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1 Introduction

Polling systems are mathematical models for non-standard physical queueing sys-
tems in which clients are served in a cyclic order. These systems arise frequently
in todays communication networks and manufacturing systems. A standard ref-
erence is Takagi [15]. For additional references see e.g. Boxma and Takagi [2].
Much insight in the behavior of polling systems is obtained through the analysis
of continuous polling models, which have a “continuum” of waiting rooms. Ex-
amples may be found in Coffman and Gilbert [3], Fuhrmann and Cooper [7] and
Kroese and Schmidt [11], [12].

To date, little is known about the behavior of discrete or continuous polling
systems in heavy traffic, this in contrast to the well-developed heavy-traffic theory
for classical queueing systems (see e.g. Whitt [17]). In Coffman et al. [4] it is
shown that even for very simple polling systems it may be impossible to obtain
heavy-traffic results in the usual sense. Heavy-traffic properties of polling systems
are also mentioned in van der Mei [16].

A well-known result for the GI/G/1-queue in heavy traffic is that the steady-
state waiting time distribution is approximately exponential. Moreover, the cor-
responding parameter depends only on the first two moments of the interarrival
and service time distribution (see e.g. Kingman [9]). A similar ezponential ap-
prozimation holds for the queuelength distribution (see e.g. Szczotka [14]). Moti-
vated by this relatively simple behavior, we consider a continuous polling system
in heavy traffic. The close relationship between polling systems and branching
processes serves as a basis for our investigations. This relationship is recognized
and used frequently in the literature, see for example Resing [13] and references
there, but still seems not to have been fully exploited.

It turns out that in heavy traffic the steady-state number of customers in
the system has approximately a gamma distribution, depending only on a few
(known) parameters. Moreover, it is shown that the configuration of waiting
customers is approximately deterministic, given their total number.

In the next section we briefly review the queueing system under considera-
tion. In Section 3 we derive the “gamma-approximation” for this system. For
simplicity, we restrict ourself to heavy-traffic approximations for stable queues.
Generalizations are left to the reader. Finally, Section 4 discusses some (heavy-
traffic) results for the expected steady-state number of customers.

2 Preliminaries

In this section we briefly review the continuous polling model of Coffman and
Gilbert [3] and Kroese and Schmidt [11]. Throughout this paper (2,7, P) de-
notes the probability space in the background, with corresponding expectation
symbol E. B0, 1] denotes the set of positive measurable functions on [0, 1]. The



class of continuously differentiable functions on [0,1] is denoted by C*[0,1]. C#
denotes the class of positive continuous functions on [0,1] whose support is com-
pact. We will frequently write pf for the integral of a function f with respect
to a (random) measure p. Finally, X,, —— X denotes convergence in distribu-
tion of the sequence of random variables (X,,) to the random variable X. Basic
definitions and results on random (counting) measures can be found for example
in Daley and Vere-Jones [5]. We refer to Athreya and Ney [1] and Jagers [8] for
details on branching processes.

Consider a queueing system in which customers arrive according to a homo-
geneous Poisson process with rate a on a ring with circumference 1. Incoming
customers take their positions on the ring according to a uniform distrubution,
and wait there to be served by a server who travels on the ring at constant speed
a~! (in one direction). The customers are served in the order in which they
are encountered by the server. During a service the server does not travel. The
service time distribution function is F', with first moment e; and finite second
moment e,. Starting from an empty system at time 0, let W; denote the random
measure on [0,1] representing the positions of waiting customers at time ¢ relative
to the position of the server. Similarly, let the random measure (); denote the
configuration of waiting customers when the server has been traveling for ¢ units
of time. And finally, let Q? denote the configuration of waiting customers when
the server has been busy for ¢ units of time. It is shown in Kroese and Schmidt
[11] that the measure-valued processes (W;), (Q;) and (QY) are regenerative when
the traffic intensity ae; is less than 1. And in this case there exist therefore
limiting random measures (on [0,1]) W, Q and Q° to which (W;), (Q;) and (QY)
converge in distribution. We can interpret () as the random measure of waiting
customers relative to the server, in the stationary situation, at traveling epochs.
Similarly Q° and W correspond to the stationary configuration of customers at
service epochs and at “random” epochs, respectively.

