
BIOINFORMATICS Vol. 18 no. 11 2002
Pages 1494–1499

A simulated annealing algorithm for finding
consensus sequences

Jonathan M. Keith 1,∗, Peter Adams 1, Darryn Bryant 1,
Dirk P. Kroese 1, Keith R. Mitchelson 2, 3, Duncan A.E. Cochran 1, 2

and Gita H. Lala 1, 2

1Department of Mathematics, The University of Queensland, Qld 4072, Australia,
2Australian Genome Research Facility, The University of Queensland, Qld 4072,
Australia and 3Institute for Molecular Biosciences, The University of Queensland,
Qld 4072, Australia

Received on February 26, 2002; revised on April 22, 2002; accepted on April 25, 2002

ABSTRACT
Motivation: A consensus sequence for a family of related
sequences is, as the name suggests, a sequence that
captures the features common to most members of the
family. Consensus sequences are important in various
DNA sequencing applications and are a convenient way
to characterize a family of molecules.
Results: This paper describes a new algorithm for finding
a consensus sequence, using the popular optimization
method known as simulated annealing. Unlike the con-
ventional approach of finding a consensus sequence by
first forming a multiple sequence alignment, this algo-
rithm searches for a sequence that minimises the sum
of pairwise distances to each of the input sequences.
The resulting consensus sequence can then be used to
induce a multiple sequence alignment. The time required
by the algorithm scales linearly with the number of input
sequences and quadratically with the length of the con-
sensus sequence. We present results demonstrating the
high quality of the consensus sequences and alignments
produced by the new algorithm. For comparison, we also
present similar results obtained using ClustalW. The new
algorithm outperforms ClustalW in many cases.
Availability: The software is made available upon re-
quest.
Contact: jonathan@maths.uq.edu.au

INTRODUCTION
The need to determine a consensus sequence for a family
of related sequences arises in various applications within
computational biology. For example, in DNA sequencing
the same region of a genome is sequenced multiple times
and a consensus sequence is determined. A consensus
sequence also provides a convenient summary of the

∗To whom correspondence should be addressed.

common elements in a family of sequences. Somewhat
related to the problem of finding a consensus sequence is
that of forming a multiple sequence alignment. Multiple
sequence alignment is a ubiquitous theme in computa-
tional biology and is used to detect structural, functional
and evolutionary relationships in families of DNAs, RNAs
and proteins. Three-dimensional structures can also be
characterized as sequences, and alignments involving such
structures provide insights into the structure and function
of biological molecules. A recent survey on multiple
sequence alignment is given in Jiang and Wang (2002).

Although our main focus in this present paper is on
an algorithm for constructing a consensus sequence, we
also include significant digressions on multiple sequence
alignment. A consensus sequence induces a multiple se-
quence alignment with very little additional work and our
results indicate that alignments obtained in this manner
compare very favourably with alignments produced by
the well-known Clustal software (Thompson et al., 1997).
This finding adds substantially to the value and general
interest of this work.

There is very little literature devoted exclusively to the
problem of finding a consensus sequence. Day and Mc-
Morris (1993) showed that the problem is NP-complete
in general. Gusfield (1997) provides a brief but valuable
discussion of the problem. We mention two existing al-
gorithms. The first is well-known (and not attributable to
any single author or group) and consists of forming a mul-
tiple sequence alignment for the family of sequences in
question, then taking a (possibly weighted) consensus of
the characters in each column of the alignment. The sec-
ond (which is due to Gusfield (1997)) closely resembles
that of Wang et al. (1996) for the phylogenetic alignment
problem. However, this second algorithm merely selects
one of the members of the family of sequences as a candi-
date consensus sequence. Mention should also be made

1494 c© Oxford University Press 2002



A simulated annealing algorithm

of Li et al. (2000), which describes several polynomial
time approximation schemes for determining consensus
sequences under various assumptions. Finding a consen-
sus sequence may be regarded as a special case of phylo-
genetic alignment (Altschul and Lipman, 1989; Wang and
Gusfield, 1998; Wang et al., 2000, and references) and
many of the algorithms designed for that problem could
potentially be modified to find consensus sequences.

