensional action spaces.

1

ar
X

iv
:2

30
5.

08
04

9v
1

 [
cs

.A
I]

 1
4

M
ay

 2
02

3

Springer Nature 2021 LATEX template

2 Lazy Cross-Entropy Search Over Policy Trees

Keywords: continuous-action POMDP, cross-entropy method, policy tree,
lazy computation

1 Introduction

Decision making in stochastic partially observable environments is an essen-
tial, yet challenging problem in many domains, such as robotics (Kurniawati,
2022), natural resource management (Filar, Qiao, & Ye, 2019) and cyber secu-
rity (Schwartz, Kurniawati, & El-Mahassni, 2020). While an autonomous agent
interacts with the environment, the exact state of the agent and/or the state
of the environment is often only partially observed, due to stochastic effects of
actions, noisy observations and incomplete information regarding the environ-
ment. Thus, in order to make optimal decisions, the agent must take the these
uncertainties into account during planning. The Partially Observable Markov
Decision Process (POMDP) is a principled framework to solve such decision
making problems in stochastic partially observable environments. POMDPs
lift the problem from the agent’s state space to its belief space, i.e., the space
of all probability distributions over the state space. This enables autonomous
agents to systematically account for uncertain action-effects and incomplete
or noisy observations while computing an optimal strategy, called a policy.
Although it has been shown that solving POMDPs exactly is computation-
ally intractable in general (Papadimitriou & Tsitsiklis, 1987), many efficient
sampling-based POMDP solvers have been developed in the past two decades
(reviewed in Kurniawati (2022)), whose idea is to trade optimality with com-
putational tractability. This has enabled POMDPs to become viable tools for
many realistic decision making problems under uncertainty.

Despite these advances, solving POMDPs with continuous action spaces
remains challenging, particularly for high-dimensional action spaces. Current
state-of-the-art solvers for POMDPs with continuous action spaces (Hoerger,
Kurniawati, Kroese, & Ye, 2023; Lim, Tomlin, & Sunberg, 2021; Mern, Yildiz,
Sunberg, Mukerji, & Kochenderfer, 2021; Seiler, Kurniawati, & Singh, 2015;
Sunberg & Kochenderfer, 2018) typically aim to solve the problem online;
interleaving the computation of a near-optimal strategy and the execution
of the strategy. These online solvers commonly use Monte Carlo Tree Search
(MCTS) (Coulom, 2007) to find a near-optimal action amongst a sampled
representative subset of the action space, often relying on a partitioning of the
action space. In contrast, our method uses a stochastic optimization approach
in the policy space by utilizing the Cross-Entropy method (de Boer, Kroese,
Mannor, & Rubinstein, 2005; Rubinstein & Kroese, 2004), while avoiding any
form of partitioning of the action space.

Apart from the above MCTS-based methods, some approaches have been
proposed that utilize the Cross-Entropy method for solving POMDPs or MDPs
(the fully-observable variant of POMDPs). For MDPs, Mannor, Rubinstein,

Springer Nature 2021 LATEX template

Lazy Cross-Entropy Search Over Policy Trees 3

and Gat (2003) proposed a method that uses the Cross-Entropy method to
optimize the policy for discrete-action MDPs. For DEC-POMDPs, a vari-
ant of POMDPs in multi-agent settings, Oliehoek, Kooij, and Vlassis (2008)
proposed a Cross-Entropy based solver that optimizes over the joint-policies
of multiple agents in the environment. However, their method assumes dis-
crete state, action and observation spaces. More recently, Wang, Kurniawati,
and Kroese (2018) proposed QBASE, a method that combines Cross-Entropy
based optimisation with MCTS to solve POMDPs with large discrete action
spaces. Unlike the above methods, which have all been designed for problems
with discrete action spaces, our method considers POMDPs with continu-
ous action spaces. Omidshafiei et al. (2016) proposed an online solver for
DEC-POMDPs, based on Cross-Entropy optimization over macro-actions,
represented as Finite State Automata (FSA). While this method considers
continuous action spaces, the optimization is carried out over a finite policy
space. In another line of work, Hafner et al. (2019) proposed a Cross-Entropy
based POMDP solver within a deep planning framework that optimizes over
open-loop action sequences, while our method optimizes over the policy space.

To approximately solve POMDPs with continuous state and action spaces,
we propose a new online POMDP solvers, called Lazy Cross-Entropy Search
Over Policy Trees (LCEOPT). The key idea of LCEOPT is to frame the prob-
lem of computing a near-optimal policy as a stochastic optimization problem
in the policy space and to extend the Cross-Entropy method for optimiza-
tion to approximately solve this problem. To do this, LCEOPT represents a
policy as a policy tree, a compact and interpretable representation that gives
rise to simple policy parameterizations via finite-dimensional vectors. Follow-
ing the standard procedure of the Cross-Entropy method, LCEOPT maintains
a parameterized distribution over the policy parameters that is incrementally
updated by sampling sets of parameters from the distribution and evaluat-
ing their associated policies via Monte Carlo sampling. The distribution is
then updated towards the best-performing policies. This enables LCEOPT to
quickly focus its search on promising regions of the policy space.

LCEOPT assumes independence of the marginal distributions over each
component of the parameter vectors. This assumption allows us to derive a
lazy parameter sampling, evaluation and distribution update method which
only samples parts of a policy tree that are relevant for its evaluation. Our lazy
approach reduces the cost of sampling policies by up to two orders of magni-
tude for problems with higher-dimensional action spaces, thereby significantly
increasing the overall efficiency of LCEOPT.

In contrast to the MCTS-based online solvers discussed above, LCEOPT
avoids any form of partitioning of the action space, enabling it to scale much
more effectively to problems with higher-dimensional action spaces. Despite
its simplicity, LCEOPT achieves remarkable results in various benchmark
problems with continuous action spaces compared to current state-of-the-art
methods, particularly for problems with higher-dimensional action spaces (up
to 12-D).

Springer Nature 2021 LATEX template

4 Lazy Cross-Entropy Search Over Policy Trees

2 Background & Related Work

We provide a brief introduction to POMDP in Section 2.1, followed by a dis-
cussion of current POMDP solvers in Section 2.2. Section 2.3 gives a brief
overview of the Cross-Entropy method for optimization.

2.1 Partially Observable Markov Decision Process
(POMDP)

A POMDP provides a general mathematical framework for sequential decision
making under uncertainty, in which an autonomous agent operates in an envi-
ronment, while having imperfect knowledge regarding its state or the state of
the environment.

Formally, a POMDP is an 8-tuple 〈S,A,O, T, Z,R, b0, γ〉. Initially, the
agent is in a hidden state s0 ∈ S. This uncertainty is represented by an initial
belief b0 ∈ B, which is a probability distribution on the state space S, where
B is the set of all possible beliefs. At each step t ≥ 0, the agent executes an
action at ∈ A according to some policy π. Due to stochastic effects of exe-
cuting actions, it transitions from the current state st ∈ S to a next state
st+1 ∈ S according to the transition model T (st, at, st+1) = p(st+1|st, at).
For discrete state spaces, T (st, at, st+1) represents a probability mass func-
tion, whereas for continuous state spaces, it represents a probability density
function. The agent does not know the state st+1 exactly, but perceives an
observation ot ∈ O from the environment according to the observation model
Z(st+1, at, ot) = p(ot|st+1, at). Here, Z(st+1, at, ot) represents a probability
mass function for discrete observation spaces, or a probability density function
for continuous observation spaces respectively. In addition, the agent receives
an immediate reward rt = R(st, at) ∈ R. The agent’s goal is to find a policy π
that maximizes the expected total discounted reward or the policy value

Vπ(b0) = E

[∞∑
t=0

γtrt

∣∣∣∣ b0, π
]
, (1)

where the discount factor 0 < γ < 1 ensures that Vπ(b) is finite and well-
defined.

