
Monte Carlo Methods

Dirk P. Kroese

Department of Mathematics
School of Mathematics and Physics

The University of Queensland

kroese@maths.uq.edu.au
http://www.maths.uq.edu.au/~kroese

c© These notes were used for an honours/graduate course on Monte Carlo
methods at the 2011 Summer School of the Australian Mathematical Sciences
Institute (AMSI).

No part of this publication may be reproduced or transmitted without the
explicit permission of the author.

2

Copyright c© 2011 D.P. Kroese

3

Preface

Many numerical problems in science, engineering, finance, and statistics are
solved nowadays through Monte Carlo methods; that is, through random
experiments on a computer. The purpose of this AMSI Summer School course
is to provide a comprehensive introduction to Monte Carlo methods, with a
mix of theory, algorithms (pseudo + actual), and applications.

These notes present a highly condensed version of:

D.P. Kroese, T. Taimre, Z.I. Botev. Handbook of Monte Carlo Methods.
Wiley Series in Probability and Statistics, John Wiley & Sons, New York, 2011.

See also the Handbook’s website: www.montecarlohandbook.org.

Since the Handbook is over 772 pages thick, with 21 chapters, I had to
heavily cut back the contents of the Handbook to a size that is manageable to
teach within one semester. I have tried to make these notes fairly self-contained,
while retaining the general flavour of the Handbook. However, it was not always
possible to keep the logical connections between chapters in the Handbook. For
an advanced understanding of some material, including bibliographic references,
it will be necessary to consult the corresponding passages in the Handbook.

Brisbane, 2011

Dirk Kroese

Copyright c© 2011 D.P. Kroese

4

Copyright c© 2011 D.P. Kroese

Contents

1 Uniform Random Number Generation 9

1.1 Random Numbers . 9

1.1.1 Properties of a Good Random Number Generator 10

1.1.2 Choosing a Good Random Number Generator 11

1.2 Generators Based on Linear Recurrences 12

1.2.1 Linear Congruential Generators 12

1.2.2 Multiple-Recursive Generators 13

1.2.3 Matrix Congruential Generators 13

1.2.4 Modulo 2 Linear Generators 14

1.3 Combined Generators . 16

1.4 Tests for Random Number Generators 17

1.4.1 Equidistribution (or Frequency) Tests 20

1.4.2 Serial Tests . 21

1.4.3 Gap Tests . 21

1.4.4 Poker or Partition Tests 21

1.4.5 Coupon Collector’s Tests 22

1.4.6 Permutation Tests . 22

1.4.7 Run Tests . 22

1.4.8 Maximum-of-d Tests . 22

1.4.9 Collision Tests . 23

1.4.10 Rank of Binary Matrix Tests 23

1.4.11 Birthday Spacings Tests 23

1.5 Exercises . 24

2 Random Variable Generation 25

2.1 Generic Algorithms Based on Common Transformations 25

2.1.1 Inverse-Transform Method 26

2.1.2 Other Transformation Methods 28

2.1.3 Table Lookup Method . 34

2.1.4 Alias Method . 35

2.1.5 Acceptance–Rejection Method 38

2.2 Generation Methods for Multivariate Random Variables 39

2.3 Generating Random Vectors Uniformly Distributed in a Unit
Hyperball and Hypersphere . 40

2.4 Generating Random Permutations 41

2.5 Exercises . 42

Copyright c© 2011 D.P. Kroese

6 CONTENTS

3 Probability Distributions 45

3.1 Discrete Distributions . 45

3.1.1 Bernoulli Distribution . 45

3.1.2 Binomial Distribution . 46

3.1.3 Geometric Distribution 46

3.1.4 Poisson Distribution . 47

3.1.5 Uniform Distribution (Discrete Case) 48

3.2 Continuous Distributions . 49

3.2.1 Beta Distribution . 49

3.2.2 Cauchy Distribution . 50

3.2.3 Exponential Distribution 51

3.2.4 Gamma Distribution . 51

3.2.5 Normal Distribution . 53

3.2.6 Uniform Distribution (Continuous Case) 54

3.3 Multivariate Distributions . 55

3.3.1 Dirichlet Distribution . 55

3.3.2 Multivariate Normal Distribution 56

3.3.3 Multivariate Student’s t Distribution 58

3.4 Exercises . 59

4 Random Process Generation 61

4.1 Gaussian Processes . 61

4.1.1 Markovian Gaussian Processes 62

4.2 Markov Chains . 63

4.3 Markov Jump Processes . 66

4.4 Poisson Processes . 69

4.5 Wiener Process and Brownian Motion 73

4.6 Stochastic Differential Equations and Diffusion Processes 75

4.6.1 Euler’s Method . 76

4.7 Brownian Bridge . 78

4.8 Geometric Brownian Motion . 80

4.9 Ornstein–Uhlenbeck Process . 82

4.10 Exercises . 84

5 Markov Chain Monte Carlo 87

5.1 Metropolis–Hastings Algorithm 87

5.1.1 Independence Sampler . 88

5.1.2 Random Walk Sampler 89

5.2 Gibbs Sampler . 91

5.3 Hit-and-Run Sampler . 95

5.4 Exercises . 100

6 Variance Reduction 103

6.1 Variance Reduction Example . 103

6.2 Antithetic Random Variables . 105

6.3 Control Variables . 108

6.4 Conditional Monte Carlo . 110

Copyright c© 2011 D.P. Kroese

CONTENTS 7

6.5 Importance Sampling . 113
6.5.1 Minimum-Variance Density 114
6.5.2 Variance Minimization Method 115
6.5.3 Cross-Entropy Method . 117

6.6 Exercises . 119

7 Estimation of Derivatives 123
7.1 Gradient Estimation . 123
7.2 Finite Difference Method . 125
7.3 Infinitesimal Perturbation Analysis 128
7.4 Score Function Method . 129

7.4.1 Score Function Method With Importance Sampling 132

8 Randomized Optimization 137
8.1 Stochastic Approximation . 137
8.2 Stochastic Counterpart Method 142
8.3 Simulated Annealing . 145
8.4 Evolutionary Algorithms . 148

8.4.1 Genetic Algorithms . 149
8.4.2 Differential Evolution . 150

8.5 Exercises . 153

9 Cross-Entropy Method 155
9.1 Cross-Entropy Method . 155
9.2 Cross-Entropy Method for Estimation 156
9.3 Cross-Entropy Method for Optimization 159

9.3.1 Combinatorial Optimization 161
9.3.2 Continuous Optimization 163
9.3.3 Constrained Optimization 165
9.3.4 Noisy Optimization . 168

9.4 Exercises . 169

Copyright c© 2011 D.P. Kroese

8 CONTENTS

Copyright c© 2011 D.P. Kroese

Chapter 1

Uniform Random Number
Generation

Any one who considers arithmetical methods of producing random
digits is, of course, in a state of sin.

John von Neumann

This chapter gives an introduction of techniques and algorithms for generat-
ing uniform random numbers. Various empirical tests for randomness are also
provided.

1.1 Random Numbers

At the heart of any Monte Carlo method is a random number generator: a
procedure that produces an infinite stream

U1, U2, U3, . . .
iid∼ Dist

of random variables that are independent and identically distributed (iid) ac-
cording to some probability distribution Dist. When this distribution is the
uniform distribution on the interval (0,1) (that is, Dist = U(0, 1)), the gener-
ator is said to be a uniform random number generator. Most computer
languages already contain a built-in uniform random number generator. The
user is typically requested only to input an initial number, called the seed, and
upon invocation the random number generator produces a sequence of indepen-
dent uniform random variables on the interval (0, 1). In MATLAB, for example,
this is provided by the rand function.

The concept of an infinite iid sequence of random variables is a mathemati-
cal abstraction that may be impossible to implement on a computer. The best
one can hope to achieve in practice is to produce a sequence of “random” num-
bers with statistical properties that are indistinguishable from those of a true
sequence of iid random variables. Although physical generation methods based
on universal background radiation or quantum mechanics seem to offer a stable
source of such true randomness, the vast majority of current random number

Copyright c© 2011 D.P. Kroese

10 Uniform Random Number Generation

generators are based on simple algorithms that can be easily implemented on a
computer. Such algorithms can usually be represented as a tuple (S, f, µ,U , g),
where

• S is a finite set of states,

• f is a function from S to S,

• µ is a probability distribution on S,

• U is the output space; for a uniform random number generator U is
the interval (0, 1), and we will assume so from now on, unless otherwise
specified,

• g is a function from S to U .

A random number generator then has the following structure:

Algorithm 1.1 (Generic Random Number Generator)

1. Initialize: Draw the seed S0 from the distribution µ on S. Set t = 1.

2. Transition: Set St = f(St−1).

3. Output: Set Ut = g(St).

4. Repeat: Set t = t+ 1 and return to Step 2.

The algorithm produces a sequence U1, U2, U3, . . . of pseudorandom num-
bers — we will refer to them simply as random numbers. Starting from a
certain seed, the sequence of states (and hence of random numbers) must re-
peat itself, because the state space is finite. The smallest number of steps taken
before entering a previously visited state is called the period length of the
random number generator.

1.1.1 Properties of a Good Random Number Generator

What constitutes a good random number generator depends on many factors. It
is always advisable to have a variety of random number generators available, as
different applications may require different properties of the random generator.
Below are some desirable, or indeed essential, properties of a good uniform
random number generator:

1. Pass statistical tests: The ultimate goal is that the generator should pro-
duce a stream of uniform random numbers that is indistinguishable from
a genuine uniform iid sequence. Although from a theoretical point of
view this criterion is too imprecise and even infeasible, from a practi-
cal point of view this means that the generator should pass a battery of
simple statistical tests designed to detect deviations from uniformity and
independence. We discuss such tests in Section 1.4.

2. Theoretical support: A good generator should be based on sound math-
ematical principles, allowing for a rigorous analysis of essential proper-
ties of the generator. Examples are linear congruential generators and
multiple-recursive generators discussed in Sections 1.2.1 and 1.2.2.

Copyright c© 2011 D.P. Kroese

1.1 Random Numbers 11

3. Reproducible: An important property is that the stream of random num-
bers is reproducible without having to store the complete stream in mem-
ory. This is essential for testing and variance reduction techniques. Phys-
ical generation methods cannot be repeated unless the entire stream is
recorded.

4. Fast and efficient: The generator should produce random numbers in a
fast and efficient manner, and require little storage in computer memory.
Many Monte Carlo techniques for optimization and estimation require
billions or more random numbers. Current physical generation methods
are no match for simple algorithmic generators in terms of speed.

5. Large period: The period of a random number generator should be ex-
tremely large — on the order of 1050 — in order to avoid problems with
duplication and dependence. Most early algorithmic random number gen-
erators were fundamentally inadequate in this respect.

6. Multiple streams: In many applications it is necessary to run multiple in-
dependent random streams in parallel. A good random number generator
should have easy provisions for multiple independent streams.

7. Cheap and easy: A good random number generator should be cheap and
not require expensive external equipment. In addition, it should be easy
to install, implement, and run. In general such a random number gen-
erator is also more easily portable over different computer platforms and
architectures.

8. Not produce 0 or 1: A desirable property of a random number generator
is that both 0 and 1 are excluded from the sequence of random numbers.
This is to avoid division by 0 or other numerical complications.

1.1.2 Choosing a Good Random Number Generator

Choosing a good random generator is like choosing a new car: for some people
or applications speed is preferred, while for others robustness and reliability
are more important. For Monte Carlo simulation the distributional proper-
ties of random generators are paramount, whereas in coding and cryptography
unpredictability is crucial.

Nevertheless, as with cars, there are many poorly designed and outdated
models available that should be avoided. Indeed several of the standard gener-
ators that come with popular programming languages and computing packages
can be appallingly poor.

Two classes of generators that have overall good performance are:

1. Combined multiple recursive generators, some of which have excellent sta-
tistical properties, are simple, have large period, support multiple streams,
and are relatively fast. A popular choice is L’Ecuyer’s MRG32k3a (see Sec-
tion 1.3), which has been implemented as one of the core generators in
MATLAB (from version 7), VSL, SAS, and the simulation packages SSJ,
Arena, and Automod.

Copyright c© 2011 D.P. Kroese

12 Uniform Random Number Generation

2. Twisted general feedback shift register generators, some of which have very
good equidistributional properties, are among the fastest generators avail-
able (due to their essentially binary implementation), and can have ex-
tremely long periods. A popular choice is Matsumoto and Nishimura’s
Mersenne twister MT19937ar (see Section 1.2.4), which is currently the
default generator in MATLAB.

In general, a good uniform number generator has overall good performance,
in terms of the criteria mentioned above, but is not usually the top performer
over all these criteria. In choosing an appropriate generator it pays to remember
the following.

• Faster generators are not necessarily better (indeed, often the contrary is
true).

• A small period is in general bad, but a larger period is not necessarily
better.