We require the following notation and definitions. Let
A be a finite set of characters, which we refer to as
the alphabet, and let |A| be the number of distinct
characters in the alphabet. Let � be the set consisting of all
sequences formed from characters in the alphabet. Let S =
{s1, . . . , sq} ⊂ � be a finite set of q ≥ 2 sequences, that
is, the family of sequences for which we aim to determine
a consensus sequence. (In fact, the sequences are not
necessarily distinct, so S could be a multiset.) Let ni be
the length of si for each i = 1, . . . , q. The essential idea of
the algorithm presented in Section 3 is to search the space
� for an object known as a Steiner consensus string. A
Steiner consensus string for a set S of sequences is, loosely
speaking, a sequence which is minimally distant from each
of the sequences in the set. To formalise this concept, we
require the following definitions, which resemble those
given by Gusfield (1997).

DEFINITION 1. Let � be the set consisting of all
sequences formed from characters in an alphabet A.
Given a family S = {s1, s2, . . . , sq} of sequences in �, an
arbitrary sequence s (not necessarily in S) and a pairwise
scoring function D : � × � → R, the consensus error of
s relative to S is E(s) = ∑q

i=1 D(si , s). A sequence s∗ is
a Steiner consensus string for S if E(s∗) ≤ E(s) for all
s ∈ �.

The term ‘Steiner consensus string’ appears to have been
coined by Gusfield (1997) and is appropriate because such
a sequence is a Steiner point for the set S when (�, D) is a
metric space. Gusfield also abbreviates the term to ‘Steiner
string’. Where it would not be confusing to do so, we use
the word ‘sequence’ in preference to ‘string’.

In this paper, the pairwise scoring function D : �×� →
R is the edit distance, that is, the minimum number of
single-base insertions, deletions and substitutions needed
to transform one sequence into the other. However, we
emphasise that the algorithms can be readily adapted to
accommodate a wide range of scoring functions. The
scoring function does not even have to be symmetric or
satisfy the triangle inequality. The method can therefore
be adapted for a range of applications in DNA sequencing
and sequence alignment.

METHODS
Our algorithm to search for a Steiner string uses the
optimization technique known as simulated annealing.

This technique brings insights from statistical mechanics
to bear on optimization, and emulates the way in which
a thermodynamic system settles into a low-energy state
as the system cools. Since its introduction by Kirkpatrick
et al. (1983), simulated annealing has been widely used
and has been found to perform well on a variety of
large combinatorial optimization problems. Simulated
annealing uses Markov chain sampling (described below)
to search for a global optimum of a real-valued function
E on a set X . We may here assume that X is finite.
The essence of the technique is to induce a family of
probability mass functions {πγ : γ ∈ (0, ∞)} on X
such that the probability mass πγ (x) associated with a
point x ∈ X is proportional to exp[−E(x)/γ ] for each
γ > 0. A distribution of this form is known as a Boltzmann
distribution and the term γ is called the temperature.
Markov chain sampling is then used to sample from
a succession of Boltzmann distributions, each with a
lower temperature than the previous one. The sequence
of temperatures is termed the annealing schedule. As the
temperature approaches zero, the sequence of samples
settles into a local minimum of the function E . With a
carefully chosen annealing schedule, the technique will in
many cases find a global minimum of the function.

Markov chain sampling (more commonly called Markov
chain Monte Carlo simulation) is a technique for sampling
elements from a space X according to a specified distri-
bution π . The idea is to start with an arbitrary element
X0 = x ∈ X and generate a Markov chain {X0, X1, . . .}
in such a way that the limiting distribution of the chain
is equal to π . There are two common forms of Markov
Chain sampling, namely the Metropolis–Hastings algo-
rithm (Metropolis et al., 1953; Hastings, 1970) and Gibbs
sampling (Geman and Geman, 1984; Gelfand and Smith,
1990). In the Metropolis–Hastings algorithm, potential
new elements of the chain are generated in accordance
with a transition matrix Q(x, y) (where Q(x, y) gives the
probability of the transition from x to a new element y).
The sampler consists of the following steps performed
iteratively:

(1) Given Xn = x , draw Y = y ∈ X in accordance with
the distribution Q(x, ·).