The agent’s decision space is the set Π of policies, defined as mappings from
beliefs to actions. The POMDP solution is then the optimal policy, denoted
as π∗ and given by

π∗ = arg max
π∈Π

Vπ(b). (2)

In designing solvers, it is often convenient to work with the action value or
Q-value

Q(b, a) = R(b, a) + γEo∈O[Vπ∗(boa) | b], (3)

Springer Nature 2021 LATEX template

Lazy Cross-Entropy Search Over Policy Trees 5

where R(b, a) =
∫
s∈S b(s)R(s, a)ds is the expected reward of executing action

a at belief b and boa = τ(b, a, o) is the updated agent’s belief estimate after it
performs action a ∈ A while at belief b, and subsequently perceives observation
o ∈ O. The optimal value function is then

V ∗(b) = max
a∈A

Q(b, a). (4)

A more elaborate explanation is available in Kaelbling, Littman, and Cassan-
dra (1998).

2.2 POMDP Solvers

Various efficient sampling-based offline and online POMDP solvers have been
developed for increasingly complex discrete and continuous POMDPs in the
last two decades. Offline solvers (e.g., (Bai, Hsu, & Lee, 2014; Kurniawati, Du,
Hsu, & Lee, 2010; Kurniawati, Hsu, & Lee, 2008; Pineau, Gordon, & Thrun,
2003; Smith & Simmons, 2005)) compute an approximately optimal policy for
all beliefs first, before deploying it for execution. In contrast, online solvers
(e.g., (Kurniawati & Yadav, 2016; Silver & Veness, 2010; Ye, Somani, Hsu,
& Lee, 2017)) aim to further scale to larger and more complex problems by
interleaving planning and execution, and focus on computing an optimal action
for only the current belief during planning. For scalability purposes, LCEOPT
follows the online solving approach.

Some online solvers have been designed for continuous POMDPs, most of
them being MCTS-based. For instance, POMCPOW (Sunberg & Kochender-
fer, 2018) uses Progressive Widening (Couëtoux, Hoock, Sokolovska, Teytaud,
& Bonnard, 2011) in conjunction with a uniform action sampling strategy to
continuously add new actions to the search tree that is built using MCTS.
VOMCPOW (Lim et al., 2021) replaces POMCPOW’s uniform action sam-
pling strategy with a more sophisticated strategy (Kim, Lee, Lim, Kaelbling,
& Lozano-Pérez, 2020) that constructs a Voronoi diagram in the action space
and biases action sampling towards Voronoi cells with high-performing actions.
ADVT (Hoerger et al., 2023) treats the problem of computing a near-optimal
action as a continuum-arm bandit problem and constructs a hierarchical par-
titioning of the action space to bias action sampling and action selection
during planning. While VOMCPOW and ADVT have been shown to be effec-
tive for problems with lower-dimensional continuous action spaces (up to
10-dimensional action spaces), their performance tends to degrade for prob-
lems with higher-dimensional action spaces due to the need to partition the
action space.

In addition to the MCTS-based solvers discussed above and the
Cross-Entropy-based methods discussed in Section 1, some solvers (Agha-
mohammadi, Chakravorty, & Amato, 2011; Sun, Patil, & Alterovitz, 2015;
van den Berg, Abbeel, & Goldberg, 2011; van den Berg, Patil, & Alterovitz,
2012) restrict beliefs to be Gaussian and use Linear-Quadratic-Gaussian

Springer Nature 2021 LATEX template

6 Lazy Cross-Entropy Search Over Policy Trees

(LQG) control (Lindquist, 1973) to compute the best action. This strat-
egy generally performs well in high-dimensional action spaces. However, they
tend to perform poorly in problems with large uncertainties or non-Gaussian
beliefs (Hoerger, Kurniawati, Bandyopadhyay, & Elfes, 2020). In contrast, our
method requires no restriction on the class of beliefs, while simultaneously
retaining efficiency in higher-dimensional action spaces.

2.3 Cross-Entropy Method for Optimization

The Cross-Entropy (CE) Method (Botev, Kroese, Rubinstein, & L’Ecuyer,
2013; Rubinstein & Kroese, 2004) is a gradient-free method for discrete and
continuous optimization problems with either deterministic or noisy objective
functions. Suppose X is an arbitrary set of states, and f : X → R is an
objective function that we aim to optimize, i.e., we aim to find x∗ ∈ X , such
that x∗ = arg maxx∈X f(x). To do this, the CE-method iteratively constructs
a sequence of sampling densities d(·; η1), d(·; η2), . . . , d(·; ηT) over X , with
parameters η1, . . . , ηT such that d(·; ηt) assigns more probability mass near x∗

as t increases.
In particular, suppose we start from an initial sampling density d(·; η1).

At iteration 1 ≤ t ≤ T , the CE-method draws a set of samples X = {xi}Ni=1

from d(·; ηt) and evaluates f(xi) for each xi ∈ X. The sample objective values
are then sorted in increasing order and are used to obtain the density param-
eter ηt+1 for the next iteration by solving the following maximum likelihood
estimation problem:

ηt+1 = arg max
η

1

N

N∑
i=1

I{f(xi)≥f(K)}ln(d(xi, η)), (5)

where f(K) is the K-th largest sample objective value, with 0 < K ≤ N being a
user defined parameter. This process then repeats until the maximum number
iterations T is reached, or some convergence criterion is met.

While solving eq. (5) is generally intractable, analytic solutions exist when
the sampling density d is chosen from an exponential family (in case X is
continuous). For instance, in case d is the density of a Gaussian distribution
parameterized by η = (µ, σ2), the solution of eq. (5) is η̂ = (µ̂, σ̂2), with µ̂ =

1
|K|
∑

x∈K x and σ̂2 = 1
|K|
∑

x∈K(x − µ)2, where K = {x ∈ X | f(x) ≥ f(K)}
are the top-K performing samples, called elite samples. That is, the updated
distribution is a Gaussian distribution that is fitted to the elite samples. Sim-
ilarly, if X is a multidimensional space and d is the density of a multivariate
Gaussian distribution parameterized by η = (µ,Σ), the solution to eq. (5) is
η̂ = (µ̂, Σ̂), with µ̂ = 1

|K|
∑
x∈K x and Σ̂ = 1

|K|
∑
x∈K(x− µ)(x− µ)>.

In practice, to avoid premature convergence towards a local optimum, η is
often updated according to a smoothed updating rule, i.e.,

η̂ = (1− α)η + αη̃, (6)

Springer Nature 2021 LATEX template

Lazy Cross-Entropy Search Over Policy Trees 7

where η̃ is the solution to eq. (5), and 0 < α ≤ 1 is a smoothing parameter.
More details on the CE-method for optimization can be found in Botev et

al. (2013); Rubinstein and Kroese (2004).

3 Lazy Cross-Entropy Search Over Policy Trees

We present the assumptions and an overview of our method Lazy Cross-
Entropy Search Over Policy Trees (LCEOPT) in Section 3.1 and Section 3.2
respectively, and then present the details in the following subsections: we first
describe our policy class and its parameterization in Section 3.3, then describe
how policy sampling, evaluation and distribution update are carried out in
Section 3.4. Specifically, Section 3.4.1 describes a basic method that highlights
the conceptual framework of our approach but is computationally inefficient.
Section 3.4.2 describes a lazy method that is much more efficient and is actually
used in our LCEOPT algorithm.

3.1 Assumptions

We assume that in the POMDP P = 〈S,A,O, T, Z,R, b0, γ〉 to be solved,
the action space A is a D-dimensional continuous space that can be either
bounded or unbounded, the observation space O is discrete, and the state
space S can be either discrete or continuous or mixed. Similar to many existing
online POMDP solvers, instead of requiring an explicit representation of the
transition, observation and reward functions T , Z and R, we assume that we
have access to a generative model G : S × A → S ×O × R that simulates the
transition, observation and reward models. That is, for a given state s ∈ S and
action a ∈ A, the model G simulates a next state s′ ∈ S, observation o ∈ O
and reward r ∈ R according to (s′, o, r) = G(s, a), where (s′, o) is distributed
according to p(s′, o | s, a) = T (s, a, s′)Z(s′, a, o), and r = R(s, a).