The laws of W, @ and Q° are completely specified by the following three
propositions (see Kroese and Schmidt [11] for proofs):

Proposition 1 The law of W is a mixture of that of ) and Q°:
Ec™" = (1 — ae))EBe™% 4 ae, Ee?"! for all f € BJ0, 1].
Proposition 2 The Laplace functional of () satisfies

Ee 9 = exp — an /oo dt {1 — K, (t)}, forall f e B[0,1],
0

where K, ; is the solution to
t 1
K(t) = 1p.() /0 dz (K (t — x)) + 1.(t) / P ()
t
1
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Here 1; denotes the indicator function of an interval I and ¢ is defined by
o(z) = [ e 097 aF (@), 2 € [0,1] 2
0

Proposition 3 The law of Q° is completely determined by the law of ), because

Ee %/ (o 'Qf' - B)

—Qof _
Ee ae1 (B +7)/(1 —aey)’

for all f € C1[0,1], (3)

where

1
g = a/ dr (1 — e 7@),
0

BLr(B)
1—Lp(B)’
and Lp is the Laplace-Stieltjes transform of F'.

y=(1-e/0)

In the proof of Proposition 2, the fact is used that the measure valued process
(@) is closely related to the following particle system on the strip R, x [0,1]
(time X position): A first generation particle starts at time ¢ = 0 from position
U, where U is uniformly distributed on [0, 1]. This particle moves towards 0 with
unit speed, and when it hits 0, it dies, but at the same time .J new particles
are born, at positions independently and uniformly distributed on [0,1], where .J
has generating function ¢ given in (2). Notice that ¢ is exactly the generating
function of the number of customers that arrive during a service period. Let L;
denote the random measure on [0,1] whose atoms are formed by the particles that
are alive at time ¢. For each 0 < a < 1/e; and f € B[0, 1], the function K, s in
Proposition 2 and the random measure L; are related via

K, (t)=Ee ™/ t>0. (4)

Notice that the process (|L:]) := (L;]0,1]) is an age-dependent (or even a
Bellman-Harris) branching process. Each individual has a uniformly distributed
lifetime, and the offspring generating function is ¢. And (1) is a generalized
version of equation (6.3.3) of Jagers [8]. Similarly, it is not difficult to see that
the process (|Q:]) := (Q:]0,1]) is the corresponding Bellman-Harris branching
process with Poisson immigration.

Although Propositions 1-3 specify the distributions of W and @ and Q° com-
pletely, the actual distributions of these measures are not known in the general
case. Even the distribution of |@Q| is not known. This is another motivation for
considering heavy-traffic approximations. However, for the constant service time
case the Laplace functional of @) is know explicitly. Specifically,

FoQf — ots 1 —— e . for all f € B[0,1], (5)
1 — ae; [y dyehW)
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where ¢; = aa [y dv (1 —z)(1 — e /@) and h(y) = ae; [¢ dv (1 — e /@),
We finally give some results on the moment measures of ) and Q°. An easy
consequence of (3) is that the mean measure of ) satisfies

aa

EQ(dr) =

(1—2x)dz, z €][0,1]. (6)

1—ae;

With more effort we can find second-moment results. For example, for every
[ € B[0,1] we have

var Qf = /dx (1—az)f*(x) + aaeg/ (/ dr f(x )

1— ael 1 —ae
OéCl 6162
dx (1 — .
1 — aep)? (/ d 7) )> @

In the next section we need also the mean measure of Q°. The following lemma
is new.
Lemma 1 The mean measure of Q° is given by

adx

{2@(1 — ) +exe]t +a— 2ax)} , x€l0,1],

where dg is the Dirac measure at 0.

Proof This follows basically from (6), (7) and Proposition 3. Namely, a Taylor-
expansion of (3) yields,

BQ"f = (ae' (et = 2)f0) [ do f(0) + 2L BQIQS
- aaA(Mfu»43m<r—wfm>—§f%m

— 5 [ r@)/ (ea [ ar ) - 0)

where EQfQf' can be calculated from (6) and (7), because
BQQr = §(var QU+ 1)~ var Qf — var @f
+ {BQU + 1))~ (BQSY — (BQSY).

The easiest way to proceed is to consider for each = € (0,1] the continuous
“trapezoid” function f which is 1 in the interval [z — dz, z +dx], 0 on [0, 2 — dx —
€] U [0,z + dx + €] and linearly in- or decreasing elsewhere. For such a function,
EQfQf" and hence EQ"f can be explicitly calculated. Now let ¢ — 0 and
du — 0, and conclude that on (0,1] the measure EQ) has a density with respect to
the Lebesgue-measure. Similarly, by considering the continuous piecewise linear
function that is 1 at 0 and 0 in [e, 1], we find that EQ has an atom at 0 of size
1. a

— aeq




Remark 1 Since we will not make further use of the random variables Wy, Q); and
Q?Y, we will redefine the symbols W,,, @, and Q° in the next section. Moreover,
in order to simplify the notation, we will take from now on e; = 1, and write b
for e,.

