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Motivated by recent traffic control models in ATM systems, we analyse three
closely related systems of fluid queues, each consisting of two consecutive reservoirs,
in which the first reservoir is fed by a two-state (on and off) Markov source. The
first system is an ordinary two-node fluid tandem queue. Hence the output of the
first reservoir forms the input to the second one. The second system is dual to
the first one, in the sense that the second reservoir accumulates fluid when the first
reservoir is empty, and releases fluid otherwise. In these models both reservoirs have
infinite capacities. The third model is similar to the second one, however the second
reservoir is now finite. Furthermore, a feedback mechanism is active, such that the
rates at which the first reservoir fills or depletes depend on the state (empty or
nonempty) of the second reservoir.

The models are analysed by means of Markov processes and regenerative pro-
cesses in combination with truncation, level crossing and other techniques. The
extensive calculations were facilitated by the use of computer algebra. This ap-
proach leads to closed-form solutions to the steady-state joint distribution of the
content of the two reservoirs in each of the models.
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1. Introduction

Fluid queues have been widely accepted as convenient and sound models
for various modern telecommunication and manufacturing systems. However,
the analysis of networks of fluid queues — which is the subject of this paper
— has thus far obtained little attention when compared to the vast amount of
literature on networks of ordinary queueing systems. This may be explained by
the difficulty in finding exact expressions. In particular, these models generally
do not have product-form solutions. Proofs of this unfortunate fact may be found
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in [18,19] for fluid networks with deterministic linear internal flows and external
nondecreasing Lévy input. Nonetheless, for some networks of this type, progress
has been made in determining the steady-state behaviour (apart from structural
results as they appear in [18,19] and references mentioned therein). In [21] an
n-node tandem fluid queue with nondecreasing Lévy input into the first reservoir
has been analyzed, while in [17] a generalization is studied where (Lévy) input
into other nodes of the tandem is allowed as well. Both models were analyzed
using a convenient martingale, leading to explicit expressions for (the Laplace-
transform of) the stationary joint distribution of the contents of two reservoirs.

However, not much work has been done for networks with external fluid
input(s). It seems that determining the steady-state behaviour is more difficult
in this case. To our knowledge, explicit solutions have thus far been found only
for a Markov-modulated two-buffer model with priorities which was considered
in [27] and [10]. The latter reference contains an explicit solution for the steady-
state distribution, Laplace-transformed in one variable. Finally we mention the
techniques presented in [20] for fluid reservoirs in a random environment, which
can be fruitfully applied to particular parts of fluid networks, typically leading to
marginal distributions, see [2] and the marginal distribution results in the current
paper.

In this paper we consider three closely related fluid systems, each consisting
of two fluid reservoirs regulated by a two-state (on and off) continuous time
Markov process, (M;) say. In all models the first buffer is filled up (depleted)
whenever (M;) is in the on state (off state), so that the differences between the
systems are mainly in the different behaviour of the second buffer.

In the first system the content of the second reservoir increases at times
when the first reservoir is nonempty, while it decreases otherwise (unless also the
second reservoir itself is empty). We will naturally refer to this fluid model as the
tandem model. The second model will be referred to as the dual model. It may
be regarded as “dual” to the tandem model, in the sense that the content of the
second reservoir behaves opposite to that in the tandem model. Specifically, it
increases when the first reservoir is empty, and decreases otherwise. Notice that
both the tandem model and its dual fit into the context of Markov-modulated
fluid models: the second fluid reservoir is driven by a Markov process, (M;, D;),
where Dy is the content of the first reservoir at time . In the third model, which
we will call the feedback model, this is no longer the case. The second reservoir
is regulated by the process (M, D;) in the same way as in the dual system.
However, an additional “feedback” mechanism, as introduced in [25], is in force
such that the rates at which the first reservoir fills up or is depleted depend on
whether the second reservoir is empty or not. A second difference between this
model and the other two is that the second reservoir has a finite size K. Thus,
whenever this reservoir is filling up (due to the first reservoir being empty, as in
the dual model) it will do so at most until the level K is reached, after which it
will remain at that level (until the first reservoir starts filling up again).
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For all three systems, we are interested in the joint steady-state distribution
of the content of the reservoirs and the state of the regulating Markov process.
In each case, this joint distribution can be viewed as the stationary distribution
of some multi-dimensional Markov process. For the derivation of the three dis-
tributions we use a variety of techniques from Markov process theory, renewal
theory, Laplace transformation, stochastic integration and standard queueing
theory. Due to the complicated nature of the generator equations of the multi-
dimensional Markov processes mentioned above and the vast amount of algebra
involved, we found this approach to be convenient. However, various (sub)results
in the analysis can undoubtedly be obtained via other approaches as well, such as
employing rate conservation principles, see [24], or applying martingale results,
see Remark 2.5.

Our motivation for studying the various models developed historically as
follows. First, the tandem model was an obvious candidate for analysis since it is
likely the most simple non-trivial fluid system with obvious applications. It was
known that the analysis of the tandem system was closely related to the analysis
of the waiting time in an M/G/1 queue. Drawing an analogy with the M/G/1
versus the G/M/1 queue, it was expected that the dual system would have a
much more simple solution than the tandem model. Parallel investigations in [3]
(see also [13]) supported this view. In addition, these investigations suggested
that the dual model could be used to model so-called two-level traffic shapers in
ATM models, to control the burstiness of traffic that is presented to an ATM
communication network, see [3] and references mentioned there. However, un-
der typical circumstances the dual system would be unstable. For these traffic
shaping applications it is essential that the second reservoir be finite. The effort
involved in finding explicit solutions for finite buffer models led to a new set of
techniques, which eventually led to the feedback model. It was realized that the
feedback mechanism could be incorporated into the model without complicating
the analysis too much. Moreover, when the feedback mechanism is turned off,
the model may be seen as a generalization of both the tandem and dual model.

Since the present paper will remain on a theoretical level, we will not elab-
orate on the relation between feedback models and traffic shaping. For more on
this, we refer to [3], where another feedback model was introduced, that may be
considered as a special case of the current one. Another valuable paper on more
practical aspects is [5], where the same model as our current feedback model
is considered. The (discretization) method employed there works fast and finds
close approximations for various performance measures.

The rest of the paper is organized as follows. In Section 2 the tandem model
is analysed. First, we give some preliminary results for the behaviour of the first
reservoir and we derive the stability conditions for the system. Then we present a
stochastic decomposition result for the second reservoir. In particular this leads
to the limiting distribution of the content of this reservoir given that the first
reservoir is empty. We then use this information to derive the stationary joint
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distribution of the process (M, Dy, Cy) for the tandem model. The solution is
found by solving a Laplace-transformed version of the stationary forward equa-
tions, and is given in the form of several densities in terms of integrals of modified
Bessel functions of the first kind. We illustrate that, despite the complexity of
these expressions, it is not hard to employ them for numerical computations. For
the dual model we follow a similar approach in Section 3, leading to the earlier
mentioned simple solution. In Section 4 the feedback model is analysed, using
the relation between the feedback model and the tandem model and various ad-
ditional arguments. Again we illustrate that numerical results can be obtained,
although with more computational effort. Finally, we sketch some special cases
and generalizations of the feedback model in Section 5, most notably one that
describes a fluid tandem queue as in the first part of the paper, but with finite
reservoirs.

Notation and terminology

In the context of traffic shaping in ATM networks, the content of the first
reservoir is called data, while the second reservoir contains an entity called credit.
In the feedback model of Section 4 we will therefore refer to the first reservoir
as the data buffer and to the second one as the credit buffer. This explains our
convention, used throughout the paper, to use the letters d and ¢ for quantities
referring to the first and second buffer, respectively. From now on we will use the
word buffer rather than reservoir or (fluid) queue.

2. Tandem model

Consider a fluid system consisting of two infinitely large buffers, with con-
tents Dy and C} at time t respectively, and a continuous-time Markov process
(M), which is characterized by its state space {0,1} and its Q-matrix,

—a a

Q= ( A _b>. (2.1)
The first buffer is driven by (M;) in the following manner. When (M;) is in
state 1, the content of the first buffer increases at constant rate d,., otherwise it
decreases at rate d_, provided that it is not empty. The second buffer is driven
by the first one, in such a way that its content increases at rate c; when the first
buffer is not empty, and else decreases at rate c_, provided that the second buffer
is not empty. We note that c¢y,c_,d; and d_ are positive numbers.

A schematic overview of the behaviour of the interaction between the pro-
cesses (My), (D) and (Cy) is given in Figure 1, while a realization of the processes
(D) and (C}) is given in Figure 2. The parameter values used here and in other
figures pertaining to the tandem model are a =1, b =2, d. =2,d_ =6, cy =3
and c_ = 2.5.
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Figure 1. Interaction between the subsystems of the tandem system
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Figure 2. Realization of the buffer content processes for the tandem model

For simplicity, we assume from now on that My = 1 and Dy = Cy = 0.
Observe that the stochastic process (Mg, Dy, Cy) is a Markov process with state
space {0,1} x S, where

S={(z,y) ER|z>0,y >xc;/ds}.

The model may be used to describe a fluid version of the classical tandem
model: two fluid buffers with constant release rates are placed in series, the first
buffer is fed by an exponential on-off source while the second one is fed by the
output of the first. In this case d_ = c; + c_; notice however, that our model
can handle slightly more general scenarios.