3.2 Overview of LCEOPT

LCEOPT is an anytime online POMDP solver. The main idea of LCEOPT is
to extend the CE-method to solving continuous action POMDPs. To do this,
LCEOPT utilizes a policy parameterization, such that each policy π ∈ Π is
uniquely defined by a parameter vector θ ∈ Θ, where Θ is the parameter space.
Thus, the problem of computing an approximation to the optimal policy π∗

amounts to estimating the parameter θ∗ ∈ Θ, such that Vπθ∗ (b) = Vπ∗(b).
LCEOPT applies the CE-method to estimate θ∗ by maintaining a distribu-
tion over Θ. Here we chose the distribution to be a multivariate Gaussian
distribution N (µ,diag(σ2)), parameterized by a mean vector µ and a vec-
tor of variances σ2. The notation diag(σ2) is a diagonal covariance matrix
whose main diagonal is σ2. While other distributions could be chosen, this
particular choice enables us to derive efficient parameter sampling, evaluation
and distribution update approaches, as we will discuss in Section 3.4.2. The
distribution is iteratively updated by sampling a set of parameters from the

Springer Nature 2021 LATEX template

8 Lazy Cross-Entropy Search Over Policy Trees

distribution and estimating Vπθ
(b) for each sampled parameter θ, where πθ is

the policy parameterized by θ. Details regarding the policy parameterization
are discussed in Section 3.3.

An overview of LCEOPT is shown in Algorithm 1. LCEOPT starts from an

Algorithm 1 LCEOPT(Initial belief b0, number of candidate policies per
iteration N > 0, number of elite samples K > 0, number of trajectories L > 0,
initial distribution parameters (µinit,σ

2
init), smoothing parameter 0 < α ≤ 1)

1: b← b0
2: isTerminal ← False
3: while isTerminal is False do
4: µ← µinit, σ2 ← σ2

init

5: while planning budget not exceeded do
6: for i = 1 to N do
7: // Sample and evaluate a candidate policy

8: (θi, V̂i(b))← SampleAndEvaluatePolicy(b, (µ,σ2), L) .
Algorithm 4

9: end for
10: // Sort evaluated parameters in increasing order according to their

estimates values V̂
11: K ← Set of top-K performing parameter vectors
12: // Update the distribution parameters
13: (µ,σ2)← UpdateDistribution((µ,σ2),K, α) . Algorithm 5
14: end while
15: a∗ ← πµ(b)
16: (o, isTerminal)← Execute a∗

17: b′ ← τ(b, a∗, o)
18: b← b′

19: end while

initial distribution N (µinit,diag(σ2
init)) over Θ (line 4). At each planning step,

LCEOPT samples N > 0 policy parameters {θi}Ni=1 from the distribution and,

for each sampled θi, computes V̂θi(b) ≈ Vπθi
(b), i.e., an approximation to the

value of the policy πθi , starting from the current belief (lines 6 to 9). Given the
sampled policy parameters and their corresponding estimated policy values, we
update the µ and σ2 parameters of the distribution. In particular, we sort the
sampled policy parameters in increasing order according their corresponding
estimated policy values, and keep the K > 0 best performing (i.e., elite) policy
parameters (line 11). We then update the distribution over Θ (line 13) by
computing new µ and σ2 parameters based on the mean and variance of the
elite samples. This process then repeats from the distribution parameterized
by the updated µ and σ2 until the planning budget for the current step has
been exceeded. Section 3.4.1 describes a basic method to sample and evaluate
policy parameters and update the distribution parameters, which serves as

Springer Nature 2021 LATEX template

Lazy Cross-Entropy Search Over Policy Trees 9

both a baseline and a precursor to our more efficient method presented in
Section 3.4.2. In the implementation of LCEOPT, we use the methods in
Section 3.4.2.

The action for the agent to execute is then chosen to be a∗ = πµ(b) (line 15).
After executing the action and perceiving an observation o ∈ O, we update the
belief to b′ = τ(b, a∗, o) (line 17), where τ is the Bayesian belief update func-
tion. In practice, we use a Sequential Importance Resampling (SIR) particle
filter (Arulampalam, Maskell, Gordon, & Clapp, 2002) to update the belief.
This process is then repeated from the updated belief until some terminal
condition is satisfied.

3.3 Policy Parameterization

To facilitate a simple policy parameterization and derive an efficient method to
evaluate a policy, LCEOPT represents each policy π as a policy tree Tπ. From
now on, we drop the subscript in Tπ and implicitly assume that T represents
policy π. A policy tree is a tree whose nodes represent actions and whose edges
represent observations. It describes a decision plan, such that the agent starts
by executing the action associated with the root node of T . After perceiving
an observation from the environment, the agent follows the edge representing
the perceived observation and the process repeats from the child node of the
followed observation edge. Note that in theory, the depth of a policy tree
is infinite, which makes defining a suitable policy parameterization difficult.
Thus, in this paper, we restrict the space of policies to be the space ΠM ⊂ Π
of all policies represented by policy trees of depth M , where M > 0 is a user
defined parameter.

Fig. 1 Illustration of the relationship between the parameter vector θ (left) and the policy
tree T (right), representing policy π. The components of θ are actions that are associated
with the action nodes in T .

Policy trees provide a compact and interpretable representation of policies
that give rise to a simple parameterization: A policy tree can be uniquely
parameterized by a (D |T |)-dimensional vector θ, such that each component

Springer Nature 2021 LATEX template

10 Lazy Cross-Entropy Search Over Policy Trees

θ(ν)
1 of θ corresponds to the action associated with a particular node ν ∈ T

in the tree. Here, D denotes the dimensionality of the action space, while |T |
denotes the number of nodes in T , which is equal to (1− |O|M+1)/(1− |O|),
where |O| is the cardinality of the observation space. Figure 1 illustrates the
relationship between the parameter vector θ and the policy tree T .

3.4 Policy Sampling, Evaluation and Distribution Update

We first describe a basic method for sampling and evaluating policy parameters
and update the distribution parameters, followed by a discussion on our lazy
method.

3.4.1 The Basic Method

Our basic method is a simple approach that highlights the conceptual frame-
work of our LCEOPT algorithm and serves as a precursor to the more efficient
lazy method describe in the next subsection.

Algorithm 2 presents the basic method. To sample a policy, we sample a
parameter vector θ according to θ ∼ N (µ,diag(σ2)) (line 2), given the cur-
rent distribution parameters µ and σ2. As discussed in the previous section,
θ uniquely parameterizes a policy tree T . Given the policy tree T , we approx-
imate the value Vπ(b) of its associated policy π for the current belief b using
Monte Carlo sampling. In particular, we sample L > 0 reward trajectories,
starting from the current belief by simulating the policy encoded in T and use
the average of the accumulated discounted rewards of the trajectories as an
approximation to Vπ(b).

To sample a reward trajectory, we first set the current node ν ∈ T to be
the root of the policy tree (line 5), and sample a state s ∈ S from the current
belief (line 9). Given the sampled state, we simulate the action associated
to ν, i.e., the parameter vector component θ(ν) (line 11), via the generative
model G to sample a next state s′ ∈ S, observation o ∈ O and immediate
reward r (line 13). We then set ν to be the node whose parent edge is the
sampled observation (line 14). This process repeats until we reach a terminal
state (line 16), or an action associated to a leaf node in T has been simulated.
In the latter case, we compute a problem-dependent heuristic estimate of the
value V ∗(b′) (line 22), given the final sampled state, where b′ ∈ B is the belief,
conditioned on the action and observation sequences of the sampled trajectory.
This heuristic estimate serves a similar role as the rollout policy in MCTS-
based online POMDP solvers (Hoerger et al., 2023; Seiler et al., 2015; Silver
& Veness, 2010; Sunberg & Kochenderfer, 2018) and provides LCEOPT with
a value estimate of the optimal policy beyond the reached leaf node of T .
Interestingly, as we will see in Section 4, a good estimate of V ∗(b′) often allows
us to plan with a relatively short planning horizon while still achieving good
policy performance.

1θ(ν) denotes the component vector of θ associated to node ν, while θi denotes the parameter
value of θ at the i-th dimension.

Springer Nature 2021 LATEX template

Lazy Cross-Entropy Search Over Policy Trees 11

Algorithm 2 SampleAndEvaluatePolicyBasic(Belief b, distribution
parameters (µ,σ2), number of trajectories L)

1: // Sample parameter vector θ from a Multivariate Normal distribution
parameterized by (µ,σ2).

2: θ ∼ N (µ,diag(σ2))
3: T ← Construct policy tree parameterized by θ
4: M ← Depth of T
5: ν ← Root node of Tθ
6: for l = 1 to L do
7: isTerminal ← False
8: // Sample an initial state from b.
9: s ∼ b

10: for m = 1 to M do
11: a← θ(ν)

12: // Sample a next state s′, observation o and immediate reward rm
from the generative model G.

