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Abstract Consider a fluid system consisting of two reservoirs. The first reservoir receives
and releases fluid at rates which depend on the state of a two-state Markov process. The
second reservoir, which is called a credit buffer, is driven by the first one, in such a way
that it accumulates credit at a constant rate when the first buffer is empty, and releases
credit at a constant rate otherwise. The first reservoir models an overflow buffer at the
entrance of an ATM-telecommunication network, while the amount of credit in the second
buffer is an indication for the load of the connection.

We obtain the stationary joint distribution of both fluid reservoirs via a spectral analysis
of an approximating fluid model, in which the second reservoir is regulated by a countably
infinite Markov process.
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1 Introduction

Markov modulated fluid flow models have turned out to be useful to capture the basic
characteristics of a variety of systems arising in modern telecommunication networks, es-
pecially those based on the Asynchronous Transfer Mode (ATM). The basic ingredients
of such a model are a fluid reservoir and a regulating Markov process (X;). The rate of
change of the content of the fluid reservoir (or the net input rate) is determined by the
current, state of the Markov process.

In case (X;) has a finite state space, it is well-known that the joint distribution of
the Markov process and the content of the fluid reservoir can be determined analytically,
at least in principle, see, e.g., [3], [11], [4] and [7]. Also for the case in which (X}) is a
birth-death process on an infinite state space, several analytical results are known, see
[14], [2], [5] and [6]. In this report, we consider a particular case in which (X;) has a
non-denumerable state space. Specifically, the net input rate depends on the content of
another fluid reservoir, which in turn is being regulated by a two-state Markov process.

The way in which the first reservoir modulates the input rate of the second one is such
that the second reservoir (or credit buffer) is being filled when the first reservoir (or data
buffer) is empty. Furthermore, the credit buffer is being depleted as long as the data buffer
is non-empty. The interpretation is the following. The data buffer can be viewed as a
model for an overflow buffer at the edge of a network, which receives data only during on
periods of an on-off data source, and which releases data as long as it is non-empty at a
constant rate (the capacity of the outgoing link). The amount of credit in the credit buffer
is an indication for the load of the connection.

Our primary focus will not be the practical relevance of the model. Rather, this report
may be viewed as a contribution to the theory of fluid queues, since it is, at least to our
knowledge, the first Markov modulated fluid model for which the stationary distribution
can be obtained when the modulating Markov process has a non-denumerable state space.
Moreover, it is a first step towards the analysis of more complicated fluid models which do
have relevance for the performance analysis of ATM-based communication networks. Two
such models, that are currently being investigated, will be described elsewhere, namely
a model for a two-level traffic shaper in [10] (a generalisation of the model in [1]) and a
model for a simple tandem queue in [9].

The structure of the report is as follows. First, we will give a more precise description
of the model at hand and some preliminaries in Section 2. Then, in Section 3 we consider
an approximative model, in which the credit buffer is being regulated by a Markov process
with a countably infinite state space. Although this process has no birth-death structure,
we will use similar techniques as in Sections 3 and 4 of [5], to indicate how this model can
be solved, without working out the details of the analysis. The main result of the paper
is presented in Section 4, where the stationary joint distribution of the on-off source, data
buffer and credit buffer is obtained, using the results of Section 3. Finally, a rigourous
proof of the main result is given in the Appendix.



2 The model and some preliminaries

Consider a fluid system consisting of two reservoirs, which we will call data buffer and
credit buffer. The content of the data buffer is regulated by an on-off fluid source with
exponentially distributed on-times and off-times, with parameters g and A, respectively.
Thus, the state of the source is given by a continous-time Markov process (M;) with state
space {0,1} (where 0 and 1 represent the off-state and on-state respectively) and generator
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o= (120 )
The content of the data buffer is regulated by (M;) in the following way. The net input
rate into the buffer at time ¢t is d, > 0 if M; =1 and —d_ < 0 if M; = 0, provided that
the data buffer is non-empty.

The content of the second reservoir, the credit buffer, is regulated by the content of the
data buffer in the following way. The net input rate into the credit buffer is ¢, > 0 if the
data buffer is empty, and —c_ < 0 otherwise, provided that the credit buffer is non-empty.