As an aside we mention that this model is related to that of [26], see also
[4] and [14], where a fluid reservoir is driven by an M/M/1 queue. In fact,
when we let b and d; grow to infinity such that their quotient remains constant
and identify parameters appropriately, the second buffer here corresponds to the
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buffer in [26], while the content of the first buffer is the amount of work in the
M/M/1 queue.

Our aim is to derive the joint stationary distribution of the Markov process
(My, Dy, Cy). In order to do this, we first give some preliminaries, namely some
known results on the stationary behaviour of the first buffer, a theorem regarding
stability issues and a stochastic decomposition result for the second buffer.

Behaviour of the first buffer

It is well-known (see e.g. [6]) that when
bd_ —ady > 0, (2.2)
the stationary distribution of the process (D;) exists and is given by
PD <z]=1-pge *, x> 0. (2.3)
Here « is called the decay rate and is given by
b a

=— - — 2.4
S (2.4)
while the utilization pg is given by
a d, + d+
= B 2.5
PA= T (2.5)

Furthermore it is clear that the idle periods of the first buffer have an expo-
nential distribution with parameter . Also it is not difficult to derive, e.g. using
Example 3.1 in [1], that the Laplace transform Lp of the generic busy period B,
say, is given by

L,ﬂﬂ:uw, s> 0, (2.6)
where
_n(s) — V&)
Ai(s) = T od d, (2.7)
with

0s) =bd_ —ady +s(d_ —dy),
£(s) = (bd_ — ady )+ 2s(d_ +dy)(bd_ + ady) + s*(d_ +dy)>.
Notice that A\i(s) <0 for s > 0. It follows that when (2.2) holds,

d_+d.
bd_ — ad;’

When (2.2) does not hold, the expected length of a busy cycle is infinite.

EB = (2.8)
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Stability

Clearly, the process (M;, Dy, C}) is regenerative. As regeneration epochs we
may, and henceforth will, choose the times when (M, D;, C}) is in state (1,0,0),
including time 0. Let T denote the first strictly positive regeneration epoch, see
Figure 2. For stability, the point at issue is under which condition the expectation
of T is finite. This makes the Markov process (My, D, Cy) positive recurrent. The
limiting distribution of the regenerative process (My, Dy, Cy) is then the same as
the stationary distribution of (My, Dy, Cy).

The question whether a stationary distribution of the process (My, Dy, Cy)
indeed exists can be answered using the fact that the second buffer can be viewed
as a fluid queue in a “two-state random environment”, as described in [20]. In
such a model, the buffer content is driven by an i.i.d. sequence {(D;,U;)} of
down- and up-times, such that the content increases at down-times and decreases
at up-times, see also [9]. In our case, the second buffer is driven by the two-
state environment with down- and up-times {(B;, I;)} of busy and idle periods of
the first buffer. The proof of the following theorem relates the behaviour of an
embedded process to that of the waiting time in a G/G/1 queue, along the lines
of [20].

Theorem 2.1. The process (M, Dy, C;) converges in distribution to a proper
random vector (M, D,C), as t — oo, if and only if

bd _ a
_2 5 2.9
crd toditends o (29)

Proof. Let {(B;,I;)} denote the sequence of busy and idle periods of the first
buffer, forming the two-state random environment that drives the second buffer,
as described above. Let Z; be the content of the second buffer at the beginning
of the ith busy period of the first buffer, + = 0,1,2,.... Obviously, the process
{Z;} is regenerative. Analogous to the proof of Theorem 3 of [20] the expected
regeneration time is finite if and only if

c_EI > c; EB, (2.10)

where I and B are generic idle and busy periods of the first buffer, respectively.
In view of (2.8) this is equivalent with (2.9). Notice that (2.2) is implied by (2.9).

The proof is concluded by applying Wald’s lemma to show that the expected
length of a regeneration epoch of the regenerative process (M, Dy, Cy) is finite as
well. O

We will henceforth assume (2.9) to be satisfied and interpret (M, D,C) as the
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state of the system in “steady-state”. Its distribution will be denoted by F =
(FU (d[l?, dy)7 Fl (d[l?, dy))a where

Fi(dz,dy) =P[M =i, D € dz,C € dy]
:tli>m P[M; =i, D, € dz,Cy € dy], i €{0,1}. (2.11)
o

Stochastic decomposition

Next, we describe another consequence of the fact that the second buffer
may be viewed as a fluid queue in a random environment, as described above.

Let Z;, as before, be the content of the second buffer at the beginning of
the ith busy period of the first buffer, i = 0,1,2,.... From Theorem 3 of [20] Z;
converges in distribution to a random variable Z, as ¢+ — co. This Z is distributed
as the steady-state waiting time in an M/G/1 queue with interarrival times which
are distributed as c¢_ times the idle period of the first buffer and service times
which are distributed as ¢, times the busy period of the first buffer. In particular,
we have, with B and I defined as before,

ZL(Z+c,B—c I, (2.12)

where Z, B and I are mutually independent, and where [z]* denotes the maxi-
mum of x and 0.

Thus, using the Pollaczek-Khintchine formula and (2.6) and (2.8), the
Laplace transform of Z (Lyz say) is given by

_be_d_ —alcpd_ +c_dy +cydy) s
B bd_ — ad+ (C_ + C+)S + d_)\l (C+8)’

Ly(s) (2.13)

where the function A; is given in (2.7).

By Theorem 4 and Theorem 5 of [20] the distribution of C' has the following
stochastic decomposition,

_ *+ _
o4 {[Z+C+B c I*I" wop. 1 —pg, (2.14)

Z +cyB* W.p. Pd,

where B, B*, I* and Z are mutually independent, and B* and I'* are distributed
as the residual lifetimes of B and I, respectively.
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From (2.12) and the fact that I* 2 I we conclude that the conditional
distribution of (C'| D = 0) is the same as the distribution of Z, and hence given
by (2.13). We will use this information in the following section to reach our final
goal. As an aside we mention that the marginal distribution of C' can now be
found, either by inversion of the Laplace transform Lo of C, which is clearly
given by

Le(s)=(1 = pa)Lz(s) + paLlz(s) [l — Lp(cys)]/[EB cqs]
bd_ —ady —Ai(cqs)

=L 2.15
2(5) a+b crs (2.15)

or by inversion of (2.13) and using
PrC >y = (1 pg) = Pr{Z>y),  y>0, (2.16)

which follows from Corollary 3 in [20]. The result is given in (2.34)—(2.35).
Joint stationary distribution

We are now ready to derive the joint distribution F of the random vector
(M, D,C). The form of the distribution is easily established (see also Figure 2).
As a consequence of Theorem 2.1, the state (0,0, 0) is a positive recurrent state of
the Markov process (M, Dy, Cy). This state is entered via the set {(0,0,y) |y > 0}
and left via the set {(1,z,y) | * > 0,y = zcy/d+}. Moreover, the set {0,1} x
{(z,y) | y < xe4/d4} is never entered. These considerations suggest that F be
of the following form,

Fy({0,0}) =1 - p, (2.17)
Fy({0}, dy) = o0(y) dy, y >0, (2.18)
Fi(dz,cy /dydx) =01 (x) dz, x>0, (2.19)

Fl(de‘,dy) :fl(xay) d!L'dy ) T > 07 Yy > IC+/d+, "= 07 ]-7 (220)
for some constant p. and certain densities oy, o1, fo and fi.
Since Fy({0,0}) = P[C = 0], it follows that p, is the utilization of the second
buffer, and can be found from a flow balance equation,
(c+ +c-) (1 = pa) = c— (1 = pe)-
Using (2.5) this immediately leads to
a c_+cpd_+dy
a+b c_ d_

pe = (2.21)

The following theorem gives explicit expressions for the densities.



10 Kroese and Scheinhardt / Interacting fluid queues

Theorem 2.2. For the tandem model, the stationary joint distribution F' of the
process (M, Dy, Cy) is of the form (2.17) — (2.20), where

ooy) = (1= pe) e (- _ G /Oy e~ OB E (0, u) du> (222)

c_ 2
a  _
(@)= ~p) F-e bafdt, (2.23)
vbe. bty
fo(z,y) =(1 = pc) 4 +d, e 4 X (2.24)
— _t+
_d+'yw€ a(y d+x) Hy(z,y — C—+IE)
b dy
_ St y—c—+x
+ Cie ﬂ(y 4+ ){1+:1:w7/0 d+ e =P Ho (2, u)du)

—8(y-ta) py-at
_cavw A(y-Gie) /y d+xe(9ﬁ)uH1(:p,u)dU>,
0

2
_b
fl(l"y):(l _pC) i e d+x X (225)
dy
oy Ste
(wvxe (y + )Ho(fﬂay_cix)
dy
B(y-te -
Lo, B( s ){1+$w7/ T _o- A Hy(x, u)du}
c_
_gfy—t
- C+2VUJ6 g(y d+x) /y d+ e—(ﬂ—ﬁ)qu(x,u)du>
0

Here, the functions Hy and H; are given by

w(y” + 20y7))
w(y? + 22y7)

y + zyy
H, 22 Hy(z,
(z,y) = 7 T 2wy o(z,y)

vy To (VolyZ+20y7)) + I (Voly? + 20y7))
y? + 2zyy 2

Hy(z,y) = h (

(2.26)

(2.27)

where I; is the modified Bessel function of the first kind of order i, i.e.,

ey e
L(z) = (§> kgm (2.28)
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Furthermore, p. is given in (2.21), and

bd_ a

= - — 2.29
C+d_ + C_d_|_ + C+d_|_ C_— ’ ( )
cr(d—+dy)’ '

d_+d,

= 2.31

v C+d7‘%C,d+‘%C+d+’ ( 3)
dabd_d.