13: (s′, o, rm)← G(s, a)
14: ν ← Child node of ν via observation edge o
15: s← s′

16: if s is terminal then
17: isTerminal ← True
18: break
19: end if
20: end for
21: if isTerminal = False then
22: rM+1 ← Heuristic(s)
23: else
24: rM+1 ← 0
25: end if
26: // Accumulated total discounted reward of trajectory l.

27: Rl ←
∑M+1

m=1 γ
m−1rm

28: end for
29: V ← 1

L

∑L
l=1Rl

30: return (θ, V)

Finally, we compute the accumulated total discounted reward of the trajec-
tory (line 27). The average of the accumulated total discounted rewards of all
sampled trajectories then provides us with an approximation to Vπ(b) (line 29).

After sampling and evaluating N policy parameters using the method
above, we update the parameters of the distribution over Θ, based on the K
best performing parameters as shown in Algorithm 3. In particular, we com-
pute new distribution parameters µ̃ and σ̃2 as the mean an variance of the
elite parameter vectors (line 1). The final distribution parameters µ and σ2

are then computed according to µ← (1−α)µ+αµ̃ and σ2 ← (1−α)σ2 +ασ̃2

Springer Nature 2021 LATEX template

12 Lazy Cross-Entropy Search Over Policy Trees

Algorithm 3 UpdateDistributionBasic(Distribution parameters (µ, σ2),
elite samples K, smoothing parameter α)

1: µ̃← 1
|K|
∑
θ∈K θ; σ̃2 ← 1

|K|
∑
θ∈K(θ − µ̃)2

2: µ← (1− α)µ+ αµ̃
3: σ2 ← (1− α)σ2 + ασ̃2

4: return (µ,σ2)

respectively (lines 2 and 3), where 0 ≤ α ≤ 1 is a user-defined smoothing
parameter. As discussed in Section 2.3, this smooth update rule helps to avoid
premature convergence of the distribution towards sub-optimal regions in Θ.

3.4.2 The Lazy Method

A key limitation of the basic method discussed in the previous section is the
high computational cost of sampling full parameter vectors, particularly for
high-dimensional action spaces. This is because, while sampling parameter vec-
tors from the diagonal multivariate Gaussian distribution is simple, the large
number of sampled parameter vectors can make it a computational bottleneck
in the algorithm. For instance, in a problem with a 12 dimensional action space,
the basic method takes tens of seconds for just one iteration of the CE-method,
which makes it impractical in many applications (see Section 4.3.2).

Our lazy method provides a much more efficient way to implement the
CE-method by using a key observation: large portions of a parameterized
policy tree are often irrelevant when estimating its policy value, since the
sampled trajectories used for the evaluation may never reach them. Based on
this observation, we employ a lazy sampling method that only samples visited
components of a parameter vector. Here, a component is visited if a sampled
trajectory reaches its associated node in the policy tree.

Our lazy approach is shown in Algorithm 4. To sample a new parameter
vector θ, we start by constructing a vector of size D(1 − |O|M+1)/(1 − |O|)
whose elements are set to ∅ (line 1). When a sampled trajectory reaches a
node ν ∈ T in the policy tree, we check whether the parameter vector com-
ponent θ(ν), i.e., the action associated with node ν has already been sampled
(line 10). If this is not the case, we sample a new action from the distribution
N (µ(ν), σ

2
(ν)I), which is the marginal of N (µ,diag(σ2)) corresponding to θ(ν),

and assign the sampled action to θ(ν) (lines 12 and 13). Note that we sample
θ(ν) only once, and keep it fixed for the remainder of the trajectory sampling
process.

The result of the above sampling method is a set of sampled parameter vec-
tors for which some of the components are ∅, if their corresponding nodes have
never been visited. As a consequence, we have to slightly modify the distribu-
tion update step in Algorithm 3 which computes new distribution parameters
µ and σ2 based on the elite parameter vectors K. The modified update step
is shown in Algorithm 5. In particular, we update the marginal distributions
corresponding to each dimension of the parameter space independently, based

Springer Nature 2021 LATEX template

Lazy Cross-Entropy Search Over Policy Trees 13

Algorithm 4 SampleAndEvaluatePolicy(Belief b, Distribution parame-
ters (µ,σ), Number of trajectories L)

1: θ ← Construct empty parameter vector
2: Tθ ← Construct policy tree parameterized by θ
3: M ← Depth of Tθ
4: ν ← Root node of Tθ
5: for l = 1 to L do
6: isTerminal ← False
7: s ∼ b
8: for m = 1 to M do
9: a← θ(ν)

10: if a = ∅ then
11: // Sample a from the marginal distribution at node n.
12: a ∼ N (µ(ν),diag(σ2

(ν)))
13: θ(ν) ← a
14: end if
15: (s′, o, rm)← G(s, a)
16: ν ← Child node of ν via observation edge o
17: s← s′

18: if s is terminal then
19: isTerminal ← True
20: break
21: end if
22: end for
23: if isTerminal = False then
24: rM+1 ← Heuristic(s)
25: else
26: rM+1 ← 0
27: end if
28: Rl ←

∑M+1
m=1 γ

m−1rm
29: end for
30: V ← 1

L

∑L
l=1Rl

31: return (θ, V)

on the entries of the elite parameter vectors in K that are not ∅. That is, for
the parameter dimension i, we compute the marginal distribution parameters
according to µ̃i = 1

Ni

∑
θ∈K 1{θi 6=∅}θi and σ̃2

i = 1
Ni

∑
θ∈K 1{θi 6=∅}(θi − µ̃i)

2

respectively (lines 5 and 6), where Ni =
∑
θ∈K 1{θi 6=∅} (line 3) is the number

of parameter vector entries along the i-th dimension that are not ∅, and 1{·}
denotes the indicator function. Note that we only update the marginal distri-
bution parameters along the i-th dimension if Ni > 0 (line 4). Similarly to
the basic version of the distribution update in Algorithm 3, we compute the
final marginal distribution parameters according to µi ← (1− α)µi + αµ̃i and
σ2
i ← (1− α)σ2

i + ασ̃2
i respectively (lines 7 and 8).

Springer Nature 2021 LATEX template

14 Lazy Cross-Entropy Search Over Policy Trees

Algorithm 5 UpdateDistribution(Distribution parameters (µ, σ2), elite
samples K, smoothing parameter α)

1: // The term D(1−|O|M+1)/(1−|O|) is the size of a parameter vector in K.
2: for i = 1 to D(1− |O|M+1)/(1− |O|) do
3: Ni ←

∑
θ∈K 1{θi 6=∅}

4: if Ni > 0 then
5: µ̃i ← 1

Ni

∑
θ∈K 1{θi 6=∅}θi

6: σ̃2
i ← 1

Ni

∑
θ∈K 1{θi 6=∅}(θi − µ̃i)2

7: µi ← (1− α)µi + αµ̃i
8: σ2

i ← (1− α)σ2
i + ασ̃2

i

9: end if
10: end for
11: return (µ,σ2)

While the lazy algorithm is designed to speed up the basic algorithm,
they usually do not compute identical results, even when the random num-
ber generators used in the algorithms are identical. One reason is that the
two algorithms generally use different random numbers for sampling the same
quantity, because the lazy algorithm samples policy parameters as needed dur-
ing policy evaluation, while the basic algorithm samples all policy parameters
before policy evaluation. A more important reason is that the lazy update in
Algorithm 5 only uses parameters used for the policy evaluation to update the
policy distribution, while the basic distribution update in Algorithm 3 uses all
policy parameters, even when some of them are not used in policy evaluation.
Thus the lazy update generally uses fewer sampled parameters to update the
policy distribution, resulting in larger variances for the estimated policy distri-
bution parameters. Thus before convergence, the lazy algorithm has a higher
probability to obtain larger updates or perform more aggressive exploration
over the policy space. However, empirical results presented in Section 4 indi-
cate that this different exploration behaviour of the lazy algorithm has a minor
effect on its performance in terms of the quality of the resulting policies.