• Good equidistribution is a necessary requirement for a good generator but
not a sufficient requirement.

1.2 Generators Based on Linear Recurrences

The most common methods for generating pseudorandom sequences use simple
linear recurrence relations.

1.2.1 Linear Congruential Generators

A linear congruential generator (LCG) is a random number generator of
the form of Algorithm 1.1, with state St = Xt ∈ {0, . . . ,m−1} for some strictly
positive integer m called the modulus, and state transitions

Xt = (aXt−1 + c) mod m , t = 1, 2, . . . , (1.1)

where the multiplier a and the increment c are integers. Applying the
modulo-m operator in (1.1) means that aXt−1 + c is divided by m, and the
remainder is taken as the value for Xt. Note that the multiplier and incre-
ment may be chosen in the set {0, . . . ,m − 1}. When c = 0, the generator is
sometimes called a multiplicative congruential generator. Most existing
implementations of LCGs are of this form — in general the increment does not
have a large impact on the quality of an LCG. The output function for an LCG
is simply

Ut =
Xt

m
.

Example 1.1 (Minimal Standard LCG) An often-cited LCG is that of
Lewis, Goodman, and Miller, who proposed the choice a = 75 = 16807, c = 0,
and m = 231 − 1 = 2147483647. This LCG passes many of the standard sta-
tistical tests and has been successfully used in many applications. For this

Copyright c© 2011 D.P. Kroese

1.2 Generators Based on Linear Recurrences 13

reason it is sometimes viewed as the minimal standard LCG, against which
other generators should be judged.

Although the generator has good properties, its period (231 − 2) and sta-
tistical properties no longer meet the requirements of modern Monte Carlo
applications.

A comprehensive list of classical LCGs and their properties can be found
on Karl Entacher’s website:

http://random.mat.sbg.ac.at/results/karl/server/

1.2.2 Multiple-Recursive Generators

A multiple-recursive generator (MRG) of order k, is a random number gen-
erator of the form of Algorithm 1.1, with state St = Xt = (Xt−k+1, . . . , Xt)

> ∈
{0, . . . ,m− 1}k for some modulus m and state transitions defined by

Xt = (a1Xt−1 + · · · + akXt−k) mod m , t = k, k + 1, . . . , (1.2)

where the multipliers {ai, i = 1, . . . , k} lie in the set {0, . . . ,m − 1}. The
output function is often taken as

Ut =
Xt

m
.

The maximum period length for this generator is mk − 1, which is obtained
if (a) m is a prime number and (b) the polynomial p(z) = zk −∑k−1

i=1 aiz
k−i is

primitive using modulo m arithmetic. To yield fast algorithms, all but a few of
the {ai} should be 0.

MRGs with very large periods can be implemented efficiently by combining
several smaller-period MRGs (see Section 1.3).

1.2.3 Matrix Congruential Generators

An MRG can be interpreted and implemented as a matrix multiplicative
congruential generator, which is a random number generator of the form of
Algorithm 1.1, with state St = Xt ∈ {0, . . . ,m− 1}k for some modulus m, and
state transitions

Xt = (AXt−1) mod m, t = 1, 2, . . . , (1.3)

where A is an invertible k × k matrix and Xt is a k × 1 vector. The output
function is often taken as

Ut =
Xt

m
, (1.4)

yielding a vector of uniform numbers in (0, 1). Hence, here the output space U
for the algorithm is (0, 1)k. For fast random number generation, the matrix A
should be sparse.

Copyright c© 2011 D.P. Kroese

14 Uniform Random Number Generation

To see that the multiple-recursive generator is a special case, take

A =

0 1 · · · 0
...

...
. . .

...
0 0 . . . 1
ak ak−1 · · · a1

 and Xt =

Xt

Xt+1
...

Xt+k−1

 . (1.5)

Obviously, the matrix multiplicative congruential generator is the k-
dimensional generalization of the multiplicative congruential generator. A sim-
ilar generalization of the multiplicative recursive generator — replacing the
multipliers {ai} with matrices, and the scalars {Xt} with vectors in (1.2) —
yields the class of matrix multiplicative recursive generators.

1.2.4 Modulo 2 Linear Generators

Good random generators must have very large state spaces. For an LCG this
means that the modulus m must be a large integer. However, for multiple
recursive and matrix generators it is not necessary to take a large modulus, as
the state space can be as large as mk. Because binary operations are in general
faster than floating point operations (which are in turn faster than integer
operations), it makes sense to consider random number generators that are
based on linear recurrences modulo 2. A general framework for such random
number generators is to map k-bit state vector Xt = (Xt,1, . . . , Xt,k)

> via a
linear transformation to a w-bit output vector Yt = (Yt,1, . . . , Yt,w)>, from
which the random number Ut ∈ (0, 1) is obtained by bitwise decimation. More
precisely, the procedure is as follows.

Algorithm 1.2 (Generic Linear Recurrence Modulo 2 Generator)

1. Initialize: Draw the seed X0 from the distribution µ on the state space
S = {0, 1}k. Set t = 1.

2. Transition: Set Xt = AXt−1.

3. Output: Set Yt = BXt and return

Ut =
w∑

`=1

Yt,` 2−` .

4. Repeat: Set t = t+ 1 and return to Step 2.

Here, A and B are k × k and w × k binary matrices, respectively, and all
operations are performed modulo 2. In algebraic language, the operations are
performed over the finite field F2, where addition corresponds to the bitwise
XOR operation (in particular, 1 + 1 = 0). The integer w can be thought of as
the word length of the computer (that is, w = 32 or 64). Usually k is taken
much larger than w.

Copyright c© 2011 D.P. Kroese

1.2 Generators Based on Linear Recurrences 15

Example 1.2 (Linear Feedback Shift Register Generator) The Taus-
worthe or linear feedback shift register (LFSR) generator is an MRG of
the form (1.2) with m = 2, but with output function

Ut =
w∑

`=1

Xts+`−1 2−` ,

for some w 6 k and s > 1 (often one takes s = w). Thus, a binary sequence
X0, X1, . . . is generated according to the recurrence (1.2), and the t-th “word”
(Xts, . . . , Xts+w−1)

>, t = 0, 1, . . . is interpreted as the binary representation of
the t-th random number.

This generator can be put in the framework of Algorithm 1.2. Namely, the
state at iteration t is given by the vector Xt = (Xts, . . . , Xts+k−1)

>, and the
state is updated by advancing the recursion (1.2) over s time steps. As a result,
the transition matrix A in Algorithm 1.2 is equal to the s-th power of the “1-
step” transition matrix given in (1.5). The output vector Yt is obtained by
simply taking the first w bits of Xt; hence B = [Iw Ow×(k−w)], where Iw is the
identity matrix of dimension w and Ow×(k−w) the w× (k−w) matrix of zeros.

For fast generation most of the multipliers {ai} are 0; in many cases there
is often only one other non-zero multiplier ar apart from ak, in which case

Xt = Xt−r ⊕Xt−k , (1.6)

where ⊕ signifies addition modulo 2. The same recurrence holds for the states
(vectors of bits); that is,

Xt = Xt−r ⊕ Xt−k ,

where addition is defined componentwise.

The LFSR algorithm derives it name from the fact that it can be imple-
mented very efficiently on a computer via feedback shift registers — binary
arrays that allow fast shifting of bits.

Generalizations of the LFSR generator that all fit the framework of Algo-
rithm 1.2 include the generalized feedback shift register generators and
the twisted versions thereof, the most popular of which are the Mersenne
twisters. A particular instance of the Mersenne twister, MT19937, has become
widespread, and has been implemented in software packages such as SPSS and
MATLAB. It has a huge period length of 219937−1, is very fast, has good equidis-
tributional properties, and passes most statistical tests. The latest version of
the code may be found at

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Two drawbacks are that the initialization procedure and indeed the imple-
mentation itself is not straightforward. Another potential problem is that the
algorithm recovers too slowly from the states near zero. More precisely, after a
state with very few 1s is hit, it may take a long time (several hundred thousand
steps) before getting back to some state with a more equal division between 0s
and 1s.

Copyright c© 2011 D.P. Kroese

16 Uniform Random Number Generation

1.3 Combined Generators

A significant leap forward in the development of random number generators
was made with the introduction of combined generators. Here the output
of several generators, which individually may be of poor quality, is combined,
for example by shuffling, adding, and/or selecting, to make a superior quality
generator.

Example 1.3 (Wichman–Hill) One of the earliest combined generators is
the Wichman–Hill generator, which combines three LCGs:

Xt = (171Xt−1) mod m1 (m1 = 30269) ,

Yt = (172 Yt−1) mod m2 (m2 = 30307) ,

Zt = (170Zt−1) mod m3 (m3 = 30323) .

These random integers are then combined into a single random number

Ut =
Xt

m1
+

Yt

m2
+
Zt

m3
mod 1 .

The period of the sequence of triples (Xt, Yt, Zt) is shown to be (m1 − 1)(m2 −
1)(m3 − 1)/4 ≈ 6.95 × 1012, which is much larger than the individual periods.
Zeisel shows that the generator is in fact equivalent (produces the same output)
as a multiplicative congruential generator with modulus m = 27817185604309
and multiplier a = 16555425264690.

The Wichman–Hill algorithm performs quite well in simple statistical tests,
but since its period is not sufficiently large, it fails various of the more so-
phisticated tests, and is no longer suitable for high-performance Monte Carlo
applications.

One class of combined generators that has been extensively studied is that
of the combined multiple-recursive generators, where a small number
of MRGs are combined. This class of generators can be analyzed theoretically
in the same way as single MRG: under appropriate initialization the output
stream of random numbers of a combined MRG is exactly the same as that of
some larger-period MRG. Hence, to assess the quality of the generator one can
employ the same well-understood theoretical analysis of MRGs. As a result,
the multipliers and moduli in the combined MRG can be searched and chosen
in a systematic and principled manner, leading to random number generators
with excellent statistical properties. An important added bonus is that such
algorithms lead to easy multi-stream generators.

L’Ecuyer has conducted an extensive numerical search and detailed theoret-
ical analysis to find good combined MRGs. One of the combined MRGs that
stood out was MRG32k3a, which employs two MRGs of order 3,

Xt = (1403580Xt−2 − 810728Xt−3) mod m1 (m1 = 232 − 209 = 4294967087) ,

Yt = (527612Yt−1 − 1370589Yt−3) mod m2 (m2 = 232 − 22853 = 4294944443) ,

Copyright c© 2011 D.P. Kroese

1.4 Tests for Random Number Generators 17

and whose output is

Ut =

Xt − Yt +m1

m1 + 1
if Xt 6 Yt ,

Xt − Yt

m1 + 1
if Xt > Yt .

The period length is approximately 3×1057. The generator MRG32k3a passes
all statistical tests in today’s most comprehensive test suit TestU01 (see also
Section 1.4) and has been implemented in many software packages, including
MATLAB, Mathematica, Intel’s MKL Library, SAS, VSL, Arena, and Automod.
It is also the core generator in L’Ecuyer’s SSJ simulation package, and is eas-
ily extendable to generate multiple random streams. An implementation in
MATLAB is given below.

%MRG32k3a.m

m1=2^32-209; m2=2^32-22853;

ax2p=1403580; ax3n=810728;

ay1p=527612; ay3n=1370589;

X=[12345 12345 12345]; % Initial X

Y=[12345 12345 12345]; % Initial Y

N=100; % Compute the sequence for N steps

U=zeros(1,N);

for t=1:N

Xt=mod(ax2p*X(2)-ax3n*X(3),m1);

Yt=mod(ay1p*Y(1)-ay3n*Y(3),m2);

if Xt <= Yt

U(t)=(Xt - Yt + m1)/(m1+1);

else

U(t)=(Xt - Yt)/(m1+1);

end

X(2:3)=X(1:2); X(1)=Xt; Y(2:3)=Y(1:2); Y(1)=Yt;

end

Different types of generators can also be combined. For example, Marsaglia’s
KISS99 (keep it simple stupid) generator combines two shift register generators
with an LCG.

1.4 Tests for Random Number Generators

The quality of random number generators can be assessed in two ways. The
first is to investigate the theoretical properties of the random number generator.
Such properties include the period length of the generator and various measures

Copyright c© 2011 D.P. Kroese

18 Uniform Random Number Generation

of uniformity and independence. This type of random number generator testing
is called theoretical, as it does not require the actual output of the generator
but only its algorithmic structure and parameters. Powerful theoretical tests
are only feasible if the generators have a sufficiently simple structure, such
as those of linear congruential and multiple-recursive methods and combined
versions thereof.

A second type of test involves the application of a battery of statistical tests
to the output of the generator, with the objective to detect deviations from uni-
formity and independence. Such type of tests are said to be empirical. In this
course we consider only empirical tests. The ultimate goal remains to find uni-
form random number generators whose output is statistically indistinguishable
(within reasonable computational time) from a sequence of iid uniform random
variables. Hence, any candidate generator should pass a wide range of statisti-
cal tests that examine uniformity and independence. The general structure of
such tests is often of the following form.