3 Gamma approximation

In this section we analyze the behavior of the continuous polling in heavy traf-
fic. To this end, consider a sequence of traffic intensities (a,) increasing to 1
(remember that the expected service time is 1). To each pair (a,, F') there cor-
respond unique “configuration measures” W, @ and Q° on [0,1], defined in the
previous section, which we will denoted by W,,, @,, and Q°, respectively (see also
Remark 1).

We start with bounds on the function K, s, defined through (1). Notice
that for each pair (a, F') the distributions of the configuration measures depend
ultimately on this function.

Lemma 2 For every f € B|0, 1], with ||f|| := sup, f(z) < cc and f > 1, and for
each a < 1, we have K, ;(t) T 1 as ¢t T oo and

1
/ dre 7@ < K, ;(t) <1, forallt>0.
0

Proof Take a < 1 and let f be such that f(x) > 1 for all . By Jensens’

Inequality,
o(z) > 12 > =1 forall0 < 2 < 1.

Writing (1) in differential form:

o (K (1) — e~ f(1=1) 0<t<1,
K'(t) = { z(K(t)) —o(K(t-1)), t>1,

we see that the derivative of K, s is positive in [0,1]. And because ¢ is increasing
(it is a generating function), K7 ; is also positive in (1,00). Since f is positive,
we have by (4)

Ee N < pe=t¢f = K, (t) <1, forallt>0.

s —

Since (|L;]) is an age-dependent sub-critical branching process with maximum
lifespan 1, |L;| — 0 with probability 1. This shows that lim; . K, () = 1.
Finally, the lower bound for K, ; follows from the fact that K, (0) = Ee~lo/ =
) daze 7@, O

The next theorem shows that, in heavy traffic, (1 —a,)Q, is approximately of
the form |Q*| 2(1—x) dz, where |Q*| has a Gamma(a/b, 2/b)-distribution. We can
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interpret this as follows: the total number of waiting customers in the stationary
situation, given that the server is busy, has in heavy traffic approximately a
gamma distribution. And, moreover, given this total number, the “density” of
waiting customers relative to the server is (approximately) deterministic and
linearly decreasing.

Theorem 1 The sequence of random measures ((1 — a,)Q,) converges in distri-
bution to a random measure Q* on [0,1] with Laplace functional

1 a/b
1+bf01dx(1—x)f(x)> ’

Proof In order to prove the theorem, it suffices to show (see Remark 3) that

Ee @/ = ( for all f € B[0,1]. (8)

lim Ee (=) f = o9/ (9)

n—o0

for all all f € Ct that are greater equal to 1. For the rest of the proof, we will
only consider such functions f.

Let K, be the solution of (1) with a, substituted for a and (1 — a,)f substi-
tuted for f; in other words K, := K, (1—4,)s.- By Proposition 2

Ee—(l—an)an — exp — ana/ dt {]. - Kn(t)}
0
= exp — ana/ dt gn(t)a
0

where g, is defined by

_ 1—K,(t/(1-ay))
1—a,

gn() - . t>0.
Since f satisfies the conditions of Lemma 2, we infer from this lemma that for
each n, g, is a bounded decreasing function with

1
0 < gu(t) g/o dz f(z), > 0.

If we can show that (g,) converges pointwise on (0,00) to a function g with

00 1
/0 dt g(t) = b log(1 + b/o dz (1 — 2)f(z)), (10)
then the theorem is proved, by the bounded convergence theorem.

We proceed in the same spirit as Jagers [8, Section 7.4]. Let ¢, denote the
generating function in (2) with a := a,. A Taylor-expansion of ¢, around 1
yields,

a’b (1 — z)?

5 —e.(2)(1 — 2)2. (11)

on(z) =1—a,(1—2)+



Let us denote the uniform probability measure on [0,1 — a,] by L,. It follows
from (1) and (11) that

) = [ @) {mnt -9 - 20 -a)di-n) 02

ol
+ 1mu<1j )/ n(d )f(gl ) (13)

+ (1—ay) /L (dy) en(K, ( )gnt—y) (14)
_IMQLJAMM%@JJ (15)

where £,, is defined by

e~ /@0=a) — 1 _ £(2)(1 = a,) + £, (2)(1 — ayp).