Although the lazy update algorithm computes the updated policy dis-
tribution using partial policies, it can still be derived from the standard
cross-entropy framework described in Section 2.3: as in the basic case, we fit a
multivariate normal distribution with diagonal covariance matrix on the pol-
icy space; the difference is just that now the partial policies are assumed to
be distributed according to the marginal distributions of the multivariate nor-
mal distribution. It is easy to show that the maximum likelihood estimates are
given by the formulas in Algorithm 5.

Using the above lazy parameter sampling method can lead to significant
computational savings, since only the components of the parameter vectors
are sampled that are relevant for evaluating the corresponding policy tree. In
our experiments, we investigate the amount of computational savings of our

Springer Nature 2021 LATEX template

Lazy Cross-Entropy Search Over Policy Trees 15

lazy sampling and evaluation method compared to the basic version discussed
in the previous section.

4 Experiments and Results

We tested LCEOPT on 4 decision making problems under partial observabil-
ity. The problem scenarios are detailed in Section 4.1. Section 4.2 details the
experimental setup, while the results are discussed in Section 4.3.

4.1 Problem Scenarios

(a) (b) (c) (d)

Fig. 2 Illustrations of (a) the ContTag, (b) the Pushbox2D, (c) the Parking2D and (d)
the SensorPlacement-8 problems. The goal regions in the Pushbox2D, Parking2D and
SensorPlacement-8 problems are marked as green circles. Images (b), (c) and (d) are taken
from Hoerger et al. (2023).

4.1.1 ContTag

ContTag (Seiler et al., 2015) is a modified version of the popular POMDP
benchmark problem Tag (Pineau et al., 2003). An agent operates in a 2D-
environment (shown in Figure 2(a)) where it has to tag an opponent, while
the opponent is actively trying to avoid the agent. The state space is a five-
dimensional continuous space consisting of the location (xr, yr) and orientation
φr (expressed in radians) of the agent and the location (xo, yo) of the opponent.
The action space is A = [−π, π]∪{TAG}, where the first component is the set
of all angular directions the agent can move towards, whereas the second com-
ponent is an additional tag action. At each step, in case the agent executes a
directional action, its orientation and position evolve deterministically accord-
ing to φ′r = φr + a, x′r = xrcos(φ′r) and y′r = yr + sin(φ′r). Simultaneously, the
opponent attempts to move away from the agent and its next location (x′o, y

′
o)

is computed according to x′o = xo+cos(φ)+ex and y′o = yo+sin(φ)+ey, where
φ = atan2(yo− ya, xo− xa) is the angle between the agent and the robot, and
ex and ey are random motion errors drawn from a truncated Normal distribu-
tion N (µ, σ2, l, u), which is the Normal distribution N (µ, σ2) truncated to the
interval [l, u]. For our experiments, we set µ = 0, σ = π

8 , l = −π8 and u = π
8 . In

case the agent’s or the opponent’s next state would collide with the boundary
region, their positions remain the same. If the agent executes the TAG action,
its position and orientation remains unchanged as well.

Springer Nature 2021 LATEX template

16 Lazy Cross-Entropy Search Over Policy Trees

The initial positions of the agent and the opponent are drawn from a uni-
form distribution over the free space of the environment, while the initial
orientation of the agent is set to 0. While the agent knows its initial position
and orientation, the position of the opponent is unknown. However, the agent
has access to a noisy sensor with outputs {DETECTED,NOT DETECTED}
to detect the opponent. If the opponent is visible, i.e., the relative angle
φ − φr between the agent and the opponent is inside the interval [−π2 ,

π
2],

the sensor produces the output DETECTED with probability p = 1 −
φ−φr
π and NOT DETECTED with probability 1 − p. Otherwise, the sensor

deterministically produces NOT DETECTED.
Upon activating the TAG action, the agent receives a reward of 10 if its

Euclidean distance to the agent is smaller than one unit length. Otherwise
the agent receives a penalty of −10. Every other action incurs a small penalty
of −1. The problem terminates if the opponent is successfully tagged, or a
maximum of 90 steps has been reached. The discount factor is 0.95.

Note that the action space in this problem is a hybrid space, consisting of
both continuous and discrete variables. For LCEOPT, we embed the action
space into the two-dimensional interval [−π, π] × [−1, 1] and define that the
agent executes the TAG action, if the second component of the action is in the
interval [0, 1].

4.1.2 Pushbox

Pushbox (Seiler et al., 2015) is a scalable motion planning problem, based on
air hockey. A disk-shaped robot (shown as a blue disk in Figure 2(b)) has to
push a disk-shaped puck (shown as a red disk in Figure 2(b)) into a green
circle goal region (shown as a green circle in Figure 2(b)), while avoiding any
collisions with a boundary region (shown as a black region in Figure 2(b)). If
the puck is successfully pushed into the goal region, the robot receives a reward
of 1, 000, but if either the robot or the puck collides with the boundary region,
the robot receives a penalty of −1, 000. Additionally, the robot incurs a penalty
of −10 for every step taken. The robot can move around the environment
by selecting a displacement vector. Upon colliding with the puck, the puck is
pushed away, and its motion is affected by noise. The initial position of the
robot is known, but the initial puck position is uncertain. However, the robot
has access to a noisy bearing sensor to localize the puck. Additionally, the robot
receives a binary observation from a contact sensor, indicating if a contact
between the robot and the puck occurred. We consider two variants of the
problem: Pushbox2D and Pushbox3D, which differ in the dimensionality of
the state and action spaces. The former (illustrated in Figure 2(a)) operates
in a 2D plane, while the latter operates inside a 3D environment. More details
on the Pushbox problem can be found in Seiler et al. (2015).

4.1.3 Parking

The Parking problem, proposed in Hoerger et al. (2023) and shown in
Figure 2(c), is a navigation problem in which a vehicle with deterministic

Springer Nature 2021 LATEX template

Lazy Cross-Entropy Search Over Policy Trees 17

dynamics operates in an environment populated by obstacles. The vehicle’s
goal is to safely reach a specified goal location while avoiding collisions with
the obstacles. Reaching the goal earns a reward of 100, while collisions with
obstacles incur a penalty of −100, and every step taken incurs a penalty of
−1. The vehicle starts near one of three possible starting locations (red loca-
tions in Figure 2(c)) with equal probability. There are three distinct areas in
the environment with different types of terrain (colored areas in Figure 2(c)),
and the vehicle receives observations about the terrain type upon traversal.
The observations are only correct 70% of the time due to sensor noise. Here
we consider two variants of the problem, Parking2D and Parking3D, with
different state and action spaces. In Parking2D, the state consists of the vehi-
cle’s position, orientation, and velocity on a 2D plane, and the action space
consists of the steering wheel angle and acceleration. In Parking3D, the vehi-
cle operates in full 3D space, and the state and action spaces have additional
components to model the vehicle’s elevation and change in elevation, respec-
tively. The problem is challenging due to multi-modal beliefs and the narrow
passage to the goal, which makes good rewards scarce. Additional details can
be found in Hoerger et al. (2023).

4.1.4 SensorPlacement

SensorPlacement, proposed in Hoerger et al. (2023) and shown in Figure 2(d),
is a scalable motion planning under uncertainty problem, where a manipulator
with D degrees of freedom (DOF) and D revolute joints operates inside a
3D environment with muddy water. The manipulator is situated in front of a
marine structure, consisting of four walls (colored walls in Figure 2(d)), and its
task is to attach a sensor at a specific goal area located between the walls, which
is reward by 1, 000, while avoiding collisions with the walls, which is penalized
by −500. Additionally, the robot receives a penalty of −1 for every step. The
state space consists of the joint angles for each joint, and the action space is
a set of joint velocities. Initially, the robot is uncertain about its joint angle
configuration and, due to underwater currents, the robot is subject to random
control errors. To localize itself, the manipulator’s end-effector is equipped
with a touch sensor which provides noise-free information about the wall being
touched. The problem has four variants, denoted as SensorPlacement-D, with
D ranging from 6 to 12, which differ in the number of revolute joints and the
dimensionality of the action space. The discount factor is γ = 0.95, and the
robot must mount the sensor within 50 steps while avoiding collisions with the
walls to succeed. Additional details can be found in (Hoerger et al., 2023).