= - T 2.32

YT td)? (2:32)
cq(d— +dy)

= 2.

gl 20 d, (2.33)

Clearly, it is not difficult to obtain numerical results from Theorem 2.2. In
Figures 3 and 4 the various densities are shown for the parameter values given at
the beginning of this section. Notice that 3, the decay rate of the second buffer
is rather small in this case, § =~ 0.014.

For completeness we mention that the distribution of the process C' is given by

P[C =0]=1— p,, (2.34)
c— +cyt
P[C € dy] = — oo(y) dy, y > 0. (2.35)
+

Expression (2.35) can be found either by using (2.15) or (2.16) as indicated before,
or more easily from Theorem 2.2 by using level crossing arguments.

For the proof of Theorem 2.2 it remains to prove the actual form of the
various densities. We do so in three consecutive steps.

0.015 0.015
0.01 0.01
\
0.005 0.005
0o 0.5 1 1.5 2 2.5 3y 0 0.5 1 1.5 2X

Figure 3. The densities 0o and o1 as functions of y and z, respectively
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0.005 0.005

0.004 0.004

0.003 0.003

0.002 0.002

0.001

0.001

0 0

0 0.5 0 0.5
1.5 50 1.55—=
x 2.5 x 2.5

Figure 4. The densities fo and f; as functions of z and y

Density oy

The conditional distribution of (C'| D = 0) has Laplace-Stieltjes transform
Ly given in (2.13). Thus,

Ee™* 1ipgy = (1 — pg) Lz(s). (2.36)
Applying the shift s — s — 6, with 6 as in (2.30), yields after some algebra
—Vs2—wecrv
Ee =01, 00 =(1—p.) (1 a _5 +
‘ o == P (1 =y " =) 2 )

with 8, w and v given in (2.29), (2.32) and (2.31), respectively. We now find o by
inverting the above expression, using the fact that the inverse Laplace transform
of the function s — s — v/s2 — w is the function

Ii(yvw)
Yy w ™ (2.37)

see for example [15, (28) on page 235].

Density o

The expected sojourn time of the process (Dy, Cy) in the set {(Z,7) | c4& =
d+7,% < z} during the first regeneration period [0, 7] can be found by condition-
ing on the time the process stays on the line {(z,y) | z > 0,y = zcy /d;} after
t = 0. Since this time is exponentially distributed with parameter b, it follows
after some calculations and applying the theory of regenerative processes, that

1— efbx/d_;_

]P)[C+D == d+C,D S I] == bET
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Since we also have that

we obtain

PleyD =d,C,D < z] = “(17;/’0) (1 — e—bx/d+) . (2.38)

Finally, by differentiating with respect to x, we find (2.23).

Densities fo and fi

This last step is the most difficult one. Our approach is to determine the den-
sities fp and f via a Laplace-transformed version of the stationary Kolmogorov
forward equations for the Markov process (My, Dy, Cy). Thereto, we define the
joint Laplace transforms ¢; by

qi(pa 5) = ]E]-{M:z} e—pD—sC, S {07 1}7 p,s 2> 0. (239)

We will write q(p, s) for the column vector with entries ¢o(p, s) and ¢ (p, s).

Lemma 2.3. The vector q(p, s) satisfies:

A =B 40(00, ) ) 2.40
(9:5) alp,s) = Blo,s) ( 1007 ) (2:40)
where
_(—a+d_p—cys b
A(p,S)— ( a —d+p—C+8—b>,
and

d_p—cis—c_sc_s
Blp.s) = (P o)

Proof. We only prove the first row of the matrix equation, the second row can
be proved in a similar manner.
Consider the stochastic processes (X;(t), t > 0), i € {0,1}, defined by

Xi(t) = e PP Ly

Notice that both these processes are of bounded variation. We denote the
continuous part of (X;(¢)) by (X7 (¢)). In particular, we have for ¢t > 0,

Xo(t) = Xo(0) + X§(6) + Y [Xo(u) — Xo(u—)]. (2.41)
0<u<t
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We now concentrate on (Xo(¢)). The derivative of (X§(¢)) is easily found,

d C
%XO (t) = X()(t) (d*pl{Dt>0} — C+81{Dt>0} + C*SI{DtZO,Ct>0}) 5 t > 0 (242)

Moreover, the pure jump part of (X (¢)) can be written in stochastic integral
form,

Ogﬁ[Xo(“) - Xo(u—)] = — /Ot Xo(u—)dA, + /Ot X, (u—) dBy, (2.43)

where (A;) and (B;) denote the counting processes that count the number of
jumps of (M;) from state 0 to 1 and from 1 to 0, respectively. The stochastic
intensities at time ¢ of (A;) and (B;) are given by a 11y, —oy and b1y, —1y, Te-
spectively. Because (Xg(u—)) is a left-continuous adapted process, we have by
the theory of stochastic integration, (see e.g. [23]) that

t t
IE/ Xo(u—)dAu:E/ Xo(u—) a1p,—op du, (2.44)
0 0

and a similar result holds for the other integral in (2.43). If we now take expec-
tations in (2.41) and use (2.42)—(2.44), we arrive at

EX, (t) = EX, (0)
¢ t
+d_p/0 EX, (u)l{Du>0} du — c+3/0 EXo (“)1{Du>0} du
t
+c_3/0 EX, ('U/)]-{Du:U,C'u>0} du
t t
0 0

Now differentiate both sides of the previous equation with respect to ¢ and let
t — oco. By the continuity of Laplace transforms, we obtain

0=d_p <qo(p, s) — qo(o0, 8)) —cys <qo(p, s) — qo(o0, 8))
+es((o05) — an(00,20) )~ am(p.s) + ban(p.).
The first row of (2.40) now follows. O

Notice that the quantities in the right-hand side of (2.40) are known. In
particular, using (2.36) and (2.13), we have

c_s —acysEB

=(1- 2.45
QO(OOaS) ( pd)c_s—a+aLB(c+s)’ ( )
where EB is given in (2.8) and Lp in (2.6). Furthermore we find gp(oc0,00) =

PM =0,D=0,C =0] =P[C =0] =1 — p. with p. given in (2.21).
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Solving q(p, s) from equation (2.40) yields for all p,s > 0,
(=d-p+c_s+cis)go(oo,s) —cs(l—pc)

q(p,s) =a det A(p.s) (2.46)
and
b+dip+cys
qU(p7 S) = % ql(p7 8)7
which, after some algebra, reduces to
b+dyip+cys
,S) = 00, 8 247
q0(p; s) T+ a(crs) qo(00, 5) (2.47)
and
a
,8) = 00, §), 2.48
QI(p ) d_|_(p + )\2(C+3)) QO( ) ( )
where

Ao(s) = 7’(‘9)2;_—d ”f(s) (2.49)

with n(s) and £(s) as in (2.7), and where gg(00, $) is given in (2.45).

It remains to be shown how fy(z,y) and fi(z,y) can be found from ¢o(p, s)
and q1(p, s). First, inverse transformation of ¢o(p, s) and ¢;(p, s) with respect to
p yields the functions

b—dyA
go(s) = <50(x) n + 2;c+s) +cys e_)\z(c+s):v> 40(00, 5),
+
dy
where §p denotes Dirac’s delta function at 0. Since the distribution F; only
has mass on S, we know that for fixed x > 0, g; must be the Laplace trans-
form of a (generalized) function on the interval [zcy/d,,00). Therefore, by
multiplying ¢;(s) with exp(szcy/dy) we obtain the Laplace transform hq(s) =
exp(szcy /d4)g1(s) of a function hy on [0, 00). After some calculations we find,

7 __b
=)= (1 )

a e s—Vst—w
(”c<s—(0—ﬁ>) 2 s—(e—m)'

We can invert hi(s — 6) straightforwardly (still for fixed z > 0) by using the
following two facts. First, the function

y = Ho(z,y)zwy,



16 Kroese and Scheinhardt / Interacting fluid queues

is the inverse Laplace transform of
s exp(zy(s — Vs?2 —w)) — 1,

see e.g. [15, page 250, (41)]. Second, by differentiating Hy with respect to =z we
see that

Y= UJHI (IE, y)a
is the inverse Laplace transform of
s (s —Vs?2 —w)exp(zy(s — Vs? —w)).

It follows that hi(y) = do(y) o1(z) + fi(z,y + zc4/dy), with o and f; as in
(2.23) and (2.25). ~
Similarly, for fixed z > 0, let hg(s) = exp(szcy/dy)go(s). We find

- S 2 b
fals = 0)= (1= )™ O (G
c_cq be civ s—Vs?—w
+2d_ (8— SQ_w)_2(d_—|—d+) 8—(9—,3)>.

Notice that the term do(z) go(00, ) in go(s) does not play a role, since we assume
z to be strictly positive. Inversion of hg finally yields ho(y) = fo(z,y + zc4/dy).
This completes the proof of Theorem 2.2.

Remark 2.4. Tt is interesting to note that ¢g(oo, s) can be derived directly from
Lemma 2.3 using a “boundedness” argument. For this, write

det A(p,s) = —d_d(p+ Ai(cys))(p + Aa(cys)),

where A\ (s) and Ao(s) are given in (2.7) and (2.49); recall that A;(s) <0 < Ay(s)
for s > 0. Since for all p,s > 0, q(p,s) must remain bounded, in particular for
p = —A1(cys), the numerator in (2.46) must be zero on the set {(p,s) | s >0, p =
—A1(cys)}. This gives a linear equation in ¢p(00, s), from which (2.45) follows.