We now take the Laplace-Stieltjes transforms (LSTs) of all terms in (12)—(15).
The LST of a function A is denoted by h. We obtain for every s > 0,

_ esi-an) o2
13(le {an gn(s) — 2b (1—an) g2(s)}

+ /1 de f(z) (1 — e *0=20=a)y 4 (1 —q,)r,(s),
0

In(s)

where (1—ay,)r, is the LST of the sum of the terms in (14) and (15). By Lemma 2,
K, is uniformly bounded from below by 1 — (1 —a,) f, dz f(x). Moreover, it will
be shown in Lemma 3 that &,(d,) — 0 as n — oo, for any positive sequence (d,),
increasing to 1. Also, &,(x) — 0, uniformly for x € [0,1]. Consequently 7,(s)
converges to 0 uniformly in s, as n — oo. It follows that we can rewrite the
equation above as

a? - 1
7o) (1+420) = =" 26 45 [ (- 2)f@) +mls), (16)
for every s > 0, where 7, (s) — 0 uniformly in s, as n — oo.

Next, by Lemma 2, (g,) is a sequence of bounded decreasing functions. We
infer from (a straightforward modification of) Helly’s Selection Theorem that
every subsequence of (g,) has a further subsequence that converges to some limit
g weakly. If we can show that there is only one limit ¢ possible, we have proved
that (g,) converges weakly to g. Suppose therefore that (ny) is some subsequence
along which (g,) converges to some limit g. By (16) and the continuity of LSTs,
g satisfies

s P +(s) (14+35) —se=0, (1)



with ¢ = ) dz (1 — z)f(z). Lemma’s (7.4.3.) and (7.4.4) of Jagers [8] show that
for a given positive “initial value” ¢(0+), the integral equation above has ex-
actly one bounded solution. The value of ¢(0+) follows from (17) by a Tauberian
Theorem (Feller [6, p. 442]), which says that the initial behavior of ¢ is com-
pletely determined by the asymptotic behavior of g(s) as s — oo. Specifically,
the fact that here lim; ., g(s) = 2¢, implies that also g(0+) = 2¢. Hence, by
Lemma (7.4.3) of Jagers [8],

2ce 2t

T 1- be(e=2t — 1)’

g(t) t>0. (18)

Since ¢ satisfies exactly the requirement of (10), this concludes the proof. O

Remark 2 The fact that the heavy-traffic limiting distribution is not exponen-
tial should not come as a surprise. It is well-known that the limiting distribution
of the waiting time in the M/G/l-queue can have a variety of distributions,
depending on the service discipline of the queue, see e.g. Kingman [10]. The
exponential approximation tends only to appear for FIFO disciplines. Indeed, in
polling systems the queue discipline is quite complicated and is usually neither
FIFO, LIFO or ROS (random order of service). Furthermore, gamma distribu-
tions arise often as limiting distributions of critical branching processes. There-
fore, in this respect, the appearance of the gamma approximation for polling
systems is (in hindsight) not unexpected. Notice also that in the constant service
time case (8) easily follows from (5).

The following lemma was used in the proof of Theorem 1.

Lemma 3 Let ¢, be remainder term in (11) and let (d,,) be a positive sequence
that increases to 1. Then

lim e,(0,) = 0. (19)
Proof 1t is easy to check (see Athreya and Ney [1, p. 63]) that ¢, is a positive
decreasing function, with £,(z) | 0 as z T 1. Moreover, from another look at
Taylor-expansion of ¢,, around 1, we obtain that for every z € [0, 1),

Lab—en() = 2 (),

2 2
for some & € [2,1). Since ¢! is increasing and ¢! (1) = a2b, the last equation
implies
2ea(2) < (1) = @n(2) = < B (1= 2™),

where J,, is a random variable with generating function ¢,. Let J be a random
variable with a generating function given by (2) with a = 1. Since .J, —%5 J and
EJ? — EJ? = b, the sequence (J2(1 — 7)) converges in expectation to 0, and
(19) follows. O



Remark 3 The random measures that we encounter here can be seen as random
variables with values in the measurable space (F, ), where E is the space of all
totally finite measures on BJ0, 1] endowed with the Prohorov distance d and Borel
o-algebra £. The topology generated by d coincides with the topology of weak
convergence:

d(pt, pin) =0 = pnf — pf,

for all bounded continuous functions on [0,1]. Moreover, E with this topology is
a complete separable metric space (c.s.m.s.).