4.2 Experimental Setup

The purpose of our experiments is two-fold: First is to compare LCEOPT
with three state-of-the-art online POMDP solvers for continuous action spaces,
POMCPOW (Sunberg & Kochenderfer, 2018), VOMCPOW (Lim et al., 2021)
and ADVT (Hoerger et al., 2023) on the above problem scenarios. To do

Springer Nature 2021 LATEX template

18 Lazy Cross-Entropy Search Over Policy Trees

this, we implemented LCEOPT using the lazy parameter sampling method
described in Section 3.4.2, the tree baseline solvers and the problem scenarios
in C++ using the OPPT framework (Hoerger, Kurniawati, & Elfes, 2018). To
approximately determine the best parameters for each solver in the problem
scenarios, we used the CE-method for optimization over the solver’s param-
eter spaces. Apart from solver-intrinsic parameters, the parameter space also
includes the effective planning horizon, i.e., the maximum depth of the looka-
head trees for POMCPOW, VOMCPOW and ADVT, and the maximum depth
of the policy trees for LCEOPT. For each solver and problem scenario, we then
used the best parameter point and ran 1, 000 simulation runs with a fixed plan-
ning time of 1s (measured in CPU time) per planning step. The parameters
for each solver and their parameter ranges are detailed in Section A.

Second is to understand the computational benefits of our proposed lazy
parameter sampling, evaluation, and distribution update method described
in Section 3.4.2 compared to the basic method described in Section 3.4.1.
To investigate this, we implemented a variant of LCEOPT that uses the
basic method and tested both variants of LCEOPT on the ContTag and
SensorPlacement-12 problems. For both algorithms and problems, we measure
the average CPU time required to reach 50 CE-iterations per planning step, for
different sizes of the policy trees. Here, a CE-iteration refers to one iteration
within the while-loop in Algorithm 1 (line 5), i.e., sampling and evaluating a set
of policy parameters and updating the distribution over policy parameters. To
see whether there is a notable difference in the quality of the policies computed
by both algorithms, we tested them on the ContTag and SensorPlacement-6
problems, where we used a fixed number of 50 CE-iterations per planning step
for both algorithms and problems. We then ran 2, 000 simulation runs for each
algorithm and problem. For both algorithms, we used the same parameters
that were used for comparing LCEOPT with the state-of-the-art methods.

All simulations were run single-threaded on a AMD EPYC 7003 CPU with
4GB of memory. The next section discusses the results of our experiments.

4.3 Results

This section presents the results of our experiments. Section 4.3.1 presents
the comparison with state-of-the-art methods, while Section 4.3.2 discusses
the effects of our lazy sampling method on the computational efficiency of
LCEOPT.

4.3.1 Comparison with State-of-the-Art Methods

Table 1 shows the average total discounted rewards of all tested solvers for the
ContTag, Pushbox and Parking problems. The results for the SensorPlacement
problems are shown in Table 2. It can be seen that LCEOPT outperforms
the baseline solvers in all problems, except for the ContTag problem, in which
ADVT performs slightly better.

Springer Nature 2021 LATEX template

Lazy Cross-Entropy Search Over Policy Trees 19

Table 1 Average total discounted rewards and 95% confidence intervals of all tested
solvers for the ContTag, Pushbox and Parking problems. The average is taken over 1, 000
simulation runs per solver and problem, with a planning time of 1s per step. The best
result for each problem scenario is highlighted in bold.

ContTag Pushbox2D Pushbox3D Parking2D Parking3D
LCEOPT (Ours) 0.02 ± 0.23 399.7 ± 8.7 358.6 ± 12.3 53.4 ± 0.4 47.2 ± 0.6
ADVT 0.37 ± 0.18 356.9 ± 9.9 327.8 ± 14.7 43.1 ± 2.1 34.6 ± 2.1
VOMCPOW −1.95 ± 0.31 323.5 ± 12.8 145.7 ± 13.7 1.3 ± 1.9 −11.7 ± 1.3
POMCPOW −2.00 ± 0.31 96.7 ± 15.4 25.9 ± 12.2 −3.9 ± 1.8 −18.4 ± 1.1

Table 2 Average total discounted rewards and 95% confidence intervals of all tested
solvers for the SensorPlacement problems. The average is taken over 1, 000 simulation runs
per solver and problem, with a planning time of 1s per step.

SensorPlacement-6 SensorPlacement-8 SensorPlacement-10 SensorPlacement-12
LCEOPT (Ours) 914.3 ± 2.6 885.5 ± 2.9 858.8 ± 4.2 832.1 ± 4.5
ADVT 859.2 ± 12.2 794.1 ± 15.3 631.4 ± 23.9 456.8 ± 28.2
VOMCPOW 754.4 ± 12.8 540.5 ± 17.2 276.8 ± 17.8 73.6 ± 12.1
POMCPOW 354.5 ± 19.9 124.2 ± 15.3 12.2 ± 8.2 −6.0 ± 4.9

A notable difference in performance between LCEOPT and the baselines
arises in the SensorPlacement problems. The results Table 2 indicate that
LCEOPT scales substantially better as we increase the dimensionality of the
action space. For instance, in the SensorPlacement-12 problem (which consists
of a 12-dimensional continuous space), LCEOPT achieves a better result than
the best baseline, ADVT, in the 8-dimensional SensorPlacement-8 problem. A
similar effect can be seen when looking at the results of the Parking problems
in Table 1, where the performance of LCEOPT suffers only marginally com-
pared to the baseline solvers as we increase the dimensionality of the action
space. We conjecture that this is due to the action sampling strategies of the
baselines. POMCPOW uses a simple uniform action sampling strategy, which
does not take the value of already sampled actions into account. ADVT and
VOMCPOW construct Voronoi cells in the action space at each sampled belief
and bias their action sampling strategies towards cells with good performing
representative actions. However, for higher-dimensional action spaces, these
cells may be too large to quickly focus sampling towards near optimal regions
in the action space. On the other hand, LCEOPT is a partition-free method
which instead works with distributions over the policy space. At each node
in the policy trees, LCEOPT maintains and updates a sampling distribution
that quickly focuses it’s probability mass towards near-optimal regions in the
action space. This property allows LCEOPT to scale much more effectively to
higher-dimensional action spaces, compared to the baselines.

Another interesting insight regarding the results is that all solvers require
only a relatively short planning horizon for most of the problem scenarios.
Table 3 shows the effective planning horizons for all solvers for the Cont-
Tag, Pushbox, Parking and SensorPlacement problems, as found during the
parameter-tuning process. For the ContTag, Pushbox and SensorPlacement
problems, all solvers require an effective planning horizon of only two steps.
The reason is the heuristic estimate of V ∗(b) described in Section 3.4.1 used

Springer Nature 2021 LATEX template

20 Lazy Cross-Entropy Search Over Policy Trees

Table 3 Effective planning horizons of all solvers in the problem scenarios. For
POMCPOW, VOMCPOW and ADVT, the effective planning horizon refers to the
maximum depth of the lookahead trees constructed during planning, while for LCEOPT, it
refers to the maximum depth of the policy trees.

ContTag Pushbox2D/3D Parking2D/3D SensorPlacement-D
LCEOPT 2 2 5 2
ADVT 2 2 5 2
VOMCPOW 2 2 5 2
POMCPOW 2 2 5 2

to evaluate leaf nodes of the policy trees for LCEOPT and the lookahead trees
for POMCPOW, VOMCPOW and ADVT respectively. For all problem sce-
narios, we designed simple state-dependent heuristic estimates of V ∗(b), that
assume that the problem is deterministic. Such simple heuristics are often use-
ful in keeping the required effective planning horizon short. For the Parking
problems, we require a slightly longer effective planning horizon of five steps
to achieve good performance. The reason is that in this problem, actions have
potentially long-term consequences. For instance, if the vehicle decides to accel-
erate aggressively while navigating towards the goal, it may require multiple
steps to decelerate in order to avoid crashing into an obstacle. Such long-
term consequences are often difficult to capture via simple state-dependent
heuristics, leading to a longer effective planning horizon required to find good
solutions.