Remark 2.5. We mention that the main result for the tandem model can also
be found by first conditioning on the on-off source being off, so that we obtain
a model with two-dimensional Lévy input, after which we can proceed along
the lines of [21]. Alternatively, we can find Lemma 2.3 using a two-dimensional
martingale as in [8].

3. Dual model

In this model we also consider a fluid system consisting of two infinitely
large buffers. The first buffer is regulated by (M;) in the same way as in the
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+d+ lfMt:]. +C+ lthZO
a r r
0)«—— (1)
2 | |
—d_if M; =0 —c_ifD;>0
Mt Dt Ct

Figure 5. Interaction between the subsystems of the dual system
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Figure 6. Realization of the buffer content processes for the dual model

tandem model; the transition intensities of (M;) are again given by a (from 0 to
1) and b (from 1 to 0). The only difference with the tandem model is that the
content of the second buffer increases at rate c; when the first buffer is empty,
and decreases at rate c_ otherwise, provided that it is not empty.

A schematic overview of the behaviour of the three subsystems is given in
Figure 5, while a realization of the processes (D;) and (C}) is given in Figure 6.
This time we assume that (Mo, Dy, Cp) = (0,0,0).

As for the tandem model, the stochastic process (M, Dy, Cy) is a Markov
process. Its state space is simply given by {0,1} x Ry x R;. Obviously it is a
regenerative process. As regeneration epochs we choose the times (including 0)
at which (Mt, Dt, Ct) = (0, 0, 0)
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Stability

Next, in analogy to Theorem 2.1, we establish the conditions under which
the limiting distribution of the process (My, D;, C}) exists.

Consider the embedded process {Z;} describing the content of the second
buffer at the beginning of the idle periods of the first buffer. While for the tandem
case, the embedded process is related to the actual waiting time in an M/G/1-
queue (with inter-arrival times distributed as ¢_I and service times distributed
as ¢y B), we now have an embedded process that is related to the waiting time
in a G/M/1-queue ( with interarrival times distributed as c_ B and service times
distributed as cI).

Theorem 3.1. The process (M, Dy, Cy) converges in distribution to a proper
random vector (M, D,C), as t — oo, if and only if

b a
_—— 1
and
a bd_

. 0. 3.2
c+ c_d_+c_d++c+d+> (3.2)

Proof. The proof can be copied from the proof of Theorem 2.1, apart from
(2.10), which is replaced by

c_EB > ¢, EI. (3.3)

Note also that now (3.1) is not implied by (3.2), so that we need two conditions
for stability. O

We will henceforth assume conditions (3.1) and (3.2) to be satisfied. The
interpretation of (M, D,C) and the definition of the limiting distribution F are
the same as for the tandem model case, see (2.11).

Stochastic decomposition

Repeating the arguments used in the tandem model, the embedded process
{Z;} converges in distribution to a proper random variable Z which is distributed
as the waiting time in a G/M/1 queue. Specifically, by Theorems IX.1.2(b) and
IX.1.3 of [7], we have

P[Z <z]=1-(1-Bc;/a)e P
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Here $3 is the unique strictly positive solution of the equation 1 = EefV | where
U is distributed as ¢y I —c_B and I and B are generic idle and busy periods of
the first buffer respectively. It follows that § satisfies

a b
a—Bcy Pe +b— X (Bc)dy’

which is readily solved to give

1=

a bd_
g=—— . (3.4)
C+ C,d, + C,d+ + C+d+
Moreover, the distribution of C' has the following stochastic decomposition
d [[Z+ciI—c_B*]t w.p. py,
¢= {Z +c I* w.p. 1 — pg, (3.5)

similar to (2.14). Here, pg is the same as for the tandem model, see (2.5). Since,
I'* and I have the same distribution, we have

“sC i [ Bex _ Bey, B a B
E(e |D_0)_< “ra-E )B+s> e 69

In other words, the conditional distribution of (C'|D = 0) is exponential with
intensity 3. Notice that 5 > 0.

Joint stationary distribution

We now derive the limiting distribution F of the process (M, Dy, Cy).

Theorem 3.2. For the dual model, the stationary joint distribution F of the
process (My, Dy, Cy) is of the form

Fo({0}, dy) = o0(y) dy, y >0,
Fi(dz,{0}) = pi(z) dz, z>0,1€{0,1} (3.7)
Fi(dz,dy) = fi(z,y)dz dy, z,y >0, i€{0,1}
where the densities og, u; and f;, ¢ € {0,1} are given by
oo(y) = (1= pa) Be ™, (3.8)
po(z) = (1 = pa) <di_ e — i cb_cc—ll Tl e_<x> , (3.9)
(@) = (1= pa) g (€7 = ™), (3.10)
o) = (1= pa) o, (3.11)

C,d, + C,d+ + C+d+
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filzy)=(1— m% eCeBy, (3.12)

and the constants pg, « and (3 are given in (2.5), (2.4) and (3.4) respectively, and

c—d_+cidy ac— bc_
= = . 3.13
C Ol+,6 d_d+ C+d+ + c_d_ +C_d+ +C+d+ ( )

Proof. The proof is similar to that of the tandem model, except that in this
case much more (computer) algebra is involved. The basic structure of the proof
is that we first derive a set of algebraic equations for the Laplace transform of
F, as in Lemma 2.3, and then use (3.6) and a “boundedness” argument, as in
Remark 2.4, to solve these equations.

Let q(p, s) be the vector with components gy(p, s) and ¢1(p, s), given by

qi(pa 5) = ]E]-{M:z} eprfsC’ S {07 1}7 p,s > 0. (314)
Similar to the proof of Lemma 2.3 we can show that q(p, s) satisfies:
q0(007 5)
A(p,S) q(pa 3) = B(pa 3) QO(paoo) ) (315)
q1(p, 00)
with
_(—a+d_p+c_s b
Ap,s) = < . Cb—dupt c_g) : (3.16)
and
_(d-p+cys+c.sc.s 0
Blp, s) = < : . CS) . (3.17)

(Note that gg(00,00) = 0). Consequently, for all p, s > 0,

B H(p,s) QO(OOaS)
wo-gs (fe)  ew
where
H(p, s) = <_b B di—g e —a+ di;)) + c_s> B(p,s).

Next, we use (3.6), by which we have

go(00,8) = (1 — pa)—2—. (3.19)

It remains to determine ¢;(p,o0), ¢ € {0,1}, which we will do via an argument
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Figure 7. The roots s; and s» as functions of p

that is similar to the argument in Remark 2.4. Let s;(p) and sa(p) denote the
two roots of the quadratic equation det A(p, s) = 0, see Figure 7. We note that
both roots are real and that for the smallest, s; say, we have s;(—a) = s51(0) =0,
where « is given in (2.4). By writing out (3.18) we find that go(p, s) is of the
form

_c3(p)s® + calp)s® + c1(p)s + co(p)
D) = T o) — ) 1)

where the ¢; are unknown but analytic functions of p, at least for p > —a because
¢i(p,0) < Ee™PP and « is the decay rate of the first buffer. We now fix p such
that —a < p < 0. Because for s > 0 we have that gy(p,s) < Ee™PP we can
conclude that go(p,s) must be bounded for s > 0. Moreover, since it is not
difficult to show that s;(p) > 0 and s2(p) > 0 (see Figure 7), it follows that the
numerator in (3.20) must be zero for s = s;(p) and for s = sa(p). This provides
us with two linearly independent equations for gy(p,o0) and g1(p,00). As an
aside we note that taking ¢i(p, s) instead of go(p, s) in the reasoning above leads
to an equivalent set of equations. After quite a bit of algebra, the solution can
be written as

(3.20)

bC+ +ac_ + C+d+p C —«
cd +cepdy (pra)p+()
a (—a

q1(p,00) = (1 — pa) Z ma (3.22)

(3.21)

with ¢ given in (3.13).

The Laplace transforms gy and ¢; now follow from (3.18), (3.19), (3.21) and
(3.22) and take, after some strenuous rewriting, the form

qo(p, s) =
Q@b + slac +bes + cidip)/(dyd )
(1=pa) 5 PR TPEaTP) 3.2
q1(p,s) = (1 — pg)B i pH¢slerdy +ed)/(dyd-) (3.24)

(p+a)(p+C)(s+p)
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Equation (3.6) gives (3.8), and inverse Laplace transformation of (3.21) and
(3.22) yields (3.9) and (3.10). In order to obtain the densities f;, we first rewrite
qi(p, s) to a form in which we can recognize (the transforms of) the densities we
just found. The result is given by

ac— +bey +cidip
dyd—(p+a)(p+)

<1+ ber ! ) ! },(3.25)

q(p;s)=(1—pa) B {

c.d_+c.dy+cydy p+C¢) s+
alps) = (= pa) - { s (3.26)
diy Lp+a)p+¢)  (P+O(s+P)

By inversion of these expressions, we now easily find (3.11) and (3.12). O

Remark 3.3. The reason that the dual model has such a remarkably simple solu-
tion when compared to the tandem model, is that there is only one state in the
regulating process (M;, D;) for which the content of the second buffer increases,
namely (0,0). As a consequence, the solution depends on y via one exponential
term, namely e~#Y. In [22] another solution procedure is applied to solve the
dual model, illustrating this phenomenon.