We let D; and C; denote the content of data buffer and credit buffer at time ¢, respec-
tively. A schematic overview of the interaction between the three subsystems is given in

Figure 1. Note that the rate parameters d.,d_, c,, c_ are positive numbers. Their meaning
is reflected in the notation.
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Figure 1: Interaction between the subsystems of the total fluid flow system.
Clearly, (M;, Dy, C}) is a Markov process with state space {0,1} x Ry x R,. It will
be our goal to find the stationary distribution of this process. In the next subsection the
stability conditions under which this distribution exists are given, and in Subsection 2.2

the system of partial differential equations will be derived, which must be satisfied by the
solution we are looking for.

2.1 Stability

To have stability of the content of the data buffer, it is necessary and sufficient that the
average net rate of data flowing into the buffer, given enough data in the buffer, is negative.



Thus, we must have d Pr[M = 1] — d_ Pr[M = 0] < 0, or equivalently

Md- < p/d.. (2)

Assuming that this condition is satisfied, it is possible to determine the condition under
which stability of the credit buffer is guaranteed. To do so, we first observe that the reg-
ulating process (M;, D;) corresponds to a finite-state fluid queue. Assuming that (M;, D;)
is in equilibrium, we have (see, e.g., [3]),

Pr[M; =0,D, <z| = poo_ A de e, x>0,
A A+pdo
\ \ (3)
Pr[M;=1,D, <z| = — e, x>0,
A A+p
where \
i
=2 = 4
=TI (4)

;From (3), it is immediate that Pr[D; = 0] = dya/(A+u), so that the stability condition
for the credit buffer, ¢, Pr[D; = 0] — ¢_ Pr[D; > 0] < 0, reduces to

A - pd
C+ C,d, + C,d+ + C+d+ '

(5)

We will assume both (2) and (5) to be satisfied in what follows.

2.2 The differential equations

Our goal is to find the stationary distribution of the process (M;, Dy, Cy). To this end, we
derive a system of differential equations from the Kolmogorov forward equations.

First, we define the time-dependent probability distribution of the Markov process
(M, Dy, Cy) as

E(taxay) = Pr[Mt = 7:7 Dt S X, Ct S y]) taxay 2 07 { € {07 1}

In the derivation of the Kolmogorov forward equations, we consider three different cases
separately, namely the case where both = and y are strictly positive, the case x = 0 and
the case y = 0. As an example, the Kolmogorov forward equations for the case z,y > 0
are (for ¢ > 0) given by

aFO(taxay) aFU(taxay) 8F0(t,x,y) _
ot d_ or C- ay - AFO(taxay)_F/'LFl(ta:an) )
aFI(taxay) aFI(taxay) aFI(taxay)
e I F, — uF ,
5 +dy 5 c o +AFo(t, x,y) — pnFi(t, x,y)



Since we are looking for a stationary distribution, we assume that (M;, Dy, C}) is in equi-
librium. Hence, we set (0/0t)F;(t,x,y) = 0 and replace F;(t,x,y) by Fj(x,y) where

Fi(z,y)=PrlM, =i, D, <z, C,<y] a,y>0,i€{01}. (6)

Thus, we obtain for z,y > 0,

aF()(l',y) 8F0(x,y)

—\F{ F = —d_ —c_
o(z,y) + pki(z,y) 9 5,
OF (x,y oOF(z,y
+AFy(z,y) — puFi(z,y) = +di la(x ) _ c. la(y ) :
Similar equations can be found for the cases x = 0 and y = 0.
Denoting the stationary distribution F by
F(z,y) = (Fo(z,y), Fi(z,y)", =,y >0, (7)

it follows that F must be a solution of the system of partial differential equations

T [ (AF)(z,y), >0, y>0
“ F(x’y)‘{ AP0y, 40 (®)

where @ is given in (1),

—-d 2 _. 9 0
_ or oy 9
A < 0 d+%_cgy>’ ©)
and
—d_ L 4.2 0
— ox + oy 1
A= (T d___) (10)

We want to find a solution to (8), subject to the normalization condition
FU(O0,00)+F1(O0,00):1. (11)

Note that, since the credit buffer cannot be empty while the data buffer is empty, we must
have
F5(0,0) = 0. (12)

Also, the solution should be in agreement with (3) as we let y grow to infinity; in particular
we have Fi(0,y) =0 for y > 0.