Suppose X1, Xo,... and X are (totally finite) random measures on [0,1]. Let
P, be the distribution of X,,, n = 1,2,... and let P be the distribution of X. Let
wy, and w be the Laplace functionals of X,, and X (or P, and P), respectively:
wn(f) = Be X/ and w(f) = Ee X/ for f € B[0,1]. The continuity theorem
for random measures states that X,, —— X, or equivalently, that (P,) converges
weakly to P, if and only if

wa(f) = w(f), forall feCf. (20)

See e.g. Daley and Vere-Jones [5, Proposition 9.1.VIL].

In Theorem 1 the fact is used that (20) holds if and only if it holds for functions
in C} that are greater or equal to 1. This follows from the translation principle,
cf. Feller [6, p. 433]), applied to random measures: Assume that w,(f) — w(f),
for f > 1. Let 1 be the function x — 1. The functional b +— w,,(h+1)/w,(1),h €
B[0,1] is the Laplace functional of the distribution P#(du) := P,(du) e /w, (1)
on (E,E), where |u| = p[0,1]. By the continuity theorem there exists a unique
distribution P# on (E, &), such that (P¥) converges weakly to P#. This implies
that (P,) converges weakly to the distribution w(1) e/ P#(dyu), which has Laplace
functional w and is therefore equal to P. O

Next, we analyze the distributions of the steady-state configuration of waiting
customers at service epochs and at “random ” epochs. Specifically, we study the
behavior of the distributions of the random measures Q° and W in heavy traffic.
We consider again the simplest situation where the service time distribution F' is
fixed and where we have a sequence of traffic intensities (a,) T 1. Let Q% and W,
denote the corresponding measures Q° and W. Also define QF := Q,(1 — a,),
and let @ be the limiting distribution of (Q}), as in Theorem 1.

Theorem 2 The sequences (W,(1 — a,)) and (Q°(1 — a,)) converges in distri-
bution to the same random measure W* with Laplace functional given by

e 1 bt
Be = (Hbf&das(l—x)f(x)) e B 2



Proof We first consider convergence of the sequence (Q%(1 — a,)). For clarity
write X, for Q%(1 —a,) and X for W*. In order to show that (X,) converges in
distribution to X it suffices to show that

lim Be "/ = Ee M/, forall f € C}. (22)
We first show that it suffices to check (22) only for functions in C*[0,1]. To see
this, let f be a function in C}: and let (f;) be a sequence of uniformly bounded
functions in C'[0,1] such that [ dz|fi(z) — f(x)] — 0, as k — oo. Such a
sequence is always to find. Assume that (22) holds for each fi. Now,

|EefX"f _ Ee*Xf|
|Ee™/ — Be=*nfk| 4 |EBe~*n/k — Bem k| 4 |EBe™ Xk — Be~ X/

<
< fialfe = f1+ [Be Ik — Be X k| + pl fi — f], (23)

where g, is the mean measure of X,, and p the mean measure of X. By assump-
tion, the second term in (23) goes to 0 as n — oo (k fixed). The measure p, is
(by Lemma 1) given by

a, dx

pn(dz) = (1 — ay)do(dz) + 5

{2a(1 —z) + b(1 + a, — 2a,2)}, z €]0,1],
and from (21) it follows that
p(dr) = (e +b)(1 —x)dz, x €[0,1].

Since the f; are uniformly bounded and converge to f in L'-sense, the limit (for
n — oo) of the first and third term in (23) can be made arbitrarily small by
choosing k large enough. This shows that (22) is true for all f € C}f if it is true
for all f € C'[0,1].