4. Feedback model

Our last model is related to both the tandem and the dual model but has
two essentially different characteristics: a finite (second) buffer and a feedback
mechanism.

The system consists of two buffers: an infinitely large data buffer and a finite
credit buffer of size K. Again, the whole system is regulated by a continuous-time
Markov process (M;), with state space {0,1} and transition intensities a (from
0 to 1) and b (from 1 to 0). When the credit buffer is not empty, the content of
the data buffer increases at rate d; when (M) is in state 1 and decreases at rate
d_ when (M;) is in state 0, provided that the data buffer is not empty. However,
when the credit buffer is empty, the up and down rates are d(_)Ir and d° , instead
of d; and d_ respectively.

Furthermore, the content of the credit buffer increases at rate c; when the
data buffer is empty (provided that the credit buffer is not completely filled),
and decreases at rate c_ otherwise (provided that the credit buffer is not empty).
Notice that d4.,d_, d(}r, d® ,c, and c_ are positive numbers, as in the other models
and that the meaning of the symbols is again reflected in the notation (d for data,
¢ for credit).

We let D; and C; denote the content of the data and credit buffer at time
t, respectively, and observe that the stochastic process (My, Dy, Cy) is a Markov
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+dy f My =1,C; >0
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Figure 8. Interaction between the processes (M), (D;) and (Cy)
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Figure 9. Realization of the buffer content processes

process, despite the presence of feedback. A schematic overview of the interaction
between (M), (D;) and (C}) is given in Figure 8.

As for the dual model we assume that (Mp, Do, Cy) = (0,0,0). A realization
of the process (Dy, Cy) is given in Figure 9. The parameter values used here and
in other figures pertaining to this model are a =1, b=2, dy =2, d_ =6, d} =
4,d° =3, ¢, =25,c. =3 and K = 3.

Inspection of the behaviour of the system, see Figure 9, shows that the state
space of (My, Dy, Cy) is given by {0,1} x S with

S=8,US,, (4.1)
S1={(z,9) |0<y <K, 0<z<(K-y)dy/c_}, (4.2)
So={(z,y) | y=0, > 0}. (4.3)
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Stability

It is clear that (My, Dy, C}) is a regenerative process; as regeneration epochs
we choose the times ¢ when simultaneously M; = 0, Dy = 0 and Cy = 0. Hence,
t = 0 is a regeneration epoch and we denote the next one by 7', i.e.

T =min{t >0 | M; =0, D, =0, C; =0}. (4.4)
We also define
T = min{t >0 | Cy = 0} (4:5)

(See Figure 9 for a visualization.)

Establishing a sufficient and necessary condition for stability of the feedback
model (or the finiteness of ET') is not much more difficult than for the tandem
and dual model.

Theorem 4.1. The process (M, Dy, C;) converges in distribution to a proper
random vector (M, D,C), as t — oo, if and only if

a=———7>0. (4.6)

Proof. It can be shown by Wald’s lemma that

1 K
ETlg]EN<?+—><OO,

where N is the number of times that the process (Dy, Cy) visits the positive y-
axis during [0,71]. Furthermore E[T — T1] is finite if and only if (4.6) holds. For
details see [25]. O

We will henceforth assume condition (4.6) to be satisfied. As in the previous
models we will interpret (M, D, C) as the state of the system in stationarity. Its
distribution F is given by F(dz, dy) = (Fy(dz,dy), Fi(dz,dy)) with

Fi(dz,dy) =P[M =i, D € dz,C € dy]
= lim P[M, =i, Dy €do,Cr € dy), i €{0,1}.  (47)

Our primary interest is in finding this distribution.
Joint stationary distribution

In principle it should be possible to carry out the analysis of the Markov
process (My, Dy, Cy) in a similar manner as for the tandem and dual system.
That is, we derive an algebraic expression for the Laplace transforms ¢o(p, s) and
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q1(p, s) of the stationary distribution, and try to resolve any unknown function by
finding an embedded process related to the waiting time in a G/G/1 queue, or by
using boundedness arguments as in Remark 2.4. However, due to the presence of
feedback, we may no longer view the second buffer as an ordinary fluid queue in
a two-state random environment. In this section, we take a completely different
approach, using truncation and level crossing arguments. The (known) station-
ary distribution for the tandem queue will be a starting point in the analysis.
However, the methodology of Sections 2 and 3 will not be completely useless for
the present model. In fact, in Section 5 we will derive an explicit expression for
the distribution of the marginal stationary distribution of the credit buffer, using
this methodology. _

When we let S denote the interior of S, we expect F to be of the following
form,

Fo({0},{K}) = Pex, . (4.8)
F;(dz,dy) = fi(z,y) dz dy, (x,y) €S, i=0,1, (4.9)

Fo({0},dy) = o0(y) dy, y € [0,K], (4.10)
Fi(dz, K —c_/d; dz) =01(z) dx z €[0,Kdy/c_], (4.11)
Fi(da, {0}) = pi(z) da ze[0,00), i=0,1. (4.12)

Observe that the notation Pk for the probability mass in (0,0, K) is an abbre-
viation for P[C' = K]. In Figure 10 the distribution F is rendered graphically.

Yy
Ke Pox
1 =20
go
fo
Mo xr M1 xr

Figure 10. The stationary distribution

The following theorem states that the form above is correct and gives explicit
expressions for the densities.
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Theorem 4.2. For the feedback model, the stationary joint distribution F of
the process (My, Dy, Cy) is of the form (4.8)-(4.12), where the various densities
are given as follows.

K-y
oo(y) = Pog e PEY) (i el /0 e =B Hy (0, u) du) , (4.13)

C+ 2
b
o1(z) = Pex E (4.14)
VbC+ _de
fo(z,y) = Pok m e “+ X (4.15)

(%5 ) by - o

Bl K—y—=2 K—y—c—_:v
+ L B( s ){1+:1:w7/ d+ e =P gy (2, u)du}
0

b
fi(z,y) = Pok LT & (4.16)

1o () = 6(% (1 (@AKdy Jo ) +m(sAKds o) Ta(zAKds Je )}, (4.17)

d> o .
,u1($)=—d0 po(z) — “Az<Kdy/e } <Zg+/ } Jo(z). (4.18)
+ +

Here, the constant Pox may be obtained by normalization and the functions Hy
and H; are given by

I ( w(y? + 2wy7))

Hy(z,y) = 4.19
o) = (4.19)

2

Yy~ +ryy
H A

1($7y) y2+2$y'}’ 0($,y)
p p
Yy IO( w(y +2$y’)’))+12( w(y +2$y’)’)) (4.20)

Y2 + 2zyy 2
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where I; is the modified Bessel function of the first kind of order 7 as before.
Furthermore, xtAKd, /c_ = min(z, Kdi/c_),

a(e®™ —1)
- 4.21
o (’U,) d(loz ) ( )
m(u) = no(u) + €™, (4.22)
xT
Te)=co [ {mlunfolu,0) +n:(w)fi(u,0)} du (4.2
U=
Kdy/c_
D@y =c— [ {folw0) + filw0)}du + or(Kdifeo),  (4.24)
and finally,
b a
bd _ a
- _ e 4.26
5 c_d_ + C_d_|_ + C+d_|_ Ct ’ ( )
bd_ + ad,
e 4.27
C_ (d, + d+) ’ ( )
dabd_d,
_ __‘cabd-dy 4.28
w 02, (df + d+)2, ( )
d_ +d,

_ 4.2

YT eld to_dy +eidy (4.29)
C_— (d_ + d+)
8-y (4.30)
2d_d,

To illustrate that calculation of the densities in Theorem 4.2 is numerically fea-
sible, some graphs are shown in Figures 11 — 13, where the parameter values are
the same as in Figure 9. The most difficult part of the numerical calculations is
the normalization. For Figures 11-13 we used the explicit expression for Pog in
(5.15).

It is interesting to note that the result in Theorem 4.2 simplifies considerably
when we let K — oco. In fact it takes the form of that in Theorem 3.2, the only
difference being the particular form of the constant coefficients of the exponential
terms. Clearly, this difference vanishes when we remove the feedback by taking
dS. =dyandd® =d_.

The proof of Theorem 4.2 requires that we split the state space {0,1} x S of
the Markov process in two parts, namely {0, 1} x.S; and {0, 1} x So, where S; and
Sy are defined in (4.2) and (4.3), see also Figure 14(a). The proof is presented
in three steps. In the first step we will find F on the set {0,1} x S; for the case
B > 0 by relating it to the stationary distribution of a tandem fluid queue. In
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Figure 11. The densities o9 and o1 as functions of y and z, respectively

Figure 12. The densities fo and fi as functions of z and y
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Figure 13. The densities po and p1 as functions of x

the second step, we find F on the set {0,1} x Sy. Finally, in the third step we
show that the results are also valid for parameter values for which g < 0.
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Densities oy, 01, fo and fi

In this step we will establish a close relation between the model under consid-
eration and the tandem model. Hereto, let (M;, Dy, C’t) be the stochastic process
that corresponds to the tandem model with the following parameters. We iden-
tify the parameters a, b, dy and d_ with the parameters of the same name in
the current model. Furthermore we will choose the parameters c; and c_ to be
equal to the parameters c_ and c4, respectively, of the current model, in other
words the symbols are interchanged. In this and the following subsection we
will assume that the stability condition for this tandem model holds; since this
does not cover all parameter values for which the current model is stable, we will
lift this restriction in the last step. The condition can be found from (2.9) by
interchanging the symbols c¢; and ¢_ and is given by

bd _ a
_ L 4.31
cd Tediterd oY (4:31)

or, equivalently, 5 > 0, where 3 is given in (4.26). Theorem 2.1 now tells us that
a stationary distribution for the process (M, Dy, Cy) exists. We will denote this
distribution by F = (Fy(dz, dy), F (dz,dy)), where

Ej(dx,dy) =P[M =i, D € dz,C € dy]
= lim P[M; =i, D; € dz,Cy e dy], i€ {0,1}.  (4.32)
o0

Clearly, F can be found from Theorem 2.2, again by interchanging ¢4 and c_.