(2) Draw a Uniform(0,1) random variable U .

(3) If U ≤ min{1, π(y)Q(y, x)/π(x)Q(x, y)} then set
Xn+1 = Y , otherwise set Xn+1 = Xn = x .

Under fairly mild conditions on Q, the limiting distri-
bution of the chain is π . Gibbs sampling was originally
developed to sample from Gibbs distributions, but is ap-
plicable whenever the state variable is a random vec-
tor. Let the dimension of the state space X be d. Sup-
pose X is a random vector with distribution π . Let π(· |
x1, . . . , xi−1, xi+1, . . . , xd) represent the distribution of

1495



J.M.Keith et al.

the i th co-ordinate of X conditional on the other compo-
nents (being x1, . . . , xi−1, xi+1, . . . , xd)). Then the sam-
pler consists of the following steps performed iteratively:

(1) Given Xn = (xn.1, . . . , xn.d), generate Y =
(Y1, . . . , Yd) consecutively as follows:
Given the values Y1 = y1, . . . , Yi−1 = yi−1 draw
Yi in accordance with the conditional distribution
π(·|y1, . . . , yi−1, xn.i+1, . . . , xn.d).

(2) Let Xn+1 = Y .

Under certain conditions, specifically irreducibility and
aperiodicity of the Markov process, the resulting chain has
limiting distribution π . Gibbs sampling is advantageous
if it is easier to sample from the conditional distributions
than from the full distribution. Gibbs sampling can be
shown to be a special case of the single component
Metropolis–Hastings algorithm (Gilks et al., 1996).

The Markov chain sampling procedure used by sim-
ulated annealing algorithms is usually the Metropolis–
Hastings algorithm. However, there is no reason why
simulated annealing algorithms cannot use other Markov
chain sampling procedures such as Gibbs sampling. In
the algorithm presented in the next section we use a new
Markov sampler, which generalizes the Gibbs sampler.
The new sampler is described in detail by Keith et al.
(submitted). Here we merely observe that the new sampler
allows Gibbs-like sampling from a space in which the
dimension of individual elements varies.

ALGORITHM
The idea of the algorithm is to generate a series of
sequences in �, beginning with the null sequence " "
and, ideally, ending with a Steiner string for S. Each
sequence is derived from the previous one by a point
mutation, that is, a substitution, an insertion or a deletion
of a single character. The sequences are generated using
our generalized Gibbs sampler applied to a succession of
Boltzmann distributions.

The algorithm is divided into iterations, and the itera-
tions are sub-divided into phases. For the purposes of this
paper, the number of iterations is fixed at J > 0. The num-
ber of phases at Iteration j (1 ≤ j ≤ J ) is K j . Each phase
generates a new sequence in �. The current element (that
is, the most recently generated sequence) at the beginning
of iteration j is given the symbol x j0 and the sequence
generated by phase k of iteration j is given the symbol
x jk . Note that x j K j = x( j+1)0. Thus the order in which
sequences are generated is {x10 =" ", x11, . . . , x1K1 =
x20, x21, . . . , x(J−1)K J−1 = xJ0, . . . , xJ K J }. Let L(x jk)

denote the length of x jk for all 1 ≤ j ≤ J , 0 ≤ k ≤ K j .
We will see that K j is not determined until the end of
iteration j .

The temperature of the Boltzmann distribution is kept
constant over all phases of a given iteration. Let the
temperature for iteration j be γ j . At the end of each
iteration, the temperature is reduced by a factor r in the
range 0 < r < 1. This simple annealing scheme is
rather primitive, particularly because it does not ensure
that the chain reaches equilibrium before changing the
temperature. Nevertheless, this annealing scheme was
found to be adequate for the numerical experiments
presented in Section 4. The overall algorithm can now be
described as follows:

ALGORITHM 1. Overall algorithm.