Algorithm 1.3 (Two-Stage Empirical Test for Randomness) Suppose
that U = {Ui} represents the output stream of the uniform random generator.
Let H0 be the hypothesis that the {Ui} are iid from a U(0, 1) distribution. Let
Z be some deterministic function of U.

1. Generate N independent copies Z1, . . . , ZN of Z and evaluate a test statis-
tic T = T (Z1, . . . , ZN) for testing H0 versus the alternative that H0 is
not true. Suppose that under H0 the test statistic T has distribution or
asymptotic (for large N) distribution Dist0.

2. Generate K independent copies T1, . . . , TK of T and perform a goodness
of fit test to test the hypothesis that the {Ti} are iid from Dist0.

Such a test procedure is called a two-stage or second-order statistical
test. The first stage corresponds to an ordinary statistical test, such as a χ2

goodness of fit test, and the second stage combines K such tests by means of
another goodness of fit test, such as the Kolmogorov–Smirnov or Anderson–
Darling test. The following example demonstrates the procedure.

Example 1.4 (Binary Rank Test for the drand48 Generator) The de-
fault random number generator in the C library is drand48, which implements
an LCG with a = 25214903917, m = 248, and c = 11. We wish to examine
if the output stream of this generator passes the binary rank test described in
Section 1.4.10. For this test, the sequence U1, U2, . . . is first transformed to a
binary sequence B1, B2, . . ., for example, by taking Bi = I{Ui61/2}, and then the
{Bi} are arranged in a binary array, say with 32 rows and 32 columns. The first
row of the matrix is B1, . . . , B32, the second row is B33, . . . B64, etc. Under H0

the distribution of the rank (in modulo 2 arithmetic) R of this random matrix
is given in (1.9). We generate N = 200 copies of R, and divide these into three
classes: R 6 30, R = 31, and R = 32. The expected number of ranks in these
classes is by (1.9) equal to E1 = 200 × 0.1336357, E2 = 200 × 0.5775762, and

Copyright c© 2011 D.P. Kroese

1.4 Tests for Random Number Generators 19

E3 = 200 × 0.2887881. This is compared with the observed number of ranks
O1, O2, and O3, via the χ2 goodness of fit statistic

T =
3∑

i=1

(Oi − Ei)
2

Ei
. (1.7)

Under H0, the random variable T approximately has a χ2
2 distribution (the

number of degrees of freedom is the number of classes, 3, minus 1). This
completes the first stage of the empirical test.

In the second stage, K = 20 replications of T are generated. The test statis-
tics for the χ2 test were 2.5556, 11.3314, 146.2747, 24.9729, 1.6850, 50.7449,
2.6507, 12.9015, 40.9470, 8.3449, 11.8191, 9.4470, 91.1219, 37.7246, 18.6256,
1.2965, 1.2267, 0.8346, 23.3909, 14.7596.

Notice that the null hypothesis would not be rejected if it were based only
on the first outcome, 2.5556, as the p-value, PH0(T > 2.5556) ≈ 0.279 is quite
large (and therefore the observed outcome is not uncommon under the null
hypothesis). However, other values, such as 50.7449 are very large and lead to
very small p-values (and a rejection of H0). The second stage combines these
findings into a single number, using a Kolmogorov–Smirnov test, to test whether
the distribution of T does indeed follow a χ2

2 distribution. The empirical cdf
(of the 20 values for T) and the cdf of the χ2

2 distribution are depicted in
Figure 1.1. The figure shows a clear disagreement between the two cdfs. The
maximal gap between the cdfs is 0.6846 in this case, leading to a Kolmogorov–
Smirnov test statistic value of

√
20 × 0.6846 ≈ 3.06, which gives a p-value of

around 3.7272 × 10−9, giving overwhelming evidence that the output sequence
of the drand48 generator does not behave like an iid U(0, 1) sequence.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

Empirical

χ2
2

Figure 1.1: Kolmogorov–Smirnov test for the binary rank test using the
drand48 generator.

By comparison, we repeated the same procedure using the default MATLAB

generator. The result of the Kolmogorov–Smirnov test is given in Figure 1.2. In
this case the empirical and theoretical cdfs have a close match, and the p-value

Copyright c© 2011 D.P. Kroese

20 Uniform Random Number Generation

is large, indicating that the default MATLAB generator passes the binary rank
test.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

Empirical

χ2
2

Figure 1.2: Kolmogorov–Smirnov test for the binary rank test using the default
MATLAB random number generator (in this case the Mersenne twister).

Today’s most complete library for the empirical testing of random number
generators is the TestU01 software library by L’Ecuyer and Simard.

We conclude with a selection of empirical tests. Below, U0, U1, . . . is the
original test sequence. The null hypothesis H0 is that {Ui} ∼iid U(0, 1). Other
random variables and processes derived from the {Ui} are:

• Y0, Y1, . . . , with Yi = bmUic, i = 0, 1, . . ., for some integer (size) m >

1. Under H0 the {Yi} are iid with a discrete uniform distribution on
{0, 1, . . . ,m− 1}.

• U0,U1, . . . , with Ui = (Uid, . . . , Uid+d−1), i = 0, 1, . . . for some dimen-
sion d > 1. Under H0 the {Ui} are independent random vectors, each
uniformly distributed on the d-dimensional hypercube (0, 1)d.

• Y0,Y1, . . . , with Yi = (Yid, . . . , Yid+d−1), i = 0, 1, . . . for some dimension
d > 1. Under H0 the {Yi} are independent random vectors, each from the
discrete uniform distribution on the d-dimensional set {0, 1, . . . ,m− 1}d.

1.4.1 Equidistribution (or Frequency) Tests

This is to test whether the {Ui} have a U(0, 1) distribution. Two possible
approaches are:

1. Apply a Kolmogorov–Smirnov test to ascertain whether the empirical cdf
of U0, . . . , Un−1 matches the theoretical cdf of the U(0, 1) distribution;
that is, F (x) = x, 0 6 x 6 1.

2. Apply a χ2 test on Y0, . . . , Yn−1, comparing for each k = 0, . . . ,m −
1 the observed number of occurrences in class k, Ok =

∑n−1
i=0 I{Yi=k},

Copyright c© 2011 D.P. Kroese

1.4 Tests for Random Number Generators 21

with the expected number Ek = n/m. Under H0 the χ2 statistic (1.7)
asymptotically has (as n→ ∞) a χ2

m−1 distribution.

1.4.2 Serial Tests

This is to test whether successive values of the random number generator are
uniformly distributed. More precisely, generate vectors Y0, . . . ,Yn−1 for a given
dimension d and size m. Count the number of times that the vector Y satisfies
Y = y, for y ∈ {0, . . . ,m − 1}d, and compare with the expected count n/md

via a χ2 goodness of fit test. It is usually recommended that each class should
have enough samples, say at least 5 in expectation, so that n > 5md. Typically,
d is small, say 2 or 3.

1.4.3 Gap Tests

Let T1, T2, . . . denote the times when the output process U0, U1, . . . , visits a
specified interval (α, β) ⊂ (0, 1), and let Z1, Z2, . . . denote the gap lengths
between subsequent visits; that is, Zi = Ti −Ti−1 −1, i = 1, 2, . . . , with T0 = 0.
Under H0, the {Zi} are iid with a Geom0(p) distribution, with p = β − α; that
is,

P(Z = z) = p (1 − p)z, z = 0, 1, 2,

The gap test assesses this hypothesis by tallying the number of gaps that fall
in certain classes. In particular, a χ2 test is performed with classes Z = 0, Z =
1, . . . , Z = r − 1, and Z > r, with probabilities p(1 − p)z, z = 0, . . . , r − 1 for
the first r classes and (1 − p)r for the last class. The integers n and r should
be chosen so that the expected number per class is > 5.

When α = 0 and β = 1/2, this is sometimes called runs above the mean,
and when α = 1/2 and β = 1 this is sometimes called runs below the mean.

1.4.4 Poker or Partition Tests

Consider the sequence of d-dimensional vectors Y1, . . . ,Yn, each taking values
in {0, . . . ,m − 1}d. For such a vector Y, let Z be the number of distinct
components; for example if Y = (4, 2, 6, 4, 2, 5, 1, 4), then Z = 5. Under H0, Z
has probability distribution

P(Z = z) =

m(m− 1) · · · (m− z + 1)

{
d

z

}

md
, z = 1, . . . ,min{d,m} . (1.8)

Here,
{

d
z

}
represents the Stirling number of the second kind, which gives

the number of ways a set of size d can be partitioned into z non-empty subsets.
For example,

{
4
2

}
= 7. Such Stirling numbers can be expressed in terms of

binomial coefficients as
{
d

z

}
=

1

z!

z∑

k=0

(−1)z−k

(
z

k

)
kd .

Using the above probabilities, the validity of H0 can now be tested via a χ2

test.

Copyright c© 2011 D.P. Kroese

22 Uniform Random Number Generation

1.4.5 Coupon Collector’s Tests

Consider the sequence Y1, Y2, . . ., each Yi taking values in {0, . . . ,m − 1}. Let
T be the first time that a “complete” set {0, . . . ,m − 1} is obtained among
Y1, . . . , YT . The probability that (Y1, . . . , Yt) is incomplete is, by (1.8), equal to
P(T > t) = 1 −m!

{
t
m

}
/mt, so that

P(T = t) =
m!

mt

{
t− 1

m− 1

}
, t = m,m+ 1,

The coupon collector’s test proceeds by generating successive times
T1, . . . , Tn and applying a χ2 goodness of fit test using classes T = t, t =
m, . . . , r − 1 and T > r − 1, with probabilities given above.

1.4.6 Permutation Tests

Consider the d-dimensional random vector U = (U1, . . . , Ud)
>. Order the com-

ponents from smallest to largest and let Π be the corresponding ordering of
indices. Under H0,

P(Π = π) =
1

d!
for all permutations π .

The permutation test assesses this uniformity of the permutations via a χ2

goodness of fit test with d! permutation classes, each with class probability
1/d!.

1.4.7 Run Tests

Consider the sequence U1, U2, Let Z be the run-up length; that is, Z =
min{k : Uk+1 < Uk}. Under H0, P(Z > z) = 1/z!, so that

P(Z = z) =
1

z!
− 1

(z + 1)!
, z = 1, 2,

In the run test, n of such run lengths Z1, . . . , Zn are obtained, and a χ2 test
is performed on the counts, using the above probabilities. It is important to
start from fresh after each run. In practice this is done by throwing away the
number immediately after a run. For example the second run is started with
UZ1+2 rather than UZ1+1, since the latter is not U(0, 1) distributed, as it is by
definition smaller than UZ1 .

1.4.8 Maximum-of-d Tests

Generate U1, . . . ,Un for some dimension d. For each U = (U1, . . . , Ud)
> let

Z = max{U1, . . . , Ud} be the maximum. Under H0, Z has cdf

F (z) = P(Z 6 z) = zd, 0 6 z 6 1 .

Apply the Kolmogorov–Smirnov test to Z1, . . . , Zn with distribution function
F (z). Another option is to define Wk = Zd

k and apply the equidistribution test
to W1, . . . ,Wn.

Copyright c© 2011 D.P. Kroese

1.4 Tests for Random Number Generators 23

1.4.9 Collision Tests

Consider a sequence of d-dimensional vectors Y1, . . . ,Yb, each taking values in
{0, . . . ,m−1}d. There are r = md possible values for each Y. Typically, r � b.
Think of throwing b balls into r urns. As there are many more urns than balls,
most balls will land in an empty urn, but sometimes a “collision” occurs. Let C
be the number of such collisions. Under H0 the probability of c collisions (that
is, the probability that exactly b− c urns are occupied) is given, as in (1.8), by

P(C = c) =
r(r − 1) · · · (r − (b− c) + 1)

{
b

b−c

}

rb
, c = 0, . . . , b− 1 .

A χ2 goodness of fit test can be applied to compare the empirical distribution of
n such collision values, C1, . . . , Cn, with the above distribution under H0. One
may need to group various of the classes C = c in order to obtain a sufficient
number of observations in each class.

1.4.10 Rank of Binary Matrix Tests

Transform the sequence U1, U2, . . . to a binary sequence B1, B2, . . . and arrange
these in a binary array of dimension r × c (assume r 6 c). Under H0 the
distribution of the rank (in modulo 2 arithmetic) Z of this matrix is given by

P(Z = z) = 2(c−z)(z−r)
z−1∏

i=0

(1 − 2i−c)(1 − 2i−r)

1 − 2i−z
, z = 0, 1, . . . , r . (1.9)

This can be seen, for example, by defining a Markov chain {Zt, t = 0, 1, 2, . . .},
starting at 0 and with transition probabilities pi,i = 2−c+i and pi,i+1 = 1−2−c+i,
i = 0, . . . , r. The interpretation is that Zt is the rank of a t × c matrix which
is constructed from a (t− 1) × c matrix by adding a 1 × c random binary row;
this row is either dependent on the t − 1 previous rows (rank stays the same)
or not (rank is increased by 1). The distribution of Zr corresponds to (1.9).