To find the announced relation between the processes (M, Dy, C;) and
(My, Dy, C,), we consider yet another stochastic process (C;), where C; is the
amount of free space in the credit buffer at time ¢. Hence, C; = K — C;. In Fig-
ure 14 the respective state spaces of the processes (Dy, Cy), (Dy, Cy) and (Dy, C)
are given.

We will now compare two processes. On the one hand we have the process
(My, Dy, Cy), with state space {0,1} x (S; USs), where S; = {(z,y) | (v, K —y) €
S;}. On the other hand we have the process (M, Dy, ét) with state space {0, 1} xS
where § = {(z,y) | y >0, 0 <z < yd;/c_}. Tt is clear that S can be written
as § = S, U Sy, with S, = {(z,y) |y > K, 0 < z < ydy/c_}. Moreover, the
behaviour of the two processes on {0, 1} x S} is identical, and both processes enter
this set in the same way if & > 0 (namely via state (0,0, K') with probability one).
It is therefore possible to express the distribution of (M, D, C) on {0, 1} x S1 (and
hence that of (M, D,C) on {0,1} x S1) in terms of F', the stationary distribution
of (My, Dy, C’t) This is done in the following proposition.
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(a) S=51US> (b)5251U§2 (C)§=§1U§2

Figure 14. The sets S, S and S

Proposition 4.3. If a > 0 and 8 > 0, the stationary joint distribution F of the
process (M, Dy, Cy) on the set {0,1} x S is given by

Fi(dz,dy) = k Fy(dz, K — dy), (z,y) € S1, i =0,1. (4.33)
The constant £ is given by

_P[C<K] ET
k= PO <K~ BT (4.34)

where T (T) is the length of a generic regeneration period of the process
(My, Dy, Cy) (the process (M, Dy, Cy)) if we choose state (0,0,K) as regenera-
tion state.

Proof. We assume «, 8 > 0 and consider Figures 14(b) and 14(c). The choice of
(0,0, K) as regeneration state for the process (My, Dy, C;) entails that during any
regeneration period this process first sojourns in {0,1} x S, for a time period
that is distributed as T} (which was defined in (4.5)), while during the remainder
of such a regeneration period it stays in {0, 1} x Sy, with sojourn time distributed
as T — Tj. A similar observation can be made for the process (M, Dy, C’t): first
it resides in {0,1} x Sy, with sojourn time distributed as T, say, after which it
remains in {0,1} x 5’2, for a time period distributed as T —1T. Moreover, the
pathwise behaviour of both processes in the time interval (0,77) on {0,1} x S;
is identical. Hence, we have for any A C {0,1} x S,

P[(M,D,C) € A | (D,C) e 8] = P[(M,D,C)e A|(D,C) e 8],
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P[(M,D,C) € A] = PI(D,C) € 8] P[(M,D,C) € A]
[(Da C) € Sl]
ET, /ET B

Finally, since
Fy(dz,dy) =P[M =1i,D € dz,C € K — dy], i=0,1,
we easily find the stated results. O

It is now a matter of combining Proposition 4.3 and Theorem 2.2 (with the
symbols ¢ and c_ interchanged), to find (4.8) — (4.11) and (4.13) — (4.16), when
we take Pox = Fo({0},{K}) =k Fo({0},{0}).

Densities pg and

Having found the distribution of (My, Dy, C;) on {0,1} x S; (apart from normal-
ization) in the previous subsection, we proceed to derive the densities pg and pq
in (4.12). To do so, we first need to prove two lemmas. The first one gives us the
entrance distribution G of the process (M, D;, Cy) into the set {0,1} x Sy, that
is,

Gi(dzr) = P[Mt, =1i,Dr, € dz], 0<z<Kdi/c,i=0,1
with 77 as in (4.5).

Lemma 4.4. The joint distribution G of the stochastic variable (M7, , Dr,) is
given by
Go(dzx) =ET c_ fo(z,0) dx (4.35)
G1(dzx) =ET {c_ F1(2,0) + bxa, e () al(Kd+/c_)}dac, (4.36)

where g4, /. denotes the Dirac measure at Kd /c—, and o1, fo and fy are given
in (4.14), (4.15), and (4.16).

Proof. We consider the set {i} x (0,z] x (0,¢). The sojourn time Vj(z,e) of
(My, Dy, Cy) in this set during the interval [0,7] is equal to €/c_ + o(e) if the
event {Mrp, =14, Dy, <z} occurs, and is o(e) otherwise. In other words, we have

€
Vi(z,e) = - 1{MT1:i,DT1§z}+0(5)-
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If we take expectations, divide by ET" and apply the Key Renewal Theorem, we
obtain

PM=4D<z,0<C<e|=

€
=1 < .
BT P[M7, =i,Dp, < z]+ o(e)

We now find for z < Kd, /c_,

Gi((0,z]) = c_ET lim1

e—0 ¢

/05 /09” filu,v)du dv = c¢_ET /0:1: fi(u,0)du,

while an extra term ET o1(Kd; /c_) appears if i = 1 and © = Kdy/c_. The
result is now immediate. g

For the second lemma, we define N;(z) as the number of times that the
process (My, Dy, Cy) visits (i, z,0) before it reaches (0,0, 0) during the first regen-
eration period. Also, for u > 0 and j =0, 1, we let

]Pj,u[ ] P[ : | MT1 :j’DTl = u],

and

Ej,u[ ] E[ ’ | MT1 :j’DTl :u]'

Lemma 4.5. The conditional expectations E;, N;(z) are given by
IE]',MJ\/vl(x):eiaiD 77](U)a USlE, jZO,l,

E;juNo(z) = { EjuNo(z) =" n (), u>xz, =01, (4.37)
E;wNi(z) =e™* no(z), u>xz, =01,

where
ale®® —1
mo(u) = ( o ), (4.38)
bd® et — adg_
=—= = an 4.39

and o = b/d% — a/d".

Proof. First, we define
pj(u,z) = Pju[Dy = « for some t € (T1,T]].

By conditioning on the first transition epoch of the process (M;), we obtain the
following relations for v < z,

u/d®
po(wa)= [ pilu=dv.z) ae" do,
0

(—u) /2
p1(u, ) :/0 +]f)g(u + d&v,x) be dv + e_b(’”_“)/dg,
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Figure 15. The probabilities po(u, z) and pi(u, z) for fixed z

while for v > x we have p;(u,z) = 1.
Using the transformations v +— v — d’ v and v — u + dg_v, respectively, and
differentiating with respect to u gives the following differential equation for the

vector p(u,z) = (po(u,z),p1(u,z))T in u,

aopwe) = (T

with boundary conditions py(0,z) = 0 and py(z,z) = 1. It follows that the
probabilities p;(u, ) are given by

pj(u,z) =1, u>x, j=0,1, (4.40)

pj(u,z) =nj(u)/m(z), w<z, j=0,1, (4.41)

see Figure 15. Since the conditional distribution of Ny(z) is given by

Pju[No(z) = 0] =1 — p;(u, z)

>p(u,$), 0<u<u,

Pju[No(2) = k] =pj(u,x) (1 = po(z,2)) (po(w, )", k=1,2,...,
we have

Furthermore, we have

. _ [EjuNo(z), itz > u,
Bjuli(z) = {Ej,uNo(z) -1, ifz<u
The desired result now follows immediately using (4.40) and (4.41). O

We are now ready to specify the densities u;, ¢ =0, 1.

Proposition 4.6. If « > 0 and 8 > 0, the stationary joint distribution F of the
process (M, Dy, C;) on the set {0,1} x Sy is given by
Fi(dz,{0}) = pi(z) dz, z>0,1=0,1, (4.42)

where g and p; are given in (4.17) and (4.17)
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Proof. First we denote the sojourn time of the process (M, Dy, Cy) in the set
{i} x [x,z + €] x {0} by W;(z,¢), that is,

T

Wi(z,¢) Z/ L4, =i,Dicla,pte] 1AL
t=T
Clearly, we have
E; N
Ej..Wo(z,e) = “‘T“(x)s +o(e), (4.43)
EjuN-
E;j uWi(z,e) = JTl(x)e + o(e). (4.44)
+
Combining
Kd+/c, .
wi(z) = 5»0 BT Z/ Wi(z,e)Gj(du), x>0,i=0,1,

with (4.43) and (4.44) and then using Lemmas 4.4 and 4.5 leads to the result. [J

It is not difficult to check that Propositions 4.3 and 4.6 together lead to the
conclusion that the distribution F given in Theorem 4.2 indeed is the stationary
distribution of the process (My, Dy, Cy) when a > 0 and S > 0.

As a side result in this subsection, we find an expression for [ET', namely
ET = 1/J2(0). This can be found by normalization of the distribution G in
Lemma 4.4.