1. Initialize γ1 and r .

2. Set x10 =" ".

3. For j = 1, . . . , J ,

(a) Generate x j1, . . . , x j K j using Algorithm 2.
(b) Set γ j+1 = rγ j .

4. Output xJ K J .

In the numerical experiments in Section 4, we used
γ1 = 1 and r = 0.95.

At Iteration j , Step 3(a) of Algorithm 1 generates
x j1, . . . , x j K j by calling the following algorithm. For ease
of description, we append a termination character to each
sequence. This allows us to describe an insertion at the end
of x jk as an insertion immediately in front of character
L(x jk) + 1.

ALGORITHM 2. Iteration j .

1. Set k = 0 and m = 1.

2. While m ≤ L(x jk) + 1

(a) If L(x jk) < M AX L E N , call Algorithm
3 to generate x j (k+1) by deciding whether
to insert a character and which character to
insert immediately before character m of x jk .
Otherwise, set x j (k+1) = x jk .

(b) Set k = k + 1.
(c) If a character was inserted at step 2(a),

i. Set m = m + 1.
ii. Go back to step 2(a).

(d) If m ≤ L(x jk),
i. Call Algorithm 4 to generate x j (k+1) by

deciding whether to delete or substitute
character m of x jk , and in the latter case,
which character to substitute.

ii. Set k = k + 1.
iii. If m ≤ L jk and a character was deleted at

step 2(d)i, go back to step 2(d)i.
(e) Set m = m + 1.

1496



A simulated annealing algorithm

The value of M AX L E N in Step 2(a) should be spec-
ified in advance. A very conservative value is

∑q
i=1 ni .

One may set M AX L E N = ∞, but this allows the pos-
sibility of infinite looping in Step 2. The insertion algo-
rithm referred to at Step 2(a) of Algorithm 2 and the dele-
tion/substitution algorithm referred to at step 2(d)i are de-
scribed below. Note that both algorithms refer to the con-
sensus error E(x), defined in terms of a pairwise scoring
function D : � × � → R. For the numerical experiments
described in Section 4, D is the edit distance.

ALGORITHM 3. Try an Insertion.

1. For each character a ∈ A,

(a) Form a sequence s+(a) by inserting character
a into x jk immediately before the mth charac-
ter.

(b) Calculate E(s+(a)) =
q∑

i=1

D(si , s+(a)).

2. Select one of {x jk} ∪ {s+(a) | a ∈ A} where x jk

is weighted by e−E(x jk)/γ j /(2L(x jk)+1) and s+(a)

is weighted by e−E(s+(a))/γ j /(2L(x jk)+ 3) for each
a ∈ A.

3. Return the selected sequence as x j (k+1).

ALGORITHM 4. Try a Deletion.

1. Form a sequence s− by deleting character m of x jk .

2. Calculate E(s−) =
q∑

i=1

D(si , s−).

3. For each character a ∈ A
(a) Form a sequence s(a) by substituting character

a for the mth character of x jk (note x jk is one
of the s(a)).

(b) Calculate E(s(a)) =
q∑

i=1

DW (si , s(a)).

4. Select one of {s−} ∪ {s(a) | a ∈ A} where s−
is weighted by e−E(s−)/γ j /(2L(x jk) − 1) and s(a)

is weighted by e−E(s(a))/γ j /(2L(x jk) + 1) for each
a ∈ A.

5. Return the selected sequence as x j (k+1).

Note that the probability of selecting any particular
sequence in Algorithms 3 and 4 is proportional to a
Boltzmann distribution multiplied by an additional term
involving the length of the new sequence. This additional
term is a feature of the generalized Gibbs sampler and is
explained in detail in Keith et al. (submitted).

To predict the complexity of the overall algorithm, note
firstly that the consensus error of |A|+1 sequences is com-
puted in each phase of each iteration. Each computation of
a consensus error requires an edit distance to be computed
for each si ∈ S. This can be done in time proportional
to the product of the lengths of the two sequences by
dynamic programming (see Gusfield, 1997). Thus the time
required by phase k of Iteration j is O(|A|L jk

∑q
i=1 ni ).