For c = r = 32 we have

P(Z 6 30) ≈ 0.1336357

P(Z = 31) ≈ 0.5775762

P(Z = 32) ≈ 0.2887881 .

These probabilities can be compared with the observed frequencies, via a χ2

goodness of fit test.

1.4.11 Birthday Spacings Tests

Consider the sequence Y1, . . . , Yn taking values in {0, . . . ,m − 1}. Sort the
sequence as Y(1) 6 . . . 6 Y(n) and define spacings S1 = Y(2) − Y(1), . . . , Sn−1 =
Y(n) − Y(n−1), and Sn = Y(1) +m− Y(n). Sort the spacings and denote them as
S(1) 6 . . . 6 S(n).

Copyright c© 2011 D.P. Kroese

24 Uniform Random Number Generation

Let R be the number of times that we have S(j) = S(j−1) for j = 1, . . . , n.
The distribution of R depends on m and n, but for example when m = 225 and
n = 512, we have:

P(R = 0) ≈ 0.368801577

P(R = 1) ≈ 0.369035243

P(R = 2) ≈ 0.183471182

P(R > 3) ≈ 0.078691997 .

The idea is to repeat the test many times, say N = 1000, and perform
a χ2 test on the collected data. Asymptotically, for large n, R has a Poi(λ)
distribution, with λ = n3/(4m), where λ should not be large. An alternative
is to use N = 1 and base the decision whether to reject H0 or not on the
approximate p-value P(R > r) ≈ 1−∑r−1

k=0 e−λλk/k! (rejectH0 for small values).
As a rule of thumb the Poisson approximation is accurate when m > (4Nλ)4;
that is, Nn3 6 m5/4.

1.5 Exercises

1. Implement the C random number generator drand48 (see Example 1.4).
Structure your MATLAB program as follows:

function u = drand48(seed)

persistent x %the state variable x is kept in memory

a =

m =

c =

if (nargin ==0)

x =

else

x =

end

u =

2. Using the above implementation, generate N = 100 “random” numbers
u1, u2, . . . , uN and plot the points (u1, u2), . . . , (uN−1, uN) in the unit square.
Do the points look randomly distributed? Do the same for N = 1000.

3. Go to Karl Entacher’s “classical LCGs” page: random.mat.sbg.ac.at/

results/karl/server/node4.html. Choose a random number generator from
this page and carry out a two-stage empirical test that shows that the output
sequence does not behave like an iid U(0, 1) sequence.

Copyright c© 2011 D.P. Kroese

Chapter 2

Random Variable Generation

Generating a random vector X from an arbitrary distribution in some Euclidean
space Rd invariably involves the following two steps:

1. Draw uniform random numbers U1, . . . , Uk, for some k = 1, 2,

2. Return X = g(U1, . . . , Uk), where g is some function from (0, 1)k to Rd.

The generation of uniform random numbers in the first step is discussed in
Chapter 1. The present chapter considers how the second step is imple-
mented. In Section 2.1 we consider various general methods for generating
one-dimensional random variables and in Section 2.2 we consider methods for
generation of multivariate random variables. Section 2.3 is about generating
uniformly in and on a hypersphere. Section 2.4 discusses the uniform genera-
tion of permutations. Specific generation algorithms for common discrete and
continuous distributions are given in Chapter 3. ☞ 45

All generation methods in this chapter are exact, in the sense that each
generated random variable has exactly the required distribution (assuming the
uniform number generation and computer arithmetic are exact). For an in-
creasing number of Monte Carlo applications exact random variable generation
is difficult or impossible to achieve, and approximate generation methods are
called for, the most prominent being Markov chain Monte Carlo methods; see
Chapter 5. ☞ 87

2.1 Generic Algorithms Based on Common Trans-
formations

Many common distributions and families of distributions are related to each
other via simple transformations. Such relations lead to general rules for gen-
erating random variables. For example, generating random variables from any
location–scale family of distributions can be carried out by generating ran-
dom variables from the base distribution of the family, followed by an affine
transformation. A selection of common transformations is discussed in Sec-
tion 2.1.2. Universal procedures for generating random variables include the
inverse-transform method (Section 2.1.1), the alias method (Section 2.1.4), the

Copyright c© 2011 D.P. Kroese

26 Random Variable Generation

composition method (Section 2.1.2.5), and the acceptance–rejection method
(Section 2.1.5).

2.1.1 Inverse-Transform Method

Let X be a random variable with cdf F . Since F is a nondecreasing function,
the inverse function F−1 may be defined as

F−1(y) = inf{x : F (x) > y} , 0 6 y 6 1 . (2.1)

Let U ∼ U(0, 1). The cdf of the inverse transform F−1(U) is given by

P(F−1(U) 6 x) = P(U 6 F (x)) = F (x) . (2.2)

Thus, to generate a random variable X with cdf F , draw U ∼ U(0, 1) and
set X = F−1(U). This leads to the following general method, illustrated in
Figure 2.1, for generating from an arbitrary cdf F .

0

1

U

X

F (x)

x

Figure 2.1: Inverse-transform method.

Algorithm 2.1 (Inverse-Transform Method)

1. Generate U ∼ U(0, 1).

2. Return X = F−1(U).

Example 2.1 (Illustration of the Inverse-Transform Method)
Generate a random variable from the pdf

f(x) =

{
2x, 0 6 x 6 1

0, otherwise.
(2.3)

The cdf F is defined by F (x) =
∫ x
0 2y dy = x2, 0 6 x 6 1, the inverse function

of which is given by F−1(u) =
√
u for 0 6 u 6 1. Therefore, to generate a

random variable X from the pdf (2.3), first generate a random variable U from
U(0, 1), and then take its square root.

Copyright c© 2011 D.P. Kroese

2.1 Generic Algorithms Based on Common Transformations 27

In general, the inverse-transform method requires that the underlying cdf,
F , exists in a form for which the corresponding inverse function F−1 can be
found analytically or algorithmically. Applicable distributions are, for example,
the exponential, uniform, and Cauchy distributions. Unfortunately, for many
other probability distributions, it is either impossible or difficult to find the
inverse transform, that is, to solve

F (x) =

∫ x

−∞
f(t) dt = u ,

with respect to x. Even in the case where F−1 exists in an explicit form, the
inverse-transform method may not necessarily be the most efficient random
variable generation method.

The inverse-transform method applies to both absolutely continuous and
discrete distributions. For a discrete random variable X taking values x1 <
x2 < . . . with probabilities p1, p2, . . ., where

∑
i pi = 1, the cdf is a step function,

as illustrated in Figure 2.2.

x

F (x)

x1 x2 x3 x5

p1

{ p2{
p3{

p4

}
p5

1

0

X

U

Figure 2.2: Inverse-transform method for a discrete random variable.

For the discrete case the inverse-transform method can be written as follows.

Algorithm 2.2 (Discrete Inverse-Transform Method)

1. Generate U ∼ U(0, 1).

2. Find the smallest positive integer k such that F (xk) > U , and return
X = xk.

Example 2.2 (Discrete Inverse-Transform Implementation) Suppose
we wish to draw N = 105 independent copies of a discrete random variable
taking values 1, . . . , 5 with probabilities 0.2, 0.3, 0.1, 0.05, 0.35, respectively.
The following MATLAB program implements the inverse transform method to
achieve this, and records the frequencies of occurrences of 1, . . . , 5.

Copyright c© 2011 D.P. Kroese

28 Random Variable Generation

%discIT.m

p = [0.2,0.3,0.1,0.05,0.35];

N = 10^5;

x = zeros(N,1);

for i=1:N

x(i) = min(find(rand<cumsum(p))); %draws from p

end

freq = hist(x,1:5)/N

Note that cumsum(p) corresponds to the vector of cdf values
(F (1), . . . , F (5)). By applying the function find first and then min, one finds
the smallest index k such that F (k) > rand, where rand presents a uniform ran-
dom number. A faster generation program, which uses the function histc(x,e)

to efficiently count the number of values in a vector x that fall between the el-
ements of a vector e, is given next.

%discinvtrans.m

p = [0.2,0.3,0.1,0.05,0.35];

N = 10^5;

[dummy,x]=histc(rand(1,N),[0,cumsum(p)]);

freq = hist(x,1:5)/N

2.1.2 Other Transformation Methods

Many distributions used in Monte Carlo simulation are the result of simple
operations on random variables. We list some of the main examples.

2.1.2.1 Affine Transformation

Let X = (X1, . . . , Xn)> be a random vector, A an m × n matrix, and b an
m× 1 vector. The m× 1 random vector

Z = AX + b

is said to be an affine transformation of X. If X has an expectation vector
µX, then the expectation vector of Z is µZ = AµX + b. If X has a covariance
matrix ΣX, then the covariance matrix of Z is ΣZ = A ΣX A>. Finally, if A is
an invertible n× n matrix and X has a pdf fX, then the pdf of Z is given by

fZ(z) =
fX(A−1(z − b))

|det(A)| , z ∈ R
n ,

where |det(A)| denotes the absolute value of the determinant of A.

Copyright c© 2011 D.P. Kroese

2.1 Generic Algorithms Based on Common Transformations 29

−5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

x

f
(x

) Base pdf

µ = −2, σ = 1/2

µ = 4, σ = 2

Figure 2.3: A location–scale family of pdfs.

2.1.2.2 Location–Scale Family

A family of continuous distributions with pdfs {f(x;µ, σ), µ ∈ R, σ > 0} of the
form

f(x;µ, σ) =
1

σ
f̊

(
x− µ

σ

)
, x ∈ R (2.4)

is called a location–scale family with base (or standard) pdf f̊(x). Parameter
µ is called the location and σ is called the scale. Families for which (2.4) holds
with µ = 0 are called scale families. Families for which (2.4) holds with σ = 1
are called location families.

In a location–scale family the graph of the pdf f(·;µ, σ) has the same shape
as that of f̊(·) but is shifted over a distance µ and scaled by a factor σ, as
illustrated in Figure 2.3.

Location–scale families of distributions arise from the affine transformation

Z = µ+ σX ,

where X is distributed according to the base or “standard” pdf of the family.
In particular, if X ∼ f̊ ≡ f(·; 0, 1), then

µ+ σX ∼ f(·;µ, σ) .

Thus, to generate a random variable from a location–scale family of pdfs, first
generate a random variable from the base pdf and then apply an affine trans-
formation to that random variable.

Example 2.3 (Normal Distribution and Location–Scale) A typical ex-
ample of a location–scale family is the normal family of distributions {N(µ, σ2)}
with location parameter µ and scale parameter σ. Here ☞ 53

Copyright c© 2011 D.P. Kroese

30 Random Variable Generation

f(x;µ, σ) =
1

σ
f̊

(
x− µ

σ

)
=

1√
2πσ2

e−
1
2

(x−µ)2

σ2 ,

and f̊(x) = (2π)−1/2 e−x2/2 is the base pdf. Hence, to draw Z ∼ N(µ, σ2), first
draw X ∼ N(0, 1) and then return Z = µ + σX. In MATLAB, drawing from
the standard normal distribution is implemented via the function randn. For
example, the following MATLAB program draws 105 samples from N(4, 9) and
plots the corresponding histogram.

X = randn(1,10^5); Z = 4 + 3*X; hist(Z,100)

2.1.2.3 Reciprocation

Another common transformation is inversion or reciprocation. Specifically, if
X is a univariate random variable, then the inverse or reciprocal of X is

Z =
1

X
.

If X has pdf fX , then Z has pdf

fZ(z) =
fX(z−1)

z2
, z ∈ R . (2.5)

Distributions obtained in this way are called inverted or inverse distribu-
tions.

Example 2.4 (Inverse-Gamma Distribution via Reciprocation) The
inverse-gamma distribution, denoted by InvGamma(α, λ), has pdf

fZ(z;α, λ) =
λαz−α−1e−λz−1

Γ(α)
, z > 0 ,

which is of the form (2.5), with fX the pdf of the Gamma(α, λ) distribution. To☞ 51
generate a random variable Z ∼ InvGamma(α, λ), draw X ∼ Gamma(α, λ) and
return Z = 1/X.

2.1.2.4 Truncation

Let DistA and DistB be two distributions on sets A and B ⊂ A , respectively.
Let X ∼ DistA and Z ∼ DistB. If the conditional distribution of X given
X ∈ B coincides with the distribution of Z (that is, DistB), then the latter
distribution is said to be the truncation of DistA to B. In particular, if fX is
the pdf of X, then the pdf of Z is (in the continuous case)

fZ(z) =
fX(z)∫

B
fX(x) dx

, z ∈ B .