4.3.2 Comparison of the basic Method and the Lazy Method

Table 4 shows the average CPU time (measured in seconds) required for
LCEOPT with the lazy and the basic parameter sampling method to reach
50 CE-iterations per planning step for the ContTag and SensorPlacement-
12 problems respectively, as we increase the policy tree depth M . It can be
seen that for the ContTag problem, both the lazy and basic methods perform
similar for more shallow policy trees (up to M = 4), while the lazy method
performs slightly better for policy trees of depth M = 5. However, the results
for the SensorPlacement-12 problem indicate that the lazy method outper-
forms the basic one significantly in this problem, even for more shallow policy
trees. The reason is that the dimensionality of the parameter space increases
dramatically for deeper policy trees, due to the 12-dimensional action space.
As a consequence, sampling full parameter vectors becomes computationally
too expensive. On the other hand, our lazy method only samples the com-
ponents of the parameter vectors that are relevant to evaluate the associated
policy. The number of relevant components of a parameter vector is typically
much smaller than the dimensionality of the parameter space, which leads to
significant computational savings when sampling parameter vectors lazily.

Table 5 shows the average total discounted rewards for both the lazy and
the basic version of LCEOPT in the ContTag and SensorPlacement-6 prob-
lems, where for both variants, the number of CE-iterations per planning step
is set to 50. It can be seen that despite the different policy distribution update

Springer Nature 2021 LATEX template

Lazy Cross-Entropy Search Over Policy Trees 21

Table 4 Comparison of the time efficiency of the basic and the lazy policy sampling
strategies on the ContTag and SensorPlacement-12 problems. The table shows the average
CPU time (in seconds) to reach 50 CE-iterations for different policy tree depths. The
average is taken over 20 planning steps. Larger values indicate a larger parameter sampling
cost. For the ContTag problem, we set the number of candidate policies to N = 493 and
the number of trajectories per parameter vector to L = 103 for both algorithms. For the
SensorPlacement-12 problem, we set N = 496 and L = 11.

M = 1 M = 2 M = 3 M = 4 M = 5
ContTag Lazy 0.43 0.64 0.90 1.19 1.39

Basic 0.43 0.64 0.91 1.23 1.57

SensorPlacement-12 Lazy 1.09 1.58 2.2 3.07 5.13
Basic 2.65 12.61 137.56 900.97 3928.45

Table 5 Average total discounted rewards and 95% confidence intervals of LCEOPT
using the lazy and the basic policy sampling strategies in the ContTag and
SensorPlacement-12 problems. For both algorithms we use 50 CE-iterations per planning
step. The average is taken over 2,000 simulation runs for both algorithms and problems.

ContTag SensorPlacement-6
Lazy 0.15 ± 0.16 920.4 ± 1.8
Basic −0.11 ± 0.16 919.8 ± 1.8

behaviours as discussed in Section 3.4.2, both algorithms perform similar in
the ContTag and SensorPlacement problems. This indicates that the lazy algo-
rithm is able to retain the good performance of the basic one, while being
much more efficient computationally.

5 Conclusion

Online POMDP solvers have seen tremendous progress in the last two decades
in solving increasingly complex decision making under uncertainty prob-
lems. Despite this progress, solving POMDPs with continuous action spaces
remains a challenge. In this paper, we propose a simple online POMDP solver,
called Lazy Cross-Entropy Search Over Policy Trees (LCEOPT) designed for
POMDP problems with continuous state and action spaces. LCEOPT uses a
lazy version of the CE-method on the space of policy trees to find a near-
optimal policy. Despite its simple structure, LCEOPT shows a strong empirical
performance against state-of-the-art methods on four benchmark problems,
particularly on those with higher-dimensional action spaces. These results indi-
cate that gradient-free optimization methods that do not rely on partitioning
the search space are viable tools for solving continuous POMDPs. An inter-
esting avenue for future work is to generalize our method to POMDPs with
continuous observation spaces. This would allow us to consider an even larger
class of POMDPs.

Acknowledgements. We thank Jerzy Filar for many helpful discussions.
This work is partially supported by the Australian Research Council (ARC)
Discovery Project 200101049.

Springer Nature 2021 LATEX template

22 Lazy Cross-Entropy Search Over Policy Trees

Appendix A Solver Parameters

Table A1 shows the parameter ranges used when searching for the best parame-
ter of each solver. For all problem scenarios, we use the same parameter ranges.
For LCEOPT, the parameters N , L, K, M , α and σ2

init refer to the number
of candidate policies per iteration, number of sampled trajectories per policy,
number of elite samples, policy tree depth, smoothing factor and the variance
of the initial distribution respectively. In all our experiments we set µinit = 0
and σ2

init = σ2
init1, where 0 and 1 are vectors of ones and zeroes respectively.

Details regarding the parameters for ADVT can be found in Hoerger et al.
(2023), while details regarding the parameters for VOMCPOW and POM-
CPOW can be found in Lim et al. (2021). To find the best set of parameters for
each solver and problem scenario, we apply the CE-method for 100 iterations,
using a multivariate Gaussian distribution with diagonal covariance matrices
(similarly to LCEOPT). The best parameter is then chosen to be the mean of
the resulting distribution over the parameter space.

Table A1 Solver parameter and parameter ranges used when searching for the best
parameters for all tested solvers in each problem scenario.

N L K M α σ2
init

LCEOPT [10, 100] [1, 500] [1, 500] [1, 10] [0, 1] [0.01, 4.0]

C L Cr

ADVT [2, 500] [1, 500] [0.1, 100]

c ka αa ko αo ω
VOMCPOW [2, 1] [1, 50] [0.001, 5] [1, 50] [0.001, 5] [0, 1]
POMCPOW [2, 1] [1, 50] [0.001, 5] [1, 50] [0.001, 5] −

References

Agha-mohammadi, A.-a., Chakravorty, S., Amato, N.M. (2011). Firm:
Feedback controller-based information-state roadmap - a framework
for motion planning under uncertainty. 2011 IEEE/RSJ international
conference on intelligent robots and systems (pp. 4284–4291).

Arulampalam, M., Maskell, S., Gordon, N., Clapp, T. (2002). A tutorial on
particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE
Transactions on Signal Processing , 50 (2), 174–188, https://doi.org/
10.1109/78.978374

Bai, H., Hsu, D., Lee, W.S. (2014). Integrated perception and planning in
the continuous space: A POMDP approach. The International Jour-
nal of Robotics Research, 33 (9), 1288–1302, https://doi.org/10.1177/
0278364914528255

https://doi.org/10.1109/78.978374
https://doi.org/10.1109/78.978374
https://doi.org/10.1177/0278364914528255
https://doi.org/10.1177/0278364914528255

Springer Nature 2021 LATEX template

Lazy Cross-Entropy Search Over Policy Trees 23

Botev, Z.I., Kroese, D.P., Rubinstein, R.Y., L’Ecuyer, P. (2013). The cross-
entropy method for optimization. C. Rao & V. Govindaraju (Eds.),
Handbook of statistics - machine learning: Theory and applications (pp.
35–59). Elsevier.

Couëtoux, A., Hoock, J.-B., Sokolovska, N., Teytaud, O., Bonnard, N. (2011).
Continuous upper confidence trees. Proc. learning and intelligent
optimization (pp. 433–445). Springer.

Coulom, R. (2007). Efficient selectivity and backup operators in monte-carlo
tree search. H.J. van den Herik, P. Ciancarini, & H.H.L.M.J. Donkers
(Eds.), Computers and games (pp. 72–83). Springer.

de Boer, P.-T., Kroese, D.P., Mannor, S., Rubinstein, R.Y. (2005). A tutorial
on the cross-entropy method. Annals of Operations Research, 134 (1),
19–67, https://doi.org/10.1007/s10479-005-5724-z

Filar, J.A., Qiao, Z., Ye, N. (2019). POMDPs for sustainable fishery
management. 23rd international congress on modelling and simulation-
supporting evidence-based decision making: The role of modelling and
simulation, MODSIM 2019 (pp. 645–651).

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., Davidson,
J. (2019). Learning latent dynamics for planning from pixels. Proc.
of the 36th international conference on machine learning (Vol. 97, pp.
2555–2565). PMLR.

Hoerger, M., Kurniawati, H., Bandyopadhyay, T., Elfes, A. (2020). Lineariza-
tion in motion planning under uncertainty. K. Goldberg, P. Abbeel,
K. Bekris, & L. Miller (Eds.), Algorithmic foundations of robotics XII:
Proceedings of the twelfth workshop on the algorithmic foundations of
robotics (pp. 272–287). Springer.