However, computing the edit distance between si and
each of the candidates for x j (k+1) is not very different
to computing the edit distance between si and x jk . It
is possible to take advantage of the similarities in these
calculations to reduce the time required by each phase to
O(|A| ∑q

i=1 ni ), but we will not present the details of the
speed-up here. Now, one might expect that the number of
phases in a given iteration is O(L), where L is the length
of the Steiner consensus string, and indeed this is what
we find experimentally. Since the number of iterations is
fixed at J > 0, the overall efficiency of the algorithm
is O(J |A|L ∑q

i=1 ni ). If we further assume that ni is
approximately L for i = 1, . . . , q then this expression
simplifies to O(J |A|q L2). That is, the algorithm is linear
in the number of sequences in S, and quadratic in the
length of the sequences. At this stage, it is unclear whether
J can be fixed irrespective of the values of L and q, but
our preliminary investigations indicate that the number
of iterations required for convergence increases only very
slowly with sequence length, if at all.

Once a Steiner consensus string s has been found, a
multiple sequence alignment of the sequences in S can
be constructed using an algorithm described by Feng and
Doolittle (1987) (see also Gusfield, 1997) applied to a
star tree with the consensus string at the centre. The
idea of that algorithm is to first determine the optimal
pairwise alignment of each sequence in S to the consensus
string and then to form a multiple sequence alignment
consistent with these pairwise alignments. For the readers’
convenience, we provide the following specialised version
of the alignment algorithm:

ALGORITHM 5. Star alignment.

1. For each i = 1, . . . , q, find an optimal pairwise
alignment Mi of si and s with respect to some
scoring function V (Mi ) (this is always possible
because there are only finitely many alignments of
si and s).

2. For each pairwise alignment Mi (i = 1, . . . , q), let
σi (k) be the number of spaces inserted into the row
of Mi corresponding to s between characters k and
k + 1 of s for 0 < k < L . Let σi (0) be the number
of spaces inserted in front of s and let σi (L) be the
number of spaces inserted at the end of s. For each
k, 0 ≤ k ≤ L , define σ(k) = max

i=1,...,q
σi (k).

1497



J.M.Keith et al.

3. For each pairwise alignment Mi (i = 1, . . . , q),
form a new matrix M ′

i as follows.

(a) Insert σ(0) − σi (0) columns of spaces in front
of Mi .

(b) Insert σ(k)−σi (k) columns of spaces immedi-
ately after character k of s, for 0 < k ≤ L .

4. We claim that in each M ′
i , the rows corresponding to

s are identical and that consequently the matrices M ′
i

all have the same length L ′. It is therefore possible
to form an alignment M of S by:

(a) Removing the row corresponding to s from
each alignment M ′

i .
(b) Placing the remaining rows into a matrix of q

rows and L ′ columns.
(c) Removing any columns that contain only spaces.

NUMERICAL EXPERIMENTS
To test the algorithm, extensive simulations were per-
formed. Fragments of DNA sequence were randomly
selected from a database containing sequences of total
length approximately 7 Mbp. For each fragment, simu-
lated point mutations were performed at random to gen-
erate a number of variant sequences. The algorithm de-
scribed above was then used to reconstruct the original
sequence, given the variant sequences as input. The re-
construction was compared to the original and the number
of differences between them was calculated. The results
of these simulations are shown in Table 1 and Table 2.
Table 1 contains results for simulations involving five
variant sequences (q = 5) and Table 2 contains results
for simulations involving 20 variant sequences (q = 20).
Each row of the tables corresponds to approximately 1000
simulations. The first column of each table gives the
fragment length. The second column gives the probability
that a new character will be inserted between any two
characters of the original sequence, or at the beginning
and end of the sequence. Multiple insertions were al-
lowed at each possible location, with the probability of
a second insertion being equal to the probability of the
first insertion, and so on. The third and fourth columns
respectively give the probabilities that each character will
be deleted or substituted with a different character. If
the decision was made to substitute a given character, a
new character was selected from the three alternatives,
with each alternative being given equal probability. The
fifth column gives the average number of differences
(that is, the average edit distance) between the original
sequences and the consensus sequences produced by our
algorithm.