There are several ways to solve (8). We will apply a spectral-analysis method in Section
4, using the results for an approximating model, which will be considered in Section 3.



3 The approximating model

This section is devoted to an approximation of the model in Section 2, for which the state
space of the modulating Markov process is denumerable. We prove a lemma about a sys-
tem of difference equations and indicate how this can be used to solve the (approximating)
model. More important however is that in Section 4, we can show that, by taking appro-
priate limits, the system of difference equations leads to a system of differential equations,
which is used to find the solution to the original model.

Specifically, we approximate the process (M, D;) by another Markov process (M, D,),
in which D, now represents the number of data blocks in the data buffer. Instead of a
continuous inflow of data during on-periods, we suppose that data blocks of size 1/n arrive
according to a Poisson process with rate ndy. In order to avoid the possibility of an empty
data buffer during on-periods, we will suppose that a block is added to the buffer as soon
as an on-period starts. Also, we suppose that blocks are removed from the buffer during
off periods according to a Poisson process with rate nd_. Thus, the transition diagram of
(Mg, Dy) is given in Figure 2, and the corresponding (infinite-dimensional) generator has
the following block-tridiagonal structure.

Hy D,
|\ D- H D,
T= D H D, , (13)
where \ p \
—\—nd_ 0 — 0
H = , Hy, = ,
< z —u—nd+> " (u —u—nd+>
nd_ 0 0 A
D‘( 0 0) and D+_(0 nd+>
nd+ nd+ nd+ nd+

A A A A
7 u 7 p /
(070) nd._ (071) nd._ (072) nd_ (073) nd_

Figure 2: Transition diagram of the Markov process (M, Dy, Cy).

We assume that the Markov process (M;, Dy, C,) is ergodic, and we will write G for its
stationary distribution, with

G(y) = (Go(y), Gi(y), Ga(y),..)",  y >0, (14)
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where
G;(y) = (Go;(y),Gi(y)), JEN, y>0,
with i
Gij(y) =Pr[M,=1i,D, = j,C, <y], i€{0,1}, j€N, y>0.

Notation. Throughout, blackboard bold characters (such as G, p, etc.) will indicate
vectors that can typically be partitioned into two-dimensional vectors (corresponding to
the two possible values for M,), which will be written in bold-faced type.

Note that the Markov process (M;, D;) has been constructed such that state (1,0) is
transient. We could therefore eliminate it from the state space as we are interested in
stationary behaviour only. However, to maintain our notational convention we prefer not
to do so, but rather let Gy ¢(y) = 0 for all y > 0.

It can be shown, by writing down the Kolmogorov forward equations for the system
and then assuming equilibrium, see, e.g. [3], that G must be a solution of the differential
equation

d
—G(y) = R'T"G(y). (15)
dy
Here, T'is the generator in (13), while the diagonal matrix 2, containing the net input and
output rates of credit in the various states of the modulating proces (M;, D;), is given by

R = diag(cy,1,—c_,—c_,...), (16)

Note that the choice of the second diagonal element is not relevant. Since the credit buffer
cannot be empty while the data buffer is empty, the solution must satisfy the boundary
condition

Goo(0) = 0. (17)

Moreover, we must impose

Jlim D (Goj(y) + Gry(y) = 1. (18)

J=0

To analyse (15), we apply a similar procedure as described in [5, Section 4], see also
[1]. First, we truncate the state space of the process (M, D;) to {0,1} x {0,1,2,...,m},
for m > 0. Also, we eliminate (1,0) from the state space. The generator is changed to the
(2m + 1) x (2m + 1)-matrix

—\ d,
d_ H D,
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where H, D, and D_ are as before, and

and we let

R,, = diag(cy,—c_,—c_,...,—c_). (20)
The solution of the differential system

dilywy) = RTTG, (y). (21)

is now formally given by
G (y) = e VG, (0),

By [13], we know that the eigenvalues &, k = 0,1,...,2m, of the matrix R_'TL, when

ordered properly, satisfy £ < 0 =& < Re(&) < Re(&3) < --- < Re(&m), where & and &
are real. Since we are looking for a bounded solution, G,, must be of the form

Gm (y) = COVOQ&)y + C1V1, Yy 2 07

where v is a suitably normalized eigenvector corresponding to & and c¢j is a constant,
k = 0,1. The values for ¢y and ¢; follow from boundary conditions, similar to the ones in
(17) and (18). Therefore we may conclude that, for any m, the solution of (21) is of the
form

G (y) = Py — Ve Pm¥ > 0.