The case <0
In this last step it remains to be shown that the distribution in Theorem 4.2 not
only represents the stationary distribution of the process (My, D;, Cy) when o > 0
and 8 > 0, as we showed in the previous steps, but also when o > 0 and 3 < 0.
We fix the parameters b, di, d_, dﬂ)r, dv, c+, c— and K, and let a vary.
Then we have a > 0 if and only if a < a; = bd" / d , while 8 > 0 is equivalent
toa < ap = (bd_cy)/(c—d_ +c_dy + cidy), see Flgure 16. We will assume that
ag < a1, otherwise a > 0 would imply 8 > 0.

a>0 a>0
B>0 B <0

®»Q
VAWAN
co

Figure 16. Behaviour of o and £ as functions of a
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In what follows we will need the infinitesimal generator A of the process
(My, Dy, Cy), which is an operator mapping a function h : R> — R? to another
function Ah : R? — R?, with, for 2,y > 0,

Elhyr, (De, Cy) — ho(z,y)| Mo =0, Dy =2, Cp =
(A (ary) = tim " [ o (Do Co) = ol ) [Mo =0, Do =, Co =u])
£0 Elhn, (D, Cy) — ha(z,y)|Mo =1, Do =z, Cy = y]
It is not difficult to see that

(Ah)(z,y) = Qh(z,y) + (Aoh)(z,y), z>0,0<y<K  (4.45)
(Ah)(0,y) = Qh(0,y) + (A1h)(0,y), 0<y<K, (4.46)
(Ah)(z,0) = Qh(z,0) + (A2h)(z,0), = >0, (4.47)
(Ah)(0, K) = Qh(0, K) + (Aszh) (4.48)

where @) is the generator of the process (M,),

Ay = (—d_a%o— c- g L2 Ec_%>, (4.49)
A = <C+Oa% i 2 C_a%> , (4.50)
Ay = <_d3f’% d°+03%> : (4.51)
and
Ag = <C+Oa% d+a%20—a%> , (4.52)

The operator A can be viewed as a generalization of the Q-matrix corresponding
to a continuous-time Markov process with a finite state space. In the latter
context a probability measure 7 is stationary if and only if it satisfies 7Q) = O,
i.e. if Qv = 0 for all vectors v. Likewise, here a measure F is stationary if and
only if it satisfies F.Ah = 0 for all (vector-valued) functions h, i.e.,

/Ooo /Ooo F1 (dz,dy)(Ah)(z,y) =0, (4.53)

(see, e.g., [16, page 239]). According to Theorem 4.1 a unique limiting distribution
exists for any a € (0, ay), regardless of the value of 5. Moreover, we know that for
a € (0,a9) this distribution is given by the specific distribution we found in the
first two steps. We will designate this distribution here by F, to emphasize its
dependence on the parameter a. Because the limiting distribution is stationary,
we can conclude that for any suitable function h and any a € (0, ag), equation
(4.53) holds for F = F,, that is,
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0=Poxca (i~ ho)0.K) + [ oow) (ol ~ no)(0,9) + 520, dy

Kd+/c_ 3h1
+/ 01($)< bl = ho) (K — ¢ /dy) +d S (o, K~ afd,)
0
oh
—c_ Byl (2, K —c_ x/d+)> dx

K p(K-y)ds/c—
!
0 0

+ file) (<00 = ho)(op) + di o) = o G aw)) | dody

fote,w) (alhs = ho)(o.) 450 @) = - 52w )

+ 7 o) (ath = o) w,0) - . 5045, 0))
+ i (x) (—b(h1 ~ ho)(2,0) + d° ‘98’”( 0)>] ds | (4.54)

To show that the above is also true for a € [ag,a1), we prove the following
lemma, in which we will show that for certain a € C the right hand side of (4.54)
is a complex analytic function of a. Because it is hard to check whether the
normalization constant Pog is an analytic function of a, we set Pog = 1 for
a moment, thereby ignoring the probabilistic interpretation of F, (and of Pog
itself).

Lemma 4.7. For any entire function h : C?> — C2, the function
oo o0
ar [ [ B (s, dy)(An) (o)
0o Jo
with Pox = 1 is complex analytic for a € {z € C|Re(z) < a1}

Proof.  First we note that the singularities of the functions Hy and H; in (4.19)
and (4.20) can be removed by writing

1 & (2/4)F

Ho(z,y) = Z m, (4.55)
wx z k
Hy(z,y) = Ho(z,y) + 4@/7 Z k'((k/i)m" (4.56)
= k! !
with
dbd_d.

z=w(y® + 2zyy) = (v* + 2zy7) @

C% (df + d+)2
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Since the power series in (4.55) and (4.56) are uniformly converging for all z € C,
they are entire functions of z. Furthermore, since

dbd_d., )
C%(d, + d+)2 au ’

is an entire function of a for fixed u, but also of u for fixed a (a,u € C), and since
sums, products and concatenations of entire functions are again entire functions,
we conclude that the integrand in (4.13) is also an entire function of a (for fixed
u) and of u (for fixed a). But then the integral in (4.13), and hence (a,y) — op(y)
is an entire function of a for fixed y and of y for fixed a, since the same holds in
general for

(a,u) —

(@9~ | ’ g(a, u)du

when ¢ is an entire function of a for fixed v and of u for fixed a. Similar statements
can be shown to hold for o1, fo, f1, J1, J2, o and pq.

The lemma now follows readily because the partial derivatives of h are entire
functions of x for fixed y and of y for fixed x. The restriction to Re(a) < a7 is
due to the divergence of the last integral in (4.54) for other values of a. O

By analytic continuation we can now conclude that equation (4.54) holds, for
any ¢ € C with Re(a) < a1, even for general Pok. In particular, for o real,
a € [ap, a1), we find F, to be a stationary distribution, when we choose Pox such
that the total probability is 1, as before. The fact that F, is the only stationary
distribution is immediate, since we know that the process has a unique limiting
distribution, regardless of the initial distribution.

This concludes the proof of Theorem 4.2.

5. Special cases and generalizations

In this section we elaborate on the feedback model, and discuss some special
cases and generalizations.

5.1. The normalizing constant Pox and the distribution of C

Although it is in principle possible to derive the normalizing constant Pog
in Theorem 4.2 by a laborious process of integration and summation, this is
practically not a desirable option. Fortunately, it is possible, using the techniques
of Sections 2 and 3 to find the distribution of C, and hence also Pox = P[C = K].
We remark that functions and parameters that are not introduced in this section
are the same as in Theorem 4.2, e.g. Hy, 8, w, etcetera.

Recall our assumption that My = 0, Dy = 0 and Cy = 0, and let Iy, I4,...
and By, Bi,... denote respectively the lengths of the idle periods and the busy
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periods of (D;). Note that {I;} is an i.i.d. sequence with generic idle period I
that is exponentially distributed with parameter a, whereas the sequence {B;}
is not i.i.d. Let Z; be the content of the credit buffer at the end of the kth idle
period, £ = 0,1,.... Finally, let Y be distributed as a busy period of (D;) when
we forget the effect of an empty credit buffer. Specifically, the Laplace-Stieltjes
transform Ly of Y is given by the right hand side of (2.6), i.e.

b
s+b— XA (s)dy’

Ly(s) =

with A; as in (2.7).
The behaviour of the process {Zy} is given by Zy = ¢4 Iy and

Zpin =K — K —c Iyiy — [Zy — c BT, E=0,1..., (5.1)

where [z]T denotes the maximum of z and 0. Direct analysis of (5.1) is problem-
atic, because the variables B are not independent, and their distributions are
unknown. Fortunately, the distribution of Zj, is the same as that of Z;, when we
define Zj = ¢4 I and

Zhoy =K — [K — Iy — [Z), — e Yi| )T, k=0,1..., (5.2)

where {I;} and {Yj} are independent i.i.d. sequences distributed as I and Y
respectively. This identifies Z; as the virtual waiting time immediately after
arrival of a customer in a G/M/1-queue with uniformly bounded virtual waiting
time . Specifically, the capacity of the waiting room is K, the interarrival times
are c_Yp, c_Y7,... and the service times cy Iy, cyIq,.... The distribution of the
stationary content immediately after an arrival, Z say, is given by U(z) in (5.104)
of [12, Part III] or in (6.10) of [11]. In our case,

G(K —y)

1l — ————= 0, K
1 y € [K, ),
where the function G is the inverse Laplace transform of the function
1
La(s) (5.4)

T 1- scy/a — Ly(sc—)’

Laplace inversion of Lg shows that the distribution of Z is given by
P[Z = K| =Pzk
P[Z € dy]=fz(y) dy, vy € (0,K),

where

X -1

= 4 (g BEy, P —B(K—u) _ —0u

Pyy <1+C+5(1 e ")+ 5/ (e 1) e Ho(O,u)du> ,
(

5.5)
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and

K—y
faly) = e P (& — C‘;w /0 e~ =B Hy (0, u) du> . (5.6)

It follows that the Laplace transform Lz of Z is given by

1 a c.vw (K
_ —sK s —-BK [ % —(0—-PB)u
Lyz(s) PZK{e + . _ﬁ{e <c+ >/, e Hy(0,u) du)
—sK a C_rw K (s—0)u
—e — - e Hy(0,u) du . (5.7)
Cy 2 0

The second step in the methodology of Sections 2 and 3 was the derivation
of an algebraic expression for

qi(p, s) = Blp—pe ?P5¢ i=0,1.