For comparison, the variant sequences from each simu-
lation were aligned using the well-known ClustalW soft-
ware for multiple sequence alignment (Thompson et al.,

Table 1. Results for q = 5 sequences

length Pi Pd Ps D(O, S) D(O, C) ds dc

400 0.01 0.01 0.10 3.33 7.82 88.1 95.0
2000 0.01 0.01 0.10 17.05 39.10 440.9 474.8

400 0.01 0.01 0.20 21.14 33.47 149.3 158.9
2000 0.01 0.01 0.20 106.44 167.65 747.2 794.0

400 0.05 0.05 0.20 46.07 103.50 185.5 221.1
2000 0.05 0.05 0.20 234.57 516.19 928.8 1101.0

400 0.10 0.10 0.10 40.51 113.08 178.1 226.2
2000 0.10 0.10 0.10 204.35 568.83 887.8 1126.7

Table 2. Results for q = 20 sequences

length Pi Pd Ps D(O, S) D(O, C) ds dc

400 0.01 0.01 0.10 0.06 1.76 88.2 107.1
2000 0.01 0.01 0.10 0.34 8.30 440.9 535.6

400 0.01 0.01 0.20 0.65 5.10 149.9 173.9
2000 0.01 0.01 0.20 3.32 24.93 749.6 870.4

400 0.05 0.05 0.20 5.90 58.03 190.2 258.4
2000 0.05 0.05 0.20 29.50 284.56 949.9 1285.7

400 0.10 0.10 0.10 5.82 83.49 183.7 272.1
2000 0.10 0.10 0.10 28.98 415.37 917.7 1355.5

1994), with the default parameters. A consensus charac-
ter was determined for each character of the alignment,
thus producing a consensus sequence. This sequence was
then compared to the original sequence, and the average
number of differences is shown in the sixth column of
each table. Note that our algorithm produced a sizable
improvement over ClustalW in all rows.

The multiple sequence alignments produced by our
algorithm were also scored by summing the pairwise edit
distances between all pairs of sequences in the alignment.
This sum was then divided by the number of pairs to
give the average number of differences between any two
rows of the alignment. The averages of these scores over
1000 simulations are shown in the seventh column of
each table. For comparison, the alignments produced by
ClustalW were scored in a similar manner and the results
are shown in the eighth column of each table. Again,
our algorithm produced better results in all cases. Note
that as the amount of mutation increases, the difference
between the results produced by the two methods becomes
increasingly apparent. Also note that the difference is
more pronounced when 20 variant sequences are used
instead of five.

These numerical experiments were performed on a col-
lection of Pentium III PCs, running the Linux Operating
system. The code was written in C and compiled using the
Gnu C compiler. Running time varied significantly with

1498



A simulated annealing algorithm

sequence length, initial temperature and cooling parame-
ter, but the algorithm was generally slower than ClustalW.

DISCUSSION
We mentioned above that the annealing scheme we use is
somewhat primitive and does not ensure the chain reaches
equilibrium before lowering the temperature. We also
mentioned that the distance used here is only edit distance;
some improvement may result from using a biologically
motivated (and application-specific) score (for example, a
score based on PAM matrices). With these caveats, the
authors are satisfied that this procedure is an adequate
method for generating consensus sequences and their
associated multiple sequence alignments.

The experiments described in the previous section
indicate that the new algorithm performs substantially
better than the widely used Clustal software both as a
method for determining a consensus sequence and as
a method for forming a multiple sequence alignment.
These are very encouraging results, but we stress that
the tests performed here do not conclusively demonstrate
the superiority of the new approach. In particular, each
test involved a collection of independently generated
variants of a common ancestral sequence. In many realistic
applications, the input sequences are not independently
generated, and Clustal may produce more meaningful
results on such data. The results remain impressive,
nonetheless, and further investigation of the new approach
seems warranted.