Hoerger, M., Kurniawati, H., Elfes, A. (2018). A software framework for
planning under partial observability. 2018 IEEE/RSJ international
conference on intelligent robots and systems (IROS) (p. 1-9).

Hoerger, M., Kurniawati, H., Kroese, D., Ye, N. (2023). Adaptive discretiza-
tion using voronoi trees for continuous-action POMDPs. S.M. LaValle,
J.M. O’Kane, M. Otte, D. Sadigh, & P. Tokekar (Eds.), Algorithmic
foundations of robotics XV: Proceedings of the twelfth workshop on the
algorithmic foundations of robotics (pp. 170–187). Springer.

https://doi.org/10.1007/s10479-005-5724-z

Springer Nature 2021 LATEX template

24 Lazy Cross-Entropy Search Over Policy Trees

Kaelbling, L.P., Littman, M.L., Cassandra, A.R. (1998). Planning and acting
in partially observable stochastic domains. Artificial Intelligence, 101 (1-
2), 99–134, https://doi.org/10.1016/s0004-3702(98)00023-x

Kim, B., Lee, K., Lim, S., Kaelbling, L., Lozano-Pérez, T. (2020). Monte Carlo
tree search in continuous spaces using voronoi optimistic optimization
with regret bounds. Proceedings of the AAAI conference on artificial
intelligence (Vol. 34, pp. 9916–9924). AAAI.

Kurniawati, H. (2022). Partially observable markov decision processes and
robotics. Annual Review of Control, Robotics, and Autonomous Systems,
5 , 253–277, https://doi.org/10.1146/annurev-control-042920-092451

Kurniawati, H., Du, Y., Hsu, D., Lee, W.S. (2010). Motion planning under
uncertainty for robotic tasks with long time horizons. The International
Journal of Robotics Research, 30 (3), 308–323, https://doi.org/10.1177/
0278364910386986

Kurniawati, H., Hsu, D., Lee, W.S. (2008). SARSOP: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces.
Robotics: Science and systems III (pp. 65–72). MIT Press.

Kurniawati, H., & Yadav, V. (2016). An online POMDP solver for uncer-
tainty planning in dynamic environment. Robotics research: The 16th
international symposium ISRR (pp. 611–629). Springer.

Lim, M.H., Tomlin, C.J., Sunberg, Z.N. (2021). Voronoi progressive widen-
ing: Efficient online solvers for continuous state, action, and observation
POMDPs. 2021 60th IEEE conference on decision and control (CDC)
(pp. 4493–4500).

Lindquist, A. (1973). On feedback control of linear stochastic systems. SIAM
Journal on Control , 11 (2), 323–343, https://doi.org/10.1137/0311025

Mannor, S., Rubinstein, R.Y., Gat, Y. (2003). The cross entropy method for
fast policy search. Proceedings of the 20th international conference on
machine learning (pp. 512–519). AAAI Press.

Mern, J., Yildiz, A., Sunberg, Z., Mukerji, T., Kochenderfer, M.J. (2021).
Bayesian optimized Monte Carlo planning. Proceedings of the AAAI
conference on artificial intelligence (Vol. 35, pp. 11880–11887). AAAI.

https://doi.org/10.1016/s0004-3702(98)00023-x
https://doi.org/10.1146/annurev-control-042920-092451
https://doi.org/10.1177/0278364910386986
https://doi.org/10.1177/0278364910386986
https://doi.org/10.1137/0311025

Springer Nature 2021 LATEX template

Lazy Cross-Entropy Search Over Policy Trees 25

Oliehoek, F.A., Kooij, J.F.P., Vlassis, N. (2008). A cross-entropy approach to
solving Dec-POMDPs. C. Badica & M. Paprzycki (Eds.), Advances in
intelligent and distributed computing (pp. 145–154). Springer.

Omidshafiei, S., Agha-mohammadi, A.-a., Amato, C., Liu, S.-Y., How, J.P.,
Vian, J. (2016). Graph-based cross entropy method for solving multi-
robot decentralized POMDPs. 2016 IEEE international conference on
robotics and automation (icra) (pp. 5395–5402).

Papadimitriou, C.H., & Tsitsiklis, J.N. (1987). The complexity of Markov
decision processes. Mathematics of Operations Research, 12 (3), 441–450,
https://doi.org/10.1287/moor.12.3.441

Pineau, J., Gordon, G., Thrun, S. (2003). Point-based value iteration: An
anytime algorithm for POMDPs. Proceedings of 18th international joint
conference on artificial intelligence (IJCAI ’03) (pp. 1025–1032).

Rubinstein, R.Y., & Kroese, D.P. (2004). The cross entropy method: A uni-
fied approach to combinatorial optimization, Monte Carlo simulation and
machine learning. Springer.

Schwartz, J., Kurniawati, H., El-Mahassni, E. (2020). POMDP+ information-
decay: Incorporating defender’s behaviour in autonomous penetration
testing. Proceedings of the international conference on automated
planning and scheduling (Vol. 30, pp. 235–243).

Seiler, K.M., Kurniawati, H., Singh, S.P. (2015). An online and approx-
imate solver for POMDPs with continuous action space. 2015 IEEE
international conference on robotics and automation (pp. 2290–2297).

Silver, D., & Veness, J. (2010). Monte-carlo planning in large POMDPs.
J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, & A. Culotta (Eds.),
Advances in neural information processing systems (Vol. 23). Curran
Associates.

Smith, T., & Simmons, R. (2005). Point-based POMDP algorithms: Improved
analysis and implementation. Proceedings of the twenty-first conference
on uncertainty in artificial intelligence (pp. 542–549). AUAI Press.

Sun, W., Patil, S., Alterovitz, R. (2015). High-frequency replanning under
uncertainty using parallel sampling-based motion planning. IEEE Trans-
actions on Robotics, 31 (1), 104–116, https://doi.org/10.1109/tro.2014
.2380273

https://doi.org/10.1287/moor.12.3.441
https://doi.org/10.1109/tro.2014.2380273
https://doi.org/10.1109/tro.2014.2380273

Springer Nature 2021 LATEX template

26 Lazy Cross-Entropy Search Over Policy Trees

Sunberg, Z., & Kochenderfer, M. (2018). Online algorithms for POMDPs
with continuous state, action, and observation spaces. Proceedings of the
international conference on automated planning and scheduling (Vol. 28,
pp. 259–263). AAAI Press.

van den Berg, J., Abbeel, P., Goldberg, K. (2011). LQG-MP: Optimized
path planning for robots with motion uncertainty and imperfect state
information. The International Journal of Robotics Research, 30 (7),
895–913, https://doi.org/10.1177/0278364911406562

van den Berg, J., Patil, S., Alterovitz, R. (2012). Motion planning under
uncertainty using iterative local optimization in belief space. The Inter-
national Journal of Robotics Research, 31 (11), 1263–1278, https://
doi.org/10.1177/0278364912456319

Wang, E., Kurniawati, H., Kroese, D. (2018, Jun.). An on-line planner for
POMDPs with large discrete action space: A quantile-based approach.
Proceedings of the international conference on automated planning and
scheduling (Vol. 28, pp. 273–277). AAAI Press.

Ye, N., Somani, A., Hsu, D., Lee, W.S. (2017). DESPOT: Online POMDP
planning with regularization. Journal of Artificial Intelligence Research,
58 , 231–266, https://doi.org/10.1613/jair.5328

https://doi.org/10.1177/0278364911406562
https://doi.org/10.1177/0278364912456319
https://doi.org/10.1177/0278364912456319
https://doi.org/10.1613/jair.5328

	Introduction
	Background & Related Work
	Partially Observable Markov Decision Process (POMDP)
	POMDP Solvers
	Cross-Entropy Method for Optimization

	Lazy Cross-Entropy Search Over Policy Trees
	Assumptions
	Overview of LCEOPT
	Policy Parameterization
	Policy Sampling, Evaluation and Distribution Update
	The Basic Method
	The Lazy Method

	Experiments and Results
	Problem Scenarios
	ContTag
	Pushbox
	Parking
	SensorPlacement

	Experimental Setup
	Results
	Comparison with State-of-the-Art Methods
	Comparison of the basic Method and the Lazy Method

	Conclusion
	Acknowledgements

	Solver Parameters