Secondly, by Proposition 3, we have for all f € C''[0, 1],

~Xuf _ Ee= %l (a™'Qu f' — Bn)

Be B+ ) /(L= an)

where

1
B, = an/ du (1 — e~ f@(1-an)).
0

o/ 0101y InLr(Bn)

1 - LF(ﬁn) ,

and Lp is the Laplace-Stieltjes transform of F. Since we can view (); and Q*
as random variables taking values in the c.s.m.s. (E, d) of Remark 3, Skorohod’s
Representation Theorem is in force, which elevates convergence in distribution
to almost sure convergence. Specifically, because (Q7) converges in distribution
to Q*, there exists a probability space (', ', P') and random measures Y,, and

f)/n:(l_
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Y on [0,1], with the same distribution as @} and Q*, respectively, such that (¥},)
converges P'-almost surely to Y. Consequently, since f’ is bounded, (e Y'Y, ')
converges P'-almost surely to e Y/Y f’. Moreover, the sequence (e Y'Y, f') is
uniformly integrable, because EQ? f' converges to a [ da (1 —z)f'(x). Hence, as
n — 0o,

Be %IQ [ = Ee IV, - Ee Y[ =EeIQf
a1
- <1+cb> / dx f(x) = f(0)),

where ¢ = [ dv(1 — z) f(z). The last equation above follows from the fact that
Q* has the same distribution as the random measure Z 2(1 —x) dz on [0,1], where
the random variable Z has a Gamma(a/b, 2/b)-distribution. Also,

iy (B 70)/ (L= an) = [ do f(2) = F(0),

This shows that the Laplace functional of (X)) converges to that of X = W*
for all continuously differentiable functions, which had to be shown. The fact
that (W, (1 — a,)) converges also in distribution to W* now follows simply from
Proposition 1. O

Remark 4 Theorem 2 shows that when we observe the system at service epochs
or at random epochs, the limiting distribution of the number of waiting customers
is again approximately a gamma distribution. Notice that when the cycle time
« of the server is 0, we arrive at the exponential approximation for the M/G/1-
queue.

4 Expectation

We conclude with a somewhat heuristic study of the expectations of the (total)
number of waiting customers.

Let {a,} be a sequence of arrival intensities increasing to 1, and let Q7 and
(Q* be as in the previous section. From (6) it is obvious that for all f € BJ0, 1],

lim BQ;f = BQ"f.

It follows that the mean measure of () converges weakly to that of ()*. Similarly,
by (7) ,
lim E(Q;f)" = E(@Qf)".

n—o0

In order to investigate the convergence of higher moments, we consider the
third moment of |Q| := Q([0,1]), for some arbitrary arrival rate a. As is ex-
plained in Kroese and Schmidt [11], Proposition 2 leads directly to computable
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expressions for the moments of |@Q|, provided that the corresponding moments of
the service time distribution exist. In particular, for the third moment, we have

E|Q]? = (aa/()oodsk(s)>3 (24)

+ 3 (aa/ooo ds k(s)) (aa/ooo dsg(s)) —|—oza/000 ds h(s),

where k, g and h are continuous functions, all equal to 1 at 0, satisfying the
following differential equations:

ak(t) -1, 0<t<l1
K'(t) = { (25)
a{k(t) — k(t—1)}, t>1,
a’bk*(t) +ag(t) — 1, 0<t<1
g'(t :{ (26)
a®b{k*(t) — K*(t — 1)} + a{g(t) —g(t — 1)}, t>1.
and
adck3(t) + 3a’bk(t)g(t) +ah(t) — 1, 0<t<1
W) =3 a3ef{k3(t) — k¥t — 1)} + 3a2b{k(t)g(t) — k(t — 1)g(t — 1)}
+a{h(t) — h(t — 1)}, t>1.
(27)

Suppose that k, g and h can be written as a power series in a. Then we can
evaluate via (24) - (27), in theory, recursively the coefficients of the power series
(in a) of E|Q|*. With the use of symbolic manipulation packages the extensive
calculations can actually be carried out. The following solution is suggested:

aa * 3 a%? 1 a’b 4 3
ElQf = (Ml—aD +§1—a{2a—a)+T§<1—a+(y—@9}

1 a’b [ 4 3 v’a*(11 — a — a?)
+ aa 2(74‘— + +

l1—a) 4 \1—-a (1-a)? 36(1 — a)?
ca®(9 — 2a — a?) 4 (12
T ap +n(a)a* (b —c) ¢, (28)
where 7 satisfies the expansion
1 1 3 17 17 5 127

1
2, - _ B 6
T 5520% T 50480" T 73600° 1330560

@) = ~155%~ Tao

223 n 30047 8 293 9 1361287 10
a a® — a” — a
6652800 1037836800 330220800 217945728000

226027 ., 1161487 ., 123995383
—— - - a a a
232475443200 1185624760320 266765571072000

12



Q"

This indicates that the third moment of |@Q| indeed converges to that of
It is an open question how the complete power series of 1 can be found or

“guessed”.
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