It should be pointed out that the Metropolis–Hastings
algorithm could have been used as the basis for the sim-
ulated annealing search instead of our generalized Gibbs
sampler. However, we chose to use a Gibbs-like sampler
because it seemed more efficient to work through the
available moves systematically rather than the randomized
method of selection used in the Metropolis–Hastings al-
gorithm. With Metropolis–Hastings, some point mutations
might not be considered for many iterations. Another pos-
sible disadvantage of the Metropolis–Hastings algorithm
is that it considers only two potential actions at each step
of the chain, one of which is to repeat the most recent
element. Our sampler considers more options at each step,
and this should lead to faster convergence.

The algorithm presented in this paper involves a com-
bination of stochastic and deterministic search techniques.
The space of all possible sequences is searched stochasti-
cally, but the optimal pairwise alignment scores are found
using a deterministic algorithm. This combination of tech-
niques is probably not essential to the technique, and gains
in efficiency may result from using heuristic or stochastic
techniques to form the pairwise alignments.

ACKNOWLEDGEMENT
The support of the Australian Research Council is grate-
fully acknowledged.

REFERENCES
Altschul,S.F. and Lipman,D. (1989) Trees, stars, and multiple

sequence alignment. SIAM J. Appl. Math., 49, 197–209.
Day,W.H. and McMorris,F.R. (1993) The computation of consensus

patterns in DNA sequence. Math. Comput. Model., 17, 49–52.
Feng,D. and Doolittle,R.F. (1987) Progressive sequence alignment

as a prerequisite to correct phylogenetic trees. J. Mol. Evol., 25,
351–360.

Gelfand,A.F. and Smith,A.F.M. (1990) Sampling-based approaches
to calculating marginal densities. J. Am. Stat. Assoc., 85, 398–
409.

Geman,S. and Geman,D. (1984) Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images. IEEE T.
Pattern Anal., 6, 721–741.

Gilks,W.R., Richardson,S. and Spiegelhalter,D.J. (1996) Markov
Chain Monte Carlo in Practice. Chapman and Hall.

Gusfield (1997) Algorithms on strings, trees and sequences.
Cambridge University Press.

Hastings,W.K. (1970) Monte Carlo sampling methods using
Markov chains and their applications. Biometrika, 57, 97–109.

Jiang,T. and Wang,L. (2002) Algorithmic methods for multiple
sequence alignment. In Jiang,T., Xu,Y. and Zhang,M.Q. (eds),
Current Topics in Computational Biology. MIT Press.

Keith,J.M., Kroese,D.P. and Bryant,D. (submitted) A generalised
Markov chain sampler.

Kirkpatrick,S., Gelatt,C.D. and Vecchi,M.P. (1983) Optimization by
simulated annealing. Science, 220, 671–680.

Li,M., Ma,B. and Wang,L. (2000) Near optimal multiple alignment
within a band in polynomial time. In 32nd ACM Symposium on
Theory of Computing (STOC2000). pp. 425–434.

Metropolis,N., Rosenbluth,A.W., Rosenbluth,M.N. and Teller,A.H.
(1953) Equations of state calculations by fast computing ma-
chines. J. Chem. Phys., 21, 1087–1092.

Thompson,J.D., Gibson,T.J., Plewniak,F., Jeanmougin,F. and
Higgins,D.G. (1997) The ClustalX windows interface: flexible
strategies for multiple sequence alignment aided by quality
analysis tools. Nucleic Acids Res., 25, 4876–4882.

Thompson,J.D., Higgins,D.G. and Gibson,T.J. (1994) CLUSTAL
W: improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, positions-specific gap
penalties and weight matrix choice. Nucleic Acids Res., 22,
4673–4680.

Wang,L., Jiang,T. and Lawler,E.L. (1996) Approximation algo-
rithms for tree alignments with a given phylogeny. Algorithmica,
16, 302–315.

Wang,L. and Gusfield,D. (1998) Improved approximation algo-
rithms for tree alignment. J. Algorithms, 25, 255–273.

Wang,L., Jiang,T. and Gusfield,D. (2000) A more efficient
approximation scheme for tree alignment. SIAM J. Comput., 30,
283–299.

1499

View publication statsView publication stats

https://www.researchgate.net/publication/8205110