Here, p,, denotes the stationary distribution of the truncated modulating Markov process,
— B, is the unique negative eigenvalue of R 'TT and v, is the corresponding, suitably
normalized eigenvector. Finally, letting m — oo, we get the same form for the original

process,

G(y) =p—ve P, y>0, (22)
where ‘
5 = 11rnm—)oo Bma
P = (p07p17"')T7 with p] = (pO,japl,j)a .] :07]—7"'7
vV = (VO,Vl,...)T, with A\ (UO’]’,UL]'), ] = 0,]_,...,

respectively. After determining S, P and v, it can be shown by substitution that (22)
indeed is a solution of (15). Note that the components of » and v have a probabilistic
interpretation, namely

pi; = Pr[M,=i,D,=j], i€{0,1},5 €N,
vi; = Pr[M,=i,D,=3jC,>0], ic{0,1}, j€N,

7



so that we immediately have that p; o = v = 0.
To learn more about the relation between  and v, we investigate the eigenvalue problem

T"v = —BRv. (23)

Writing out (23) (where we leave out the equation concerning state (1,0), and set vy 5 = 0),
we obtain

—Avgo +nd_vo1 = —PBciugy

)\U0,0 — (/L + nd+)U1,1 = BC—UI,I,
and, for j =1,2,...,

—(>\ + nd_)vo,j + HU1 4 + nd_vo,jﬂ = 50_7)0,]'

Avoj +ndivr; — (p+ndi)vijen = Bevgj

The following lemma is now immediate.

Lemma 1 The components of the eigenvector v corresponding to eigenvalue —f satisfy
the difference equation

vin=Av; j=12,..., (24)
where A+ nd_ + Be_ p
B nd._ nd_
A == )\ nd+ ’
p+nd, + Be. p+ndy + Pe
with initial condition M
d_
v, = n)\ Yo,0 - (25)
M + 7’Ld+ + BC,

Since det A > 0 and det (A — I5) < 0 for § > 0, it turns out that for the eigenvalues (; ()
and (o(8) of A we have 0 < (1(5) < 1 < (2(f3). Therefore, in order for a bounded solution
v to exist, vi must be in the eigenspace of (;(/), which gives an equation from which we
can determine 3. Also, since P is the eigenvector corresponding to eigenvalue 0, we can use
Lemma 1 to find an expression for its components. Finally, applying conditions (17) and
(18), it is possible to solve the model exactly. We will however proceed by showing how
the results of this section can be used to obtain the solution of our original problem.



4 The stationary distribution

In this section we will show how the stationary distribution F of the process (M;, Dy, C})
can be found, using the results for the approximating system of the previous section. We
will first derive an analogon to Lemma 1 for our original model. Then, we proceed by
carrying out an analysis similar to the one suggested after Lemma 1, which will lead to
the main result of this report.

We first consider a sequence of auxiliary systems, as described in the previous section.
However, now we are interested in the amount of data in the data buffer, rather than the
number of data blocks (apart from the state of the on-off source and the content of the
credit buffer). Concretely, let M™, D™ and C™ denote the state of the on-off source,
the amount of data and the amount of credit at time ¢, respectively, for any n € N\{0},
where 1/n is the size of a data block as before. In particular, D™ = D, /n. The stationary
distribution of the Markov process (M™, D™, C{™) is for any n given by

F.(n)(a:,y) = Pr[Mt(") =1, Dﬁn) <u, C’t(n) <y, xz,y >0, i€{0,1},

)

or, in vector notation
FO (z,y) = (F" (2,9), K" (2,9)", 2920,
and can be expressed easily in terms of the quantities in Section 3, namely

F(z,y) =Y G () = " —v{Ve ™" ay >0,

J=0 J=0

where we have indicated dependence on n.