Copyright c© 2011 D.P. Kroese

2.1 Generic Algorithms Based on Common Transformations 31

In the continuous univariate case, the truncation of a pdf f(x) to an interval
[a, b] gives the pdf

fZ(z) =
f(z)

∫ b
a f(x) dx

, a 6 z 6 b ,

and in the discrete case we replace the integral with a sum. In terms of cdfs we
have:

FZ(z) =
F (z) − F (a−)

F (b) − F (a−)
, a 6 z 6 b , (2.6)

where F (a−) = limx↑a F (x). To generate random variables from a truncated
distribution on [a, b] one can simply use the acceptance–rejection method (see
Section 2.1.5) by generating X ∼ F until X ∈ [a, b]. When the generation of
X can be readily performed via the inverse-transform method, a more direct
approach can be taken. In particular, the inverse of (2.6) yields the following
inverse-transform method.

Algorithm 2.3 (Truncation via the Inverse-Transform Method)

1. Generate U ∼ U(0, 1).

2. Return Z = F−1(F (a−) + U(F (b) − F (a−))).

Note that the only difference with the inverse-transform method is that
in Step 2 the argument of F−1 is uniformly distributed on the interval
(F (a−), F (b)) rather than on (0, 1).

Example 2.5 (Truncated Exponential Generator) Consider the pdf of
the Exp(1) distribution truncated to the interval [0, 2]: ☞ 51

fZ(z) =
e−z

1 − e−2
, 0 6 z 6 2 . (2.7)

The inverse of the cdf of the Exp(1) distribution is F−1(u) = − ln(1 − u), so
that

Z = − ln(1 + U(e−2 − 1)) ∼ fZ .

The following MATLAB program provides an implementation for generating 105

samples from this truncated distribution and plotting the corresponding his-
togram.

%truncexp.m

U= rand(1,10^5); Z = -log(1 + U *(exp(-2) - 1)); hist(Z,100)

Example 2.6 (Truncated Normal Generator) Consider the N(µ, σ2) pdf
truncated to the interval [a, b]:

fZ(z) =
1

σ C
ϕ

(
z − µ

σ

)
, a 6 z 6 b ,

Copyright c© 2011 D.P. Kroese

32 Random Variable Generation

where C = Φ
(b−µ

σ

)
−Φ
(a−µ

σ

)
, and ϕ and Φ are the pdf and cdf of the N(0, 1) dis-

tribution, respectively. The following MATLAB function implements the inverse-
transform method.

function out=normt(mu,sig,a,b)

pb=normcdf((b-mu)./sig);

pa=normcdf((a-mu)./sig);

C=pb-pa;

out=mu+sig.*norminv(C.*rand(size(mu))+pa);

Example 2.7 (Sampling from the Tail of a Normal Distribution)
Consider the problem of sampling from the truncated normal pdf

fZ(z) =
ϕ(z) I{z>a}

Φ(−a) ,

where the truncation point a > 0 is large, say a > 10. A straightforward
implementation of the inverse-transform method gives:

Z = Φ−1(Φ(a) + U (1 − Φ(a))), U ∼ U[0, 1] .

However, this approach is numerically unstable, and in most computer imple-
mentations one obtains infinity for the value of Z or an error message when
a > 6.4. A theoretically equivalent but more numerically stable generator is:

Z = −Φ−1(U Φ(−a)), U ∼ U[0, 1] .

This generator works well for values of a up to a = 37. However, it still breaks
down in MATLAB for values of a > 37. The improved reliability is due to the
fact that it is easier to approximate Φ−1 in the left tail than in the right tail.
This example shows that Algorithm 2.3 should be used with caution and is not
prescriptive for all problems.

2.1.2.5 Composition Method

Of great practical importance are distributions that are probabilistic mixtures
of other distributions. Let T be an index set and {Ht, t ∈ T } be a collection
of cdfs (possibly multidimensional). Suppose that G is the cdf of a distribution
on T . Then

F (x) =

∫

T

Ht(x) dG(t) ,

is again a cdf and the corresponding distribution is called a mixture distribu-
tion or simply mixture, with mixing components {Ht, t ∈ T }. It is useful
to think of G as the cdf of a random variable T and Ht as the conditional cdf
of a random variable Xt given T = t. Then, F is cdf of the random variable
XT . In other words, if T ∼ G and Xt ∼ Ht, then X = XT has cdf F . This
yields the following generator.

Copyright c© 2011 D.P. Kroese

2.1 Generic Algorithms Based on Common Transformations 33

Algorithm 2.4 (Composition Method Generator)

1. Generate the random variable T according to the cdf G.

2. Given T = t, generate X from the cdf Ht.

In many applications G is a distribution on {1, . . . , n} for some strictly posi-
tive integer n, in which case the mixture cdf is of the form F (x) =

∑n
t=1 pt Ft(x)

for some collection of cdfs {Ft} and probabilities {pt} summing to 1. Denoting
the corresponding pdfs by {ft}, the pdf f of the finite mixture is given by

f(x) =
n∑

t=1

pt ft(x) . (2.8)

Example 2.8 (Mixture of Normals) We wish to draw samples from a mix-
ture of normal pdfs. Specifically, suppose that the pdf from which to draw has
the form (2.8) with n = 3 and (p1, p2, p3) = (0.2, 0.4, 0.4), and suppose that the
means and standard deviations of the normal pdfs are given by µ = (−0.5, 1, 2)
and σ = (0.5, 0.4, 2). A useful shorthand notation for this distribution is

0.2 N(−0.5, 0.52) + 0.4N(1, 0.42) + 0.4 N(2, 22) . (2.9)

A graph of the corresponding pdf is given as the base pdf in Figure 2.3. The fol-
lowing MATLAB code implements the composition method and plots a histogram
of the generated data.

%mixturefin.m

p = [0.2, 0.4, 0.4];

mu = [-0.5, 1, 2];

sigma = [0.5, 0.4, 2];

N = 10^5;

[dummy,t]=histc(rand(1,N),[0,cumsum(p)]); % draw from p

x = randn(1,N).*sigma(t) + mu(t); % draw a normal r.v.

hist(x,200) % make a histogram of the data

Example 2.9 (Composition Method in Bayesian Inference) Composi-
tion methods appear often in Bayesian analysis. As an example, consider the
following Bayesian model for a coin toss experiment. Let θ (random) denote
the probability of success (heads) and let X be the number of successes in n
tosses. Define the joint distribution of X and θ via the hierarchical model

θ ∼ Beta(α, β) prior distribution,

(X | θ) ∼ Bin(n, θ) likelihood distribution

for some given α > 0 and β > 0. Using Bayesian notation, we can write for the
pdf of X:

f(x) =

∫
f(x | θ) f(θ) dθ, x = 0, . . . , n ,

Copyright c© 2011 D.P. Kroese

34 Random Variable Generation

where f(θ) is the pdf of the Beta(α, β) distribution and f(x | θ) is the pdf of
the Bin(n, θ) distribution. Note that the distribution of X is a continuous
mixture. The mechanism for simulating samples from this distribution using
the composition method is given precisely in the Bayesian hierarchical model:
first draw θ from Beta(α, β), and then, given θ, draw X from Bin(n, θ).

2.1.2.6 Polar Transformation

The polar method is based on the polar coordinate transformation X =
R cos Θ, Y = R sinΘ, where Θ ∼ U(0, 2π) and R ∼ fR are independent. Using
standard transformation rules it follows that the joint pdf of X and Y satisfies

fX,Y (x, y) =
fR(r)

2πr
,

with r =
√
x2 + y2, so that

fX(x) =

∫ ∞

0

fR(
√
x2 + y2)

π
√
x2 + y2

dy .

For example, if fR(r) = r e−r2/2, then fX(x) = e−x2/2/
√

2π. Note that in this
case the pdf of R is the same as that of

√
2E with E ∼ Exp(1). Equivalently,

R has the same distribution as
√
−2 lnU with U ∼ U(0, 1). These observa-

tions lead to the Box–Muller method for generating standard normal random☞ 54
variables.

Interesting relationships between distributions can be obtained from a
slight modification of the polar method. Specifically, suppose R ∈ [0,∞)
and Z1, Z2 ∼iid N(0, 1) are independent random variables. Then, (X1, X2) =
R (Z1, Z2) = (RZ1, RZ2) has a radially symmetric pdf with radius distributed
according to the distribution of R

√
Z2

1 + Z2
2 , or, equivalently, according to the

distribution of R
√

2E, where E ∼ Exp(1) is independent of R. For some choices
of R the pdf of R

√
2E is easy, leading to simple generation algorithms for X1.

2.1.3 Table Lookup Method

One of the easiest and fastest general methods for generating discrete random
variables is Marsaglia’s table lookup method.

Algorithm 2.5 (Table Lookup Method)

1. Draw U ∼ U(0, 1).

2. Set I = dUne.

3. Return X = aI .

Here (a1, . . . , an) is a predetermined table of numbers or, more generally, objects
such as vectors, trees, etc. Duplication among the {ai} is allowed. If the set of

Copyright c© 2011 D.P. Kroese

2.1 Generic Algorithms Based on Common Transformations 35

distinct objects is {b1, . . . , bk}, then the algorithm generates random variables
X that satisfy

P(X = bi) =

∑n
j=1 I{aj=bi}

n
=

#{j : aj = bi}
n

, i = 1, . . . , k .

Example 2.10 (Random Variable Generation via Table Lookup)
Suppose we wish to generate from the discrete pdf f with

f(x) =
x

55
, x = 1, . . . , 10 .

This can be done via table lookup using a table of size n = 55 with elements
1, 2, 2, 3, 3, 3, . . . , 10, . . . , 10. The following MATLAB program creates the lookup
table, generates 105 random variables from f via the lookup method, and plots
the histogram of the generated data.

%tablook.m

r = 10;

a = zeros(1,(r+1)*r/2);

n=0;

for i=1:r

for j=1:i

n = n+1;

a(n) = i;

end

end

I = ceil(rand(1,10^5)*n);

X = a(I);

hist(X,1:r)

The table lookup method is a resampling technique: given data {ai} the
algorithm resamples the data by selecting one of the ai uniformly and indepen-
dently each time. In other words, Algorithm 2.5 generates samples from the
empirical distribution of the data {ai}.

2.1.4 Alias Method

The alias method is an alternative to the inverse-transform method for gener-
ating discrete random variables, which does not require time-consuming search
techniques as per Step 2 of Algorithm 2.2. It is based on the fact that an ar-
bitrary n-point distribution can be represented as an equally weighted mixture
of n two-point distributions. The idea is to redistribute the probability mass
into n bins of equal weight 1/n, as illustrated in Figure 2.4.

Copyright c© 2011 D.P. Kroese

36 Random Variable Generation

��������������������������������������

1 3 4
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���

���
���
���

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��������������������������������������

21 3 4���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����������������������������������

2

Figure 2.4: Redistribution of probability mass.

Here, a probability distribution on {1, 2, 3, 4} is depicted on the left side,
with probability masses 8/28, 3/28, 6/28, and 11/28. These masses are redis-
tributed over four bins such that (1) the total capacity of each bin is 1/4, (2)
each bin has masses corresponding to at most two variables, (3) bin i contains
mass corresponding to variable i, i = 1, 2, 3, 4.

To see that such a redistribution can be done generally, consider a prob-
ability distribution on {1, . . . , n} with probability mass pi > 0 assigned to i,
i = 1, . . . , n. If p1 = . . . = pn, then, trivially, the original distribution is an
equal mixture of 1-point (and hence 2-point) distributions. If not all {pk} are
equal, then there must exist indices i and j such that pi < 1/n and pj > 1/n.
Now fill bin i by first adding pi and then transferring an amount 1/n− pi from
pj . This leaves n − 1 bins to be filled with n − 1 probabilities that sum up to
(n − 1)/n, which can be done in exactly the same way by choosing i′ and j′

from the remaining indices such that pi′ < 1/n and pj′ > 1/n, and redistribut-
ing their weights, and so on. At the end, each bin k = 1, . . . , n corresponds
to a 2-point distribution at the points k and another point ak, with proba-
bilities qk and 1 − qk, respectively. For example, in Figure 2.4, a2 = 4 and
q2 = 3/28 × 4 = 3/7. The {ak} are called the alias values and the {qk} the
cut-off values. These can be determined by the following algorithm, which
formalizes the bin-filling procedure described above.

Algorithm 2.6 (Set-up for the Alias Method) Let {pk, k = 1, . . . , n} be
a distribution on {1, . . . , n}.

1. Let qk = n pk, k = 1, . . . , n. Let S = {k : qk < 1} and G = {k : qk > 1}.

2. While S and G are not empty,

(a) Choose some i ∈ S and j ∈ G .

(b) Set ai = j and qj = qj − (1 − qi).

(c) If qj < 1, remove j from G and add to S .

(d) Remove i from S .