For the feedback model it can be shown, using arguments analogous to the ones
leading to Lemma 2.3, that

H(p, s) ( f(p,s)
a(p,s) =~ | ©P,o) |, (5.8)
det A(p:5) \ g, (p, o)
where A(p, s) is the same as in (3.16),
_(~b—dyp+c_s —b
H(p,S)— < —a —a—l—d_p—i—c_s> B(pas)a
with
_(ldp-dp+cs 0
Blp.s) = (0 0 —dyp+dip+ cs) ’
and

f(p,s) = (d_p+ cys + c_s)qo(00, 5) — cyse™* N Pog.

We recall that for fixed p > 0 the zeros of det A(p, s) satisfy s1(p) < 0 < s2(p)
(see Figure 7). As in Remark 2.4 we can now use the fact that q(p,s) must
remain bounded for all p > 0. Notice in particular that this must also be true
when s < 0, since then g;(p,s) < Ee™*¢ < e *K. Thus, we are able to express

?io (p, 00) and q1(p, o) in terms of fi(p) = f(p,s1(p)) and fa(p) = f(p,s2(p)), and
nd

(. 00) = (fi(p) + f2(p)) (b + d’p)g(p) + c—(f1(p) — f2(p))g0(P)
AP, 20) = 2p(bd®. — add. + d° d%.p)g(p) ’

(f1(p) + f2(p))g(p) + c—(f1(p) — f2(p))g1(p)
2p(bd®. — ad’. + d° d%p)g(p)

q1(p,00) =a
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where

9(p) = c-\/(~a—b+d_p—dip)? — dp(~bd_ + ady — d_d.p),

go(p) = ab+b(d— + d)p + dp(b — a) + d°p*(d_ + d),
and
g1(p) =a+b+d_p—2d°p+dip.
Evaluating (5.8) for p = 0 and summing ¢y and ¢; now gives,

]EefsC’ — c. t+cy sK

c
qo(00,s) — — Porce”
c_ c_
a(c_d_ +c_dy + cpdy) —beyd_
c—(bd® — adl)
_eloR (@K e (g P _
o — ) (ae (d—d® +dy —d%)+bd —ady)
a(c_ + C+)(d_ - d(l + d+ - d(-)l-)
- b)/c_).
c_(bd® — adl) q0(o0; (@ +b)/c-)
Copying the arguments following (2.14) we observe that the conditional distribu-
tion of (C'| D = 0), is the same as the distribution of Z. Consequently,

qo(00,s) = P[D = 0]Lz(s), (5.9)

qO(OOv 0)

and in particular
P[C = K] = PzgP[D =0]. (5.10)
Combining these results, gives the following proposition.

Proposition 5.1. The Laplace-Stieltjes transform of C' is given by

07+C+

Lo(s) =REe *¢ = P[D =0 { Ly(s) — Z—J:PZK e K 4 1}, (5.11)

C_ Cc_

where Lz(s), the Laplace-Stieltjes transform of Z, is given in (5.7), Pz is given
in (5.5) and
x= {a(c,d, tody+cpdy) —bepd. + cy(bd — ady) Pyi
tacy(d- —d° +dy — d%) Py e (@K e
—alc +e)(d —d+dy —d)Ly((a+b)/c)}/(bdd - ad).(5.12)
Inversion of (5.11) is not difficult, since we know the distribution of Z. In

particular we find the following by taking s = 0 and s — oo respectively in
equation (5.11), and using (5.10).
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Corollary 5.2. The following equalities hold,
c_

P[D = 0] = : 5.13

| ] c-+cy (1= Pzi) +x (5.13)
X

P[C =0]= 5.14

[ ) c.+ei(l=Pyrg)+x ( )
_P

Pk K (5.15)

T ter(l-Prg) + X
where Pz and x are given in (5.5) and (5.12) respectively.

5.2. Application 1: Two-level traffic shaper

In this section we will indicate how a two-level traffic shaper may be analyzed
using the general feedback model. Instead of six parameters d,d_, dg_, d® . cq,c_
for the behaviour of both buffers, we take three parameters vy, v; and vy such
that vy > v1 > v9 > 0 and choose

dy =wvy — vy, d_=wy,
dﬂ = vy — V2, d(l = V2, (5.16)
Cy = V2, C_ =711 — Vg.

The interpretation is the following. The data buffer only receives data when the
on-off source is in the on-state, at rate vy. The output rate is vy if credit is
available and vy (< v1) otherwise. We can think of vy as the long term average
rate at which the data buffer is allowed to send. The rate v; is a higher rate that
may be used for a limited period of time, namely as long as credit is available.
The particular values of ¢4 and c_ can be explained by arguing that whenever
the data buffer is not sending (i.e., when it is empty), the “unused capacity”
vo is saved up for later use in the form of credit, while this credit is consumed
when the data buffer is sending at high rate; the “extra capacity” v; — vy that
is used by the data buffer is taken from the credit buffer. Note that the above
is equivalent to saying that the credit buffer is constantly filled at rate vo, while
it it is drained at the same rate as the data buffer (0, v; or vy) at any time. For
further information on two-level traffic shapers and their relation to leaky bucket
traffic shapers we refer to [3] and the references mentioned there.

Simple expressions for the probabilities in Corollary 5.2 are easily obtained
for this case in an alternative way. Balancing the long term input and output of
the credit buffer yields

V9 (1_PCK) =S Ulﬂb[D >0,C>0] + ’UZ]P[D >0,C:0], (517)

while a similar balance for the data buffer gives
a
a+b

Vg = U1 P[D >0,C > 0] + vo ]P’[D >0,C = 0]. (5.18)
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It follows immediately that

a Vo

Pog=1- —. 5.19
oK a+b vy (5.19)
Using (5.10) we now also find a simple expression for P[D = 0],
P[D = 0] = P} (1 - — @> 5.20
D=0 =Pk (1- 22, (5:20)

while from (5.17) or (5.18) we find

U1 a Uy 1 a Uy
1@[0_0]_“1_02{@ a+bv1> Pk <1 wa)}. (5.21)
The constant Py g in these expressions can clearly be expressed in the parameters
of the model by combining (5.5) with (5.16).

The fact that Pok is independent of K and vy, may be surprising at first
sight, but this can easily be understood by considering the process (M, D; —
Cy + K). This process describes an elementary Markov-modulated fluid system
in which an infinitely large fluid buffer receives fluid at rate vy at times when
M; = 1, while there is a constant output rate vy, as long as Dy — C; + K > 0.
Since the credit buffer can be completely filled only at times when the data buffer
is empty, we have that P[C' = K] = P[D—C+K = 0]. This leads to an alternative
derivation of (5.19) in which the parameters K and v; clearly do not play any role.
Also, this viewpoint gives us a means to find the expected data buffer occupancy,
since we can derive that

E[D - C + K] = 2% Yo — Y2

a+b bvy —a(vg —v2)’

while EC follows from (5.11).

5.3. Application 2: Tandem queue with finite buffer(s)

A second way in which the general model may be applied is given by the
following choice of parameters. Again we have three parameters for the flow rates,
vg, v1 and ve, such that vg > v > vo > 0, but now we take

d+:d1:1)0—1)1, d_:d(l:vl,

(5.22)
Cy = V2, C_ =701 — V9.

Notice that the feedback has disappeared now, since d; = d& and d_ = d°.
Furthermore we define the process (C;) by C; = K — C;. We can interpret C,
as the content of a buffer which receives fluid from the data buffer at rate v
whenever D; > 0 and C; < K, while it releases fluid at rate vy when C; > 0.
Hence the process (M;, Dy, C;) describes a fluid tandem queue as in Section 2,
but with finite second buffer.
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Since the process (M, D;) is not influenced by (C}), it follows from (2.5) or
directly from the balance equation for the data buffer, that

P[D:O]:l—ain—(l’. (5.23)
As a consequence, we immediately find from (5.10),
P[C = 0] = Pox = PzxP[D = 0], (5.24)
and, from the balance equation for the second buffer,
P[C = K] = P[C = 0] = 1 — P[D = 0] (m n_ pZK> . (5.25)

where Pz can be found from (5.5) and (5.22).

In the following section we extend the (general) model to the case where
the data buffer is also finite, although it must in some sense be larger than the
credit buffer. This provides us with the stationary distribution for a tandem fluid
queue in which both buffers are finite, provided that the fluid rates are such that
during long on-periods of the fluid source, the second buffer will be completely
filled before the first buffer is.

5.4. Eaxtension: Finite data buffer

We shortly discuss the extension of the general feedback model in which
both the credit buffer and the data buffer have finite sizes, K and L respectively,
while the rest of the system remains unchanged, as in Section 4. The process
of interest is denoted as (Mt(L), D§L), C’t(L)). We will only consider the case for
which L > Kdy/c_, since then the analysis carries through almost identically.
The main result is stated in the following theorem, where all quantities without

superscript (L) are the same as in Section 4.

Theorem 5.3. If the size of the data buffer is L > Kd/c_ and a > 0, the
stationary joint distribution F(X) of the process (Mt(L), D,EL), t(L)) satisfies

F" (du,dy) =g Fy(dr,dy),  0<z<L,y>0,i=0,1,  (5.26)
0

FOULY, 100 =4 Fpo(L), (5.27)

with

Y = <1 - ao—;)b,uo(L)>l-

The proof is omitted for brevity; an outline can be found in [25]. Obviously, the
stationary distribution can also be shown to exist when a < 0. If we set Pox = 1,
the expressions for the various densities remain valid for some normalization
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constant 1 (if we replace no(u) in (4.21) by au/d>. for o = 0). Since Theorem 4.2
does not hold for this case, it is more difficult to find an explicit expression for
this normalization constant.
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