Clearly, the stochastic process (Mt("), D", C’t(”)) is a good approximation for the orig-
inal process (M, Dy, Cy) if n is large. It seems therefore plausible that the stationary
distribution F of the latter satisfies

F(z,y) = lim F®™(z,y), x,y > 0.

n—o0

We draw the conclusion that
F(z,y) =P(2) = V(z)e ™, 2,y>0, (26)
assuming that the following limits exist,

lzn]

— (n)
P(z) = T};IEOZpJ , z >0, (27)
=0
V(z) = nlg{)loZV] , z >0, (28)
=0
B = lim g™, (29)
n—o00



We note that for v(z) = V'(x) we have

v(z) = lim nv”) x>0, (30)

nooo  Lzn]+L?
assuming the right hand side exists, since for z > 0

o (n) e [T
/0 lim nv, JHalt = lim "VLthHdt

n—00 tn n—oo J

lzn]
= lim [ Y vl (@n— |an]) | = V(=) = V(0).

n—00 zn)+1
i=1
Similarly, we have
IERT 2/ (n) (n)
v'(z) = n]ggon (Vienjs2 = Vien|s1)s z > 0. (31)

We are now ready to prove the following Lemma.

Lemma 2 If it exists, the vector function v(x) satisfies the differential equation

Vi(z) = Bv(z) x>0, (32)
where At fe. o
. d_ d_
B= A ptBe |7
dy d.,
with initial condition
—30_1_ + A
d_
voy=| % | (33)
dy
Proof. By (24), we have
(n) (n) _ n (n)
VL$”J+2 o VLITLJJrl o (A( ) - I)Vtwn}kl ’ x> 0?

where we have indicated the dependence on n of matrix A in Lemma 1. Multiplying both
sides of this equation by n? and taking the limit for n — oo while applying (30) and (31),
yields (32), where B = lim,,_, n(A™ — I). Similarly, (33) follows from multiplying (25)
by n and taking the limit for n — oco. O

Since for —f < 0 also det B < 0, we have for the eigenvalues (;(f) and (»(5) of B that
¢1(B) <0< G(pB). For v(z) to be bounded for z > 0, we must therefore have that v(0) is

10



an eigenvector of (;(f), or equivalently, v(0) must be orthogonal to the left eigenvector of
(2(B). After some calculus it follows that this is the case if and only if

A d_
g=2 o . (34)
C+ C_d_ + C_d+ + C+d+
Using (34), we now solve (32) — (33) and obtain
v(z) = e 7"v(0), x>0,
where )
c_ e
= — = 35
’7 Cl (5) C+d+ * C_d_ + C_d+ + C+d+ ( )
and je,
c.d_+c.dy+cid
v(0) = )\+ T (0).
dy
Integration yields for x > 0,
V() = V(0)— / v(t)dt
0
HC+
%(0) %(0) c_d_ + C_d+ + C+d+ g
— ( N >+T B (1—e). (36)
a;

We could follow a similar procedure to obtain P(x) from pg-n) based on (27). However,
since P(z) = lim,_,o, F(x,y), it is the solution to the standard fluid flow problem involving
just the on-off source and data buffer, which has already been given in (3). Finally, by
condition (12), we have that

d+OZ
V0(0) = Py(0) = . 37
0(0) = 1y(0) = 12 7
Combining (26) with (3), (4), (34), (35), (36) and (37), we obtain the following theorem,
which is rigourously proved in the Appendix.

Theorem 1 The unique stationary distribution of the Markov process (Mg, Dy, Cy) is given

by
F(z,y) =P(x) = V(z)e ™,  z,y>0,
where ’ \ d_+
Pe)= | *37 ] - Afprd= e >y,
A+ A+ i

11



and

HCy
1-— _d_ _d d
Vi) =g (o) + 122 CEET A oo ez,
dy
with
14 A
aO = — — —
dy d_’
g = A pd_
o C+ C_d_ + C_d+ + C+d+,
Ac_ Je_
Y o= + ;
C+d+ C_d_ + C_d+ + C+d+
d+OZ
1— = PriD;,=0| = .
Pd r[ t ] X+

Corollary 1 The stationary distribution in Theorem 1, interpreted as a probability mea-
sure, can be written as