The set-up algorithm can be implemented to run in O(n) time. Once the
alias and cut-off values have been established, generation of a random variable
X from the distribution {pk} is simple and can be written as follows.

Copyright c© 2011 D.P. Kroese

2.1 Generic Algorithms Based on Common Transformations 37

Algorithm 2.7 (Alias Method)

1. Generate U ∼ U(0, 1) and set K = dnUe.

2. Draw V ∼ U(0, 1). If V 6 qK , return X = K; otherwise, return X = aK .

Example 2.11 (Alias Method) The following MATLAB program shows how
the alias method works in practice. The objective is to generate 106 samples
from a fixed 400-point pdf that is itself randomly generated. In the first part of
the program the alias and cut-off values are calculated. The second part checks
that the original probabilities are faithfully reconstructed. In the last part the
data are generated.

%aliasfin.m

p =rand(1,400);p = p/sum(p); %the sampling distribution

n = size(p,2);

a = 1:n; %alias values

q = zeros(1,n); % cut-off values

q = n*p;

greater = find(q >= 1);

smaller = find(q < 1);

while (~isempty(smaller) && ~isempty(greater))

i = smaller(1);

j = greater(1);

a(i) = j;

q(j) = q(j) -(1- q(i));

if (q(j) < 1)

greater = setdiff(greater,j);

smaller = union(smaller,j);

end

smaller = setdiff(smaller,i);

end

pp = q/n;

for i = 1:n

ind = find(a == i);

pp(i) = pp(i) + sum((1 - q(ind)))/n;

end

max(abs(pp - p))

N = 10^6; % generate sample of size N

X = zeros(1,N);

for i = 1:N

K = ceil(rand*n);

if (rand > q(K));

X(i) = a(K);

else

X(i) = K;

end

end

Copyright c© 2011 D.P. Kroese

38 Random Variable Generation

2.1.5 Acceptance–Rejection Method

The acceptance–rejection method is one of the most useful general methods for
sampling from general distributions. It can be applied to both discrete and con-
tinuous distributions, and even to multidimensional distributions — although
its efficiency rapidly decreases in the number of dimensions (see Section 2.3).
The method is based on the following observation.

Theorem 2.1.1 (Acceptance–Rejection) Let f(x) and g(x) be two pdfs
such that for some C > 1, C g(x) > f(x) for all x. Let X ∼ g(x) and
U ∼ U(0, 1) be independent. Then, the conditional pdf of X given U 6

f(X)/(Cg(X)) is f(x).

Proof: Consider the joint pdf of X and U , which is

fX,U (x, u) =

g(x) I{
u6

f(x)
Cg(x)

}
∫ ∫ 1

0 g(x) I{
u6

f(x)
Cg(x)

} du dx
=

g(x) I{
u6

f(x)
Cg(x)

}

∫
g(x)

(∫ f(x)
Cg(x)

0 1 du
)
dx

= C g(x) I{
u6

f(x)
Cg(x)

} .

The (marginal) pdf of X is therefore

fX(x) =

∫ 1

0
fX,U (x, u) du = C g(x)

f(x)

Cg(x)
= f(x) ,

as required.

We call g(x) the proposal pdf and assume that it is easy to generate ran-
dom variables from it. The acceptance–rejection method can be formulated as
follows.

Algorithm 2.8 (Acceptance–Rejection)

1. Generate X from g(x).

2. Generate U from U(0, 1), independently of X.

3. If U 6 f(X)/(C g(X)) output X; otherwise, return to Step 1.

In other words, generate X ∼ g and accept it with probability
f(X)/(C g(X)); otherwise, reject X and try again.

The efficiency of the acceptance–rejection method is defined as the prob-
ability of acceptance, which is,

P

(
U 6

f(X)

Cg(X)

)
=

∫
g(x)

∫ 1

0
I{

u6
f(x)

Cg(x)

}du dx =

∫
f(x)

C
dx =

1

C
.

Since the trials are independent, the number of trials required to obtain a suc-
cessful pair (X, U) has a Geom(1/C) distribution, so that the expected number
of trials is equal to C.

Copyright c© 2011 D.P. Kroese

2.2 Generation Methods for Multivariate Random Variables 39

Example 2.12 (Generating from the Positive Normal Distribution)
Suppose we wish to generate random variables from the positive normal pdf

f(x) =

√
2

π
e−x2/2, x > 0 , (2.10)

using acceptance–rejection. We can bound f(x) by C g(x), where g(x) = e−x is
the pdf of the Exp(1) distribution. The smallest constant C such that f(x) 6

Cg(x) is
√

2e/π. The pdf f(x) and the dominating function Cg(x) are depicted
in Figure 2.5. The efficiency of this method is

√
π/2e ≈ 0.76.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2.5: Bounding the positive normal density (solid curve).

Since f(x) is the pdf of the absolute value of a standard normal random
variable, we can generate Z ∼ N(0, 1) by first generating X ∼ f as above
and then returning Z = XS, where S is a random sign; for example, S =
1 − 2I{U61/2} with U ∼ U(0, 1). This procedure for generating N(0, 1) random
variables is summarized in Algorithm 3.13. ☞ 54

2.2 Generation Methods for Multivariate Random
Variables

In this section we consider some general procedures for generating a random
vector X = (X1, . . . , Xn)> from a given n-dimensional distribution with pdf
f(x). Algorithms for generating from specific multivariate distributions are
given in Section 3.3. ☞ 55

When the components X1, . . . , Xn are independent the situation is easy.
Suppose that the component pdfs are fi, i = 1, . . . , n, so that f(x) =
f1(x1) · · · fn(xn). To generate X, simply generate each component Xi ∼ fi

individually — for example, via the inverse-transform method or acceptance–
rejection.

Copyright c© 2011 D.P. Kroese

40 Random Variable Generation

Algorithm 2.9 (Independent Components Generation)

1. Independently generate Xi ∼ fi, i = 1, . . . , n.

2. Return X = (X1, . . . , Xn)>.

For dependent components X1, . . . , Xn, we can represent the joint pdf f(x)
as

f(x) = f(x1, . . . , xn) = f1(x1) f2(x2 |x1) · · · fn(xn |x1, . . . , xn−1) , (2.11)

where f1(x1) is the marginal pdf of X1 and fk(xk |x1, . . . , xk−1) is the condi-
tional pdf of Xk given X1 = x1, X2 = x2, . . . , Xk−1 = xk−1. This observation
leads to the following procedure.

Algorithm 2.10 (Dependent Components Generation)

1. Generate X1 ∼ f1. Set t = 1.

2. While t < n, given X1 = x1, . . . , Xt = xt, generate Xt+1 ∼ ft+1(xt+1 |
x1, . . . , xt) and set t = t+ 1.

3. Return X = (X1, . . . , Xn)>.

The applicability of this approach depends, of course, on knowledge of the
conditional distributions. In certain models, for example Markov models, this
knowledge is easily obtainable.☞ 63

Another, usually simpler, approach is to generate the random vector X by
multidimensional acceptance–rejection; for instance, when generating a random
vector uniformly over an n-dimensional region.

For high-dimensional distributions, efficient exact random variable genera-
tion is often difficult to achieve, and approximate generation methods are used
instead. Such methods are discussed in Chapter 5.

2.3 Generating Random Vectors Uniformly Dis-
tributed in a Unit Hyperball and Hypersphere

Consider the n-dimensional unit hyperball, Bn = {x ∈ Rn : ‖x‖ 6 1}. Gen-
erating uniform random vectors in Bn is straightforward via the acceptance–
rejection method.

Algorithm 2.11 (Generating Uniformly in Bn (I))

1. Generate U1, . . . , Un
iid∼ U(0, 1).

2. Set X1 = 1 − 2U1, . . . , Xn = 1 − 2Un, and R =
∑n

i=1X
2
i .

3. If R 6 1, accept X = (X1, . . . , Xn)> as the desired vector; otherwise, go
to Step 1.

Copyright c© 2011 D.P. Kroese

2.4 Generating Random Permutations 41

The efficiency of this n-dimensional acceptance–rejection method is equal
to the ratio

1

C
=

volume of the hyperball

volume of the hypercube
=

πn/2

(n/2)Γ(n/2)

2n
=

1

n 2n−1

πn/2

Γ(n/2)
,

which rapidly decreases to 0 as n→ ∞; for example, for n = 8 the efficiency is
approximately 0.016. The next algorithm is more efficient for higher dimensions,
and utilizes the following facts.

• If X1, . . . , Xn
iid∼ N(0, 1), then the normalized vector

Y =

(
X1

‖X‖ , . . . ,
Xn

‖X‖

)
, (2.12)

where ‖X‖ = (
∑n

i=1X
2
i)

1
2 , is distributed uniformly on the n-dimensional

hypersphere Sn = {y : ‖y‖ = 1}.

• The radius R of a uniformly chosen point in Bn has cdf FR(r) = rn,
0 6 r 6 1.

Algorithm 2.12 (Generating Uniformly in Bn (II))

1. Generate a random vector X = (X1, . . . , Xn)> with iid N(0, 1) compo-
nents.

2. Generate U ∼ U(0, 1) and set R = U1/n.

3. Return Z = RX/‖X‖.

To generate a random vector that is uniformly distributed over the surface of
an n-dimensional unit ball — in other words, uniformly on the unit hypersphere
Sn, we simplify the previous algorithm and arrive at the following one.

Algorithm 2.13 (Generating Uniform Random Vectors on Sn)

1. Generate a random vector X = (X1, . . . , Xn)> with iid N(0, 1) compo-
nents.

2. Return Y = X/‖X‖.

2.4 Generating Random Permutations

Suppose we have a collection of n objects, labeled 1, 2, . . . , n, and we wish to
generate a random permutation of these labels such that each of the n! possible
orderings occurs with equal probability. A simple algorithm for generating such
uniform permutations is based on the ordering of uniform random numbers.

Copyright c© 2011 D.P. Kroese

42 Random Variable Generation

Algorithm 2.14 (Generating Random Permutations by Sorting)

1. Generate U1, . . . , Un
iid∼ U(0, 1).

2. Sort these in increasing order: UX1 6 UX2 6 · · · 6 UXn.

3. Return X = (X1, . . . , Xn).

Example 2.13 (Drawing Without Replacement) Suppose we wish to se-
lect 30 numbers out of 100 uniformly without replacement. This can be accom-
plished by generating a uniform random permutation of 1, . . . , 100 and selecting
the first 30 components thereof. The following MATLAB program achieves this
via an implementation of Algorithm 2.14. This procedure is most efficient when
the number of draws k is close to n.

%unifperm.m

n = 100;

k = 30;

[s,ix] = sort(rand(1,n));

x = ix(1:k)

The next algorithm for drawing uniform random permutation is faster than
Algorithm 2.14 and builds the permutation component by component, requiring
only n uniform random numbers and no sorting.

Algorithm 2.15 (Generating Uniform Random Permutations)

1. Set a = (1, . . . , n) and i = 1.

2. Generate an index I uniformly from {1, . . . , n− i+ 1}.

3. Set Xi = aI followed by setting aI = an−i+1.

4. Set i = i+ 1. If i 6 n go to Step 2.

5. Return X = (X1, . . . , Xn).

2.5 Exercises

1. Let the random variable X have pdf

f(x) =

{
1
2 x , 0 < x < 1

1
2 , 1 6 x 6

5
2 .

Generate a random variable from f(x), using the inverse-transform method and
the acceptance-rejection method. For the latter use the proposal density

g(x) =
8

25
x , 0 6 x 6

5

2
.

Copyright c© 2011 D.P. Kroese

2.5 Exercises 43

2. Implement an acceptance-rejection and an inverse-transform algorithm for
generating random variables from the pdf f(x) = sin(x)/2, 0 6 x 6 π.

3. We wish to sample from a pdf of the form f(z) = ch(z), where h(z) is
known, but c > 0 could be unknown. Show that the following algorithm returns
a random variable Z with pdf f .

• Generate (X,Y) uniformly over the set

R = {(x, y) : 0 6 x 6
√
h(y/x)} .

• Return Z = Y/X .

[Hint: consider the coordinate transformation x = w, y = wz; so R is trans-
formed to the set {(w, z) : 0 6 w 6

√
h(z).]

4. Write a program that generates and displays 100 random vectors that are
uniformly distributed within the ellipse

5x2 + 21x y + 25 y2 = 9 .

Copyright c© 2011 D.P. Kroese

44 Random Variable Generation

Copyright c© 2011 D.P. Kroese

Chapter 3

Probability Distributions

This chapter lists some of the major discrete and continuous probability dis-
tributions used in Monte Carlo simulation, along with specific algorithms for
random variable generation.

3.1 Discrete Distributions

We list various discrete distributions in alphabetical order. Recall that a dis-
crete distribution is completely specified by its discrete pdf.

3.1.1 Bernoulli Distribution

The pdf of the Bernoulli distribution is given by

f(x; p) = px (1 − p)1−x, x ∈ {0, 1} ,

where p ∈ [0, 1] is the success parameter. We write the distribution as Ber(p).
The Bernoulli distribution is used to describe experiments with only two

outcomes: 1 (success) or 0 (failure). Such an experiment is called a Bernoulli
trial. A sequence of iid Bernoulli random variables, X1, X2, . . . ∼iid Ber(p),
is called a Bernoulli process. Such a process is a model for the random
experiment where a biased coin is tossed repeatedly. The inverse-transform
method leads to the following generation algorithm.

Algorithm 3.1 (Ber(p) Generator)

1. Generate U ∼ U(0, 1).

2. If U 6 p, return X = 1; otherwise, return X = 0.

Example 3.1 (Bernoulli Generation) The following MATLAB code gener-
ates one hundred Ber(0.25) random variables, and plots a bar graph of the
binary data.

X = (rand(1,100) <= 0.25); bar(X)

Copyright c© 2011 D.P. Kroese

46 Probability Distributions

3.1.2 Binomial Distribution

The pdf of the binomial distribution is given by

f(x;n, p) = P(X = x) =

(
n

x

)
px(1 − p)n−x, x = 0, 1, . . . , n ,

where 0 6 p 6 1. We write the distribution as Bin(n, p). The binomial dis-
tribution is used to describe the total number of successes in a sequence of n
independent Bernoulli trials. That is, a Bin(n, p)-distributed random variable
X can be written as the sum X = B1 + · · ·+Bn of independent Ber(p) random
variables {Bi}. Examples of the graph of the pdf are given in Figure 3.1.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

x

f
(x

)

Bin(20, 0.5)
Bin(20, 0.1)

Figure 3.1: The pdfs of the Bin(20, 0.1) (solid dot) and Bin(20, 0.5) (circle)
distributions.

The fact that binomial random variables can be viewed as sums of Bernoulli
random variables leads to the following generation algorithm.

Algorithm 3.2 (Bin(n, p) Generator)

1. Generate X1, . . . , Xn
iid∼ Ber(p).

2. Return X =
∑n

i=1Xi.

Alternative methods should be used for large n.

3.1.3 Geometric Distribution

The pdf of the geometric distribution is given by

f(x; p) = (1 − p)x−1p, x = 1, 2, 3, . . . (3.1)

where 0 6 p 6 1. We write the distribution as Geom(p). The geometric
distribution is used to describe the time of first success in an infinite sequence
of independent Bernoulli trials with success probability p. Examples of the
graph of the pdf are given in Figure 3.2.

Copyright c© 2011 D.P. Kroese

3.1 Discrete Distributions 47

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

x

f
(x

)

G(0.6)

G(0.3)

Figure 3.2: The pdfs of the Geom(0.3) (solid dot) and Geom(0.6) (circle) distri-
butions.

Let Y ∼ Exp(λ), with λ = − ln(1 − p). Then, dY e ∼ Geom(p). This gives
the following generator.

Algorithm 3.3 (Geom(p) Generator (I))

1. Generate Y ∼ Exp(− ln(1 − p)).

2. Output X = dY e.

3.1.4 Poisson Distribution

The pdf of the Poisson distribution is given by

f(x;λ) =
λx

x!
e−λ, x = 0, 1, 2, . . . ,

where λ > 0 is the rate parameter. We write the distribution as Poi(λ). Ex-
amples of the graph of the pdf are given in Figure 3.3.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

x

f
(x

)

λ = 11

λ = 4

λ = 0.7

Figure 3.3: The pdfs of the Poi(0.7) (solid dot), Poi(4) (circle), and Poi(11)
(plus) distributions.

The Poisson distribution is often used to model the number of arrivals of
some sort during a fixed period of time. The Poisson distribution is closely re-
lated to the exponential distribution via the Poisson process; see Section 4.4. ☞ 69

Copyright c© 2011 D.P. Kroese

48 Probability Distributions

From this point of view the following is easy to prove: Let {Yi} iid∼ Exp(λ).
Then,

X = max

{
n :

n∑

j=1

Yj 6 1

}
∼ Poi(λ) . (3.2)

That is, the Poisson random variable X can be interpreted as the maximal
number of iid exponential variables whose sum does not exceed 1.

Let {Ui} iid∼ U(0, 1). Rewriting (3.2), we see that

X = max

{
n :

n∑

j=1

− lnUj 6 λ

}

= max

{
n : ln

(n∏

j=1

Uj

)
> −λ

}

= max

{
n :

n∏

j=1

Uj > e−λ

}
(3.3)

has a Poi(λ) distribution. This leads to the following algorithm.

Algorithm 3.4 (Poi(λ) Generator)

1. Set n = 1 and a = 1.

2. Generate Un ∼ U(0, 1) and set a = aUn.

3. If a > e−λ, set n = n+ 1 and go to Step 2.

4. Otherwise, return X = n− 1 as a random variable from Poi(λ).

For large λ alternative generation methods should be used.

3.1.5 Uniform Distribution (Discrete Case)

The discrete uniform distribution has pdf

f(x; a, b) =
1

b− a+ 1
, x ∈ {a, . . . , b} ,

where a, b ∈ Z, b > a are parameters. The discrete uniform distribution is
used as a model for choosing a random element from {a, . . . , b} such that each
element is equally likely to be drawn. We denote this distribution by DU(a, b).

Drawing from a discrete uniform distribution on {a, . . . , b}, where a and b
are integers, is carried out via a simple table lookup method.

Algorithm 3.5 (DU(a, b) Generator)

Draw U ∼ U(0, 1) and output X = ba+ (b+ 1 − a)Uc.

Copyright c© 2011 D.P. Kroese

3.2 Continuous Distributions 49

3.2 Continuous Distributions

We list various continuous distributions in alphabetical order. Recall that an
absolutely continuous distribution is completely specified by its pdf.

3.2.1 Beta Distribution

The beta distribution has pdf

f(x;α, β) =
xα−1(1 − x)β−1

B(α, β)
, x ∈ [0, 1] ,

where α > 0 and β > 0 are called shape parameters and B is the beta function:

B(α, β) =
Γ(α) Γ(β)

Γ(α+ β)
.

We write the distribution as Beta(α, β). The dependence of the beta distribu-
tion on its shape parameters is illustrated in Figure 3.4.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

x

f
(x

)

α = β = 0.5

α = 2, β = 6

α = β = 3

α = 5, β = 1

α = 2, β = 1

Figure 3.4: Various pdfs of the beta distribution.

A fundamental relation between the gamma and beta distribution is the
following: Let X ∼ Gamma(α, θ) be independent of Y ∼ Gamma(β, θ). Then,

X

X + Y
∼ Beta(α, β) .

Copyright c© 2011 D.P. Kroese

50 Probability Distributions

More generally, suppose Xk ∼ Gamma(αk, 1), k = 1, . . . , n, independently.
Then, the random variables

Yk =
X1 + · · · +Xk

X1 + · · · +Xk+1
, k = 1, . . . , n− 1 ,

and Sn = X1 + · · · +Xn are independent. Moreover,

Yk ∼ Beta(α1 + · · · + αk, αk+1) and Sn ∼ Gamma(α1 + · · · + αn, 1) .

This yields the following generation algorithm.

Algorithm 3.6 (Beta(α, β) Generator)

1. Generate independently Y1 ∼ Gamma(α, 1) and Y2 ∼ Gamma(β, 1).

2. Return X = Y1/(Y1 + Y2) as a random variable from Beta(α, β).

3.2.2 Cauchy Distribution

The Cauchy distribution has pdf

f(x) =
1

π

1

1 + x2
, x ∈ R .

The graph of the pdf of the Cauchy(0, 1) distribution is given in Figure 3.5.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

x

f
(x

)

Figure 3.5: The pdf of the Cauchy distribution.

The following algorithm is a direct consequence of the inverse-transform
method and the fact that cot(πx) = tan

(
πx− π

2

)
.

Algorithm 3.7 (Cauchy Generator)

Draw U ∼ U(0, 1) and output X = cot(πU) (or X = tan(πU − π/2)).

Another simple algorithm is:

Algorithm 3.8 (Cauchy Generator via Ratio of Normals)

1. Generate Y1, Y2
iid∼ N(0, 1).

2. Return X = Y1/Y2.

Copyright c© 2011 D.P. Kroese

3.2 Continuous Distributions 51

3.2.3 Exponential Distribution

The exponential distribution has pdf

f(x;λ) = λ e−λ x, x > 0 ,

where λ > 0 is the rate parameter. We write the distribution as Exp(λ). The
exponential distribution can be viewed as a continuous version of the geometric
distribution. It plays a central role in the theory and application of Markov
jump processes, and in stochastic modeling in general, due to its memoryless ☞ 66
property: If X ∼ Exp(λ), then

P(X > s+ t |X > s) = P(X > t), s, t > 0 .

Graphs of the pdf for various values of λ are given in Figure 3.6.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

x

f
(x

)

λ = 0.5
λ = 1

λ = 2

Figure 3.6: Pdfs of the Exp(λ) distribution for various values of λ.

Noting that U ∼ U(0, 1) implies 1 − U ∼ U(0, 1), we obtain the following
inverse-transform algorithm.

Algorithm 3.9 (Exp(λ) Generator)

Draw U ∼ U(0, 1) and output X = − 1
λ lnU .

3.2.4 Gamma Distribution

The gamma distribution has pdf

f(x;α, λ) =
λαxα−1e−λx

Γ(α)
, x > 0 , (3.4)

where α > 0 is called the shape parameter and λ > 0 the scale parameter. In
the formula for the pdf, Γ is the gamma function. We write the distribution as
Gamma(α, λ).

An important special case is the Gamma(n/2, 1/2) distribution with n ∈
{1, 2, . . .}, which is called a chi-square distribution; the parameter n is then
referred to as the number of degrees of freedom. The distribution is written

Copyright c© 2011 D.P. Kroese

52 Probability Distributions

as χ2
n. A graph of the pdf of the χ2

n distribution, for various n, is given in
Figure 3.7.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

x

f
(x

)

n = 3

n = 2

n = 1

Figure 3.7: Pdfs of the χ2
n distribution for various degrees of freedom n.

Since Gamma(α, λ) is a scale family, it suffices to only give algorithms for
generating random variables X ∼ Gamma(α, 1), because X/λ ∼ Gamma(α, λ).
Since the cdf of the gamma distribution does not generally exist in explicit
form, the inverse-transform method cannot always be applied to generate ran-
dom variables from this distribution. Thus, alternative methods are called for.
The following algorithm, by Marsaglia and Tsang provides a highly efficient
acceptance–rejection method for generating Gamma(α, 1) random variables with
α > 1.

Algorithm 3.10 (Gamma(α, 1) Generator for α > 1)

1. Set d = α− 1/3 and c = 1/
√

9 d.

2. Generate Z ∼ N(0, 1) and U ∼ U(0, 1) independently.

3. If Z > −1/c and lnU < 1
2Z

2 + d − d V + d lnV , where V = (1 + cZ)3,
return X = d V ; otherwise, go back to Step 2.

For the case α < 1 one can use the fact that if X ∼ Gamma(1 + α, 1), and
U ∼ U(0, 1) are independent, then XU1/a ∼ Gamma(α, 1). Alternatively, one
can use the following algorithm by Best:

Algorithm 3.11 (Gamma(α, 1) Generator for α < 1)

1. Set d = 0.07 + 0.75
√

1 − α and b = 1 + e−dα/d.

2. Generate U1, U2
iid∼ U(0, 1) and set V = bU1.

3. If V 6 1, then set X = d V 1/α. Check whether U2 6 (2 − X)/(2 + X).
If true, return X; otherwise, check whether U2 6 e−X . If true, return X;
otherwise, go back to Step 2.

Copyright c© 2011 D.P. Kroese

3.2 Continuous Distributions 53

If V > 1, then set X = − ln(d(b − V)/α) and Y = X/d. Check whether
U2(α + y(1 − α)) 6 1. If true, return X; otherwise, check if U2 < Y α−1.
If true, return X; otherwise, go back to Step 2.

3.2.5 Normal Distribution

The standard normal or standard Gaussian distribution has pdf

f(x) =
1√
2π

e−x2/2, x ∈ R .

The corresponding location–scale family of pdfs is therefore

f(x;µ, σ2) =
1

σ
√

2π
e−

1
2(

x−µ
σ)

2

, x ∈ R . (3.5)

We write the distribution as N(µ, σ2). We denote the pdf and cdf of the N(0, 1)
distribution as ϕ and Φ, respectively. Here, Φ(x) =

∫ x
−∞ ϕ(t) dt = 1

2 + 1
2erf

(
x√
2

)
,

where erf(x) is the error function.
The normal distribution plays a central role in statistics and arises naturally

as the limit of the sum of iid random variables via the central limit theorem. Its
crucial property is that any affine combination of independent normal random
variables is again normal. In Figure 3.8 the probability densities for three
different normal distributions are depicted.

−3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

f
(x

)

N(2,1)

N(0,0.25)

N(0,1)

Figure 3.8: Pdfs of the normal distribution for various values of the parameters.

Since N(µ, σ) forms a location–scale family, we only consider generation
from N(0, 1). The most prominent application of the polar method (see Sec-
tion 2.1.2.6) lies in the generation of standard normal random variables, leading ☞ 34
to the celebrated Box–Muller method.

Copyright c© 2011 D.P. Kroese

54 Probability Distributions

Algorithm 3.12 (N(0, 1) Generator, Box–Muller Approach)

1. Generate U1, U2
iid∼ U(0, 1).

2. Return two independent standard normal variables, X and Y , via

X =
√
−2 lnU1 cos(2πU2) ,

Y =
√
−2 lnU1 sin(2πU2) .

(3.6)

Finally, the following algorithm uses acceptance–rejection with an exponen-
tial proposal distribution. This gives a probability of acceptance of

√
π/(2e) ≈

0.76 . The theory behind it is given in Example 2.12.☞ 39

Algorithm 3.13 (N(0, 1) Generator, Acceptance–Rejection from Exp(1))

1. Generate X ∼ Exp(1) and U ′ ∼ U(0, 1), independently.

2. If U ′ 6 e−(X−1)2/2, generate U ∼ U(0, 1) and output Z = (1 −
2 I{U61/2})X; otherwise, repeat from Step 1.

3.2.6 Uniform Distribution (Continuous Case)

The uniform distribution on the interval [a, b] has pdf

f(x; a, b) =
1

b− a
, a 6 x 6 b .

We write the distribution as U[a, b]. A graph of the pdf is given in Figure 3.9.

a b

1

b− a

x→

Figure 3.9: The pdf of the uniform distribution on [a, b].

The uniform distribution is used as a model for choosing a point randomly
from the interval [a, b], such that each point is equally likely to be drawn.
The uniform distribution on an arbitrary Borel set B in Rn with non-zero
Lebesgue measure (for example, area, volume) |B| is defined similarly: its pdf
is constant, taking value 1/|B| on B and 0 otherwise. We write U(B) or simply
UB. The U[a, b] distribution is a location–scale family, as Z ∼ U[a, b] has the
same distribution as a+ (b− a)X, with X ∼ U[0, 1].

The generation of U(0, 1) random variables, crucial for any Monte Carlo
method, is discussed in detail in Chapter 1. U(a, b) random variable generation☞ 9
follows immediately from the inverse-transform method.

Algorithm 3.14 (U(a, b) Generation)

Generate U ∼ U(0, 1) and return X = a+ (b− a)U .

Copyright c© 2011 D.P. Kroese

3.3 Multivariate Distributions 55

3.3 Multivariate Distributions

3.3.1 Dirichlet Distribution

The standard Dirichlet (or type I Dirichlet) distribution has pdf

f(x; α) =
Γ
(∑n+1

i=1 αi

)
∏n+1

i=1 Γ(αi)

n∏

i=1

xαi−1
i

(
1−

n∑

i=1

xi

)αn+1−1

, xi > 0, i = 1, . . . , n,
n∑

i=1

xi 6 1 ,

where αi > 0, i = 1, . . . , n + 1 are shape parameters. We write this distribu-
tion as Dirichlet(α1, . . . , αn+1) or Dirichlet(α), with α = (α1, . . . , αn+1)

>. The
Dirichlet distribution can be regarded as a multivariate generalization of the
beta distribution (see Section 3.2.1), in the sense that each marginal Xk has a
beta distribution. A graph of the pdf for the two-dimensional case is given in
Figure 3.10.

0

0.5

1 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

x2x1

f
(x

1
,x

2
)

Figure 3.10: The Dirichlet pdf in two dimensions, with parameter vector α =
(1.5, 1.5, 3)>.

The fundamental relation between the Dirichlet and the gamma distribution
given is the following:

Let Y1, . . . , Yn+1 be independent random variables with Yk ∼ Gamma(αk, 1),
k = 1, . . . , n+ 1, and define

Xk =
Yk∑n+1
i=1 Yi

, k = 1, . . . , n .

Then, X = (X1, . . . , Xn) ∼ Dirichlet(α).
This provides the following generation method.

Algorithm 3.15 (Dirichlet(α) Generator)

1. Generate Yk ∼ Gamma(αk, 1), k = 1, . . . , n+ 1 independently.

2. Output X = (X1, . . . , Xn), where

Xk =
Yk∑n+1
i=1 Yi

, k = 1, . . . , n .

Copyright c© 2011 D.P. Kroese

56 Probability Distributions

3.3.2 Multivariate Normal Distribution

The standard multivariate normal or standard multivariate Gaussian
distribution in n dimensions has pdf

f(x) =
1√

(2π)n
e−

1
2

x>x, x ∈ R
n . (3.7)

All marginals of X = (X1, . . . , Xn)> are iid standard normal random variables.
Suppose that Z has an m-dimensional standard normal distribution. If A

is an n×m matrix and µ is an n× 1 vector, then the affine transformation

X = µ +AZ

is said to have a multivariate normal or multivariate Gaussian distribu-
tion with mean vector µ and covariance matrix Σ = AA>. We write the
distribution as N(µ,Σ).

The covariance matrix Σ is always symmetric and positive semidefinite.
When A is of full rank (that is, rank(A) = min{m,n}) the covariance matrix
Σ is positive definite. In this case Σ has an inverse and the distribution of X
has pdf

f(x; µ,Σ) =
1√

(2π)n det(Σ)
e−

1
2

(x−µ)>Σ−1(x−µ), x ∈ R
n . (3.8)

The multivariate normal distribution is a natural extension of the normal
distribution (see Section 3.2.5) and plays a correspondingly important role in
multivariate statistics. This multidimensional counterpart also has the prop-
erty that any affine combination of independent multivariate normal random
variables is again multivariate normal. A graph of the standard normal pdf for
the two-dimensional case is given in Figure 3.11.

−2

0

2 −2

0

2

0

0.1

0.2

x2x1

f
(x

1
,x

2
)

Figure 3.11: The standard multivariate normal pdf in two dimensions.

Copyright c© 2011 D.P. Kroese

3.3 Multivariate Distributions 57

Some important properties are:

1. Affine combinations: Let X1,X2, . . . ,Xr be independent mi-dimensional
normal variables, with Xi ∼ N(µi,Σi), i = 1, . . . , r. Let a be an n × 1
vector and let each Ai be an n×mi matrix for i = 1, . . . , r. Then,

a +
r∑

i=1

Ai Xi ∼ N

(
a +

r∑

i=1

Ai µi,
r∑

i=1

Ai ΣiA
>
i

)
.

In other words, any affine combination of independent multivariate normal
random variables is again multivariate normal.

2. Standardization (whitening): A particular case of the affine combinations
property is the following. Suppose X ∼ N(µ,Σ) is an n-dimensional
normal random variable with det(Σ) > 0. Let A be the Cholesky factor
of the matrix Σ. That is, A is an n × n lower triangular matrix of the
form

A =

a11 0 · · · 0
a21 a22 · · · 0
...

...
...

an1 an2 · · · ann

 , (3.9)

and such that Σ = AA>. It follows that

A−1(X − µ) ∼ N(0, I) .

3. Marginal distributions: Let X be an n-dimensional normal variable, with
X ∼ N(µ,Σ). Separate the vector X into a part of size p and one of size
q = n−p and, similarly, partition the mean vector and covariance matrix:

X =

(
Xp

Xq

)
, µ =

(
µp

µq

)
, Σ =

(
Σp Σr

Σ>
r Σq

)
, (3.10)

where Σp is the upper left p×p corner of Σ, Σq is the lower right q×q corner
of Σ, and Σr is the p× q upper right block of Σ. Then, the distributions
of the marginal vectors Xp and Xq are also multivariate normal, with
Xp ∼ N(µp,Σp) and Xq ∼ N(µq,Σq).

Note that an arbitrary selection of p and q elements can be achieved by
first performing a linear transformation Z = AX, where A is the n × n
permutation matrix that appropriately rearranges the elements in X.

4. Conditional distributions: Suppose we again have an n-dimensional vector
X ∼ N(µ,Σ), partitioned as for the marginal distribution property above,
but with det(Σ) > 0. Then, we have the conditional distributions

(Xp |Xq = xq) ∼ N(µp + ΣrΣ
−1
q (xq − µq), Σp − ΣrΣ

−1
q Σ>

r) ,

and

(Xq |Xp = xp) ∼ N(µq + Σ>
r Σ−1

p (xp − µp), Σq − Σ>
r Σ−1

p Σr) .

Copyright c© 2011 D.P. Kroese

58 Probability Distributions

As with the marginals property, arbitrary conditioning can be achieved
by first permuting the elements of X by way of an affine transformation
using a permutation matrix.

Property 2 is the key to generating a multivariate normal random vector
X ∼ N(µ,Σ), and leads to the following algorithm.

Algorithm 3.16 (N(µ, Σ) Generator)

1. Derive the Cholesky decomposition Σ = AA>.

2. Generate Z1, . . . , Zn
iid∼ N(0, 1) and let Z = (Z1, . . . , Zn)>.

3. Output X = µ +AZ.

3.3.3 Multivariate Student’s t Distribution

The multivariate Student’s t distribution in n dimensions has pdf

f(x; ν) =
Γ
(

ν+n
2

)

(πν)n/2 Γ
(

ν
2

)
(

1 +
1

ν
x>x

)− ν+n
2

, x ∈ R
n, (3.11)

where ν > 0 is the degrees of freedom or shape parameter. We write
the distribution as tν . Suppose Y = (Y1, . . . , Ym)> has an m-dimensional tν

distribution. If A is an n×m matrix and µ is an n× 1 vector, then the affine
transformation

X = µ +AY

is said to have a multivariate Student’s or multivariate t distribution with
mean vector µ and scale matrix Σ = AA>. We write the distribution as
tν(µ,Σ). The multivariate t distribution is a radially symmetric extension of the
univariate t distribution and plays an important role as a proposal distribution
in MCMC algorithms and Bayesian statistical modeling; see Example 5.1.☞ 89

The key relation between the multivariate t distribution and the multivariate
normal distribution is the following:

Let Z ∼ N(0, I) and S ∼ Gamma(ν/2, 1/2) be independent. Then,

X =

√
ν

S
Z ∼ tν .

This leads to the next generation algorithm.

Algorithm 3.17 (tν(µ, Σ) Generator)

1. Draw the random column vector Z ∼ N(0, I).

2. Draw S ∼ Gamma
(

ν
2 ,

1
2

)
≡ χ2

ν .

3. Compute Y =
√

ν
S Z.

4. Return X = µ+AY, where A is the Cholesky factor of Σ, so that AA> =
Σ.

Copyright c© 2011 D.P. Kroese

3.4 Exercises 59

3.4 Exercises

1. Construct generation algorithms for the following distributions:

(a) The Weib(α, λ) distribution, with cdf F (x) = 1 − e−(λx)α
, x > 0, where

λ > 0 and α > 0.

(b) The Pareto(α, λ) distribution, with pdf f(x) = αλ(1 + λx)−(α+1), x > 0,
where λ > 0 and α > 0.

2. Write a MATLAB program for drawing random samples from the following
distributions (do not use the standard MATLAB random number generators, but
write your own, based on the algorithms in this chapter):

1. Ber(p) (tossing a coin).

2. The discrete uniform distribution on {1, . . . , 6} (tossing a fair die).

3. Bin(10, p), where p ∈ (0, 1).

4. Geom(p), where p ∈ (0, 1).

5. Exp(λ), where λ > 0.

6. Beta(α, 1), where α > 0.

7. The standard normal distribution (use the Box-Muller algorithm).

8. The N(µ, σ2) distribution.

9. The multivariate N(µ,Σ) distribution.

3. Implement Algorithm 3.10 for the gamma distribution. Verify that (for
various values of α and λ) the algorithm draws from the correct distribution
by generating N = 105 samples and comparing the true pdf with the estimated
density obtained via the kernel density estimation program kde.m from

http://www.mathworks.com/matlabcentral/fileexchange/14034

4. Apply the inverse-transform method to generate a random variable from the
extreme value distribution, which has cdf

F (x) = 1 − e− exp(x−µ
σ

) , −∞ < x <∞, (σ > 0).

5. If X and Y are independent standard normal random variables, then Z =
X/Y has a Cauchy distribution. Show this. (Hint: first show that if U and
V > 0 are continuous random variables with joint pdf fU,V , then the pdf of
W = U/V is given by fW (w) =

∫∞
0 fU,V (w v, v) v dv.)

Copyright c© 2011 D.P. Kroese

60 Probability Distributions

Copyright c© 2011 D.P. Kroese

Chapter 4

Random Process Generation

This chapter lists a selection of the main random processes used in Monte Carlo
simulation, along