HCy
c_d_+c_dy+cid vy —
F(dz,dy) = B(1— pa) AVETER e1m =BY dr ay

dy

FUOLdn) = (1= pa) (o ) e ay
A

He4

F(dz,{0}) = (1 —pa) dX —aT _ c/zcl,Jrc,AdpL(:m+ v
dy

dy

Appendix

First we will prove that Theorem 1 indeed presents a stationary distribution for the Markov

process (M, Dy, Cy). In the following, F will denote both probability measure and distri-

bution function. We can write down the infinitesimal generator B of (M;, Dy, C}) as a

(vector-valued) operator, mapping a function h = (hg, hy)T to Bh, with

(Bh) (2, y) = lim ¢! E[har, (Di, Ct) = ho(z,y)[Mo = 0, Dy =z, Co = y] ——
ti0 E[hMt(Dtact)_hl(x7y)|MU:17 D(]:.ZU, CU:y]

12



Some algebra shows that

(B()h)(l',y), T,y > 07

(Bh)(z,y) = Qh(x,y) + { (Bih)(0,y), y >0, (38)
(Boh)(x,0), = >0,

where @ is given in (1),

—d_ 2L —c 2 0
s= (T LY L) (39)
O d+% —C,a—y
9
C+3_ 0 )
B, = Y , 40
1 < 0 diZ-c 2 (40)
and )
—d_Z 0
— ox
By = < 0 d+a%> ) (41)

The operator B can be viewed as a generalization of the (Q-matrix corresponding to a
continuous-time Markov process with a finite state space. In the latter context we would
prove that the probability measure 7 is stationary by showing that it satisfies 7¢) = 0, i.e.
Qv = 0 for all vectors v. Likewise, here we should prove that the probability measure F
is stationary by showing that it satisfies FBh = 0 for all (vector-valued) functions h, i.e.
that

/OOO /OOO FT(dz, dy)Ah = 0 (42)

(see, e.g., [8], p. 239). Upon substitution of

F(dxa dy) = Fw,y(xa y) dz dy,
F(dz,{0}) = F,(z,0)dx,
F({0},dy) = Fy(0,y) dy,

where F, ,, F, and F, denote partial derivatives of F, and applying partial integration,
we obtain the following equations,

Q"Fyy(7,y) — AgFyy(7,y) = 0, z,y >0, (43)
Q F,(2,0) — AgF,(x,0) = 0, x>0, (44)
Q"F,(0,y) — AiF,(0,y) = 0, y>0, (45)

d_ 2 Fy(0,0) — cy 2 Fy(0,0) = 0, (46)

2Fi(0,0) = 0, (47)
2F(0,y) = 0, y>0, (48)

where 4 and A, are given in (9) and (10). The validity of (46) — (48) is immediate, while
the verification of (43) — (45) can be done either by noting that they are implied by (8),

13



since it is straightforward to check that F indeed satisfies (8), or directly by using Corollary
1.

The uniqueness of the stationary distribution is proved via a coupling argument, as
in [12]. Let F’ be an arbitrary distribution on {0,1} x Ry x R, and F the stationary
distribution in Theorem 1. We construct two processes (M;, Dy, C;) and (M{, D}, C}) on one
sample space in the following way: starting with initial distributions F and F’, respectively,
let (M;) and (M) evolve independently, until the first time 7, such that M, = M . After
7 we let the two processes (M;) and (M]) have a common trajectory. It is easy to see
that Pr[r; < oo] = 1. Notice that the increments of (D;) and (Dj) are equal for ¢ > 7,
but D # D! in general. Now let 7, be the first time at which both data buffers are
empty. Since max{D, , D’ } < oo and both (D;) and (Dj) have negative drift when the
data buffers are not empty, we know that 7 < oo with probability 1. It is clear that for
t > 15 we have D, = Dj and, moreover, the increments of (C;) and (C}) coincide. Therefore,
we can find a time 73 at which both credit buffers are empty, which is finite by a similar
argument as for 5. It follows that the two processes (M;, D, Cy) and(M], D}, C}) coincide
for ¢t > 73 and that for any Borel set A in {0,1} x R, x R, we have

| Pr[(M!, D, C)) € A~ F(4) | < Prlr > 1].

Since the right-hand side converges to 0, as t — oo, we have that Pr[(M/, D;,C}) € -] con-
verges in total variation to F, irrespective of the initial distribution F'. Hence (M/, D}, C})

converges to (My, Dy, Cy) in distribution and F is the unique stationary distribution of
(MtaDtact)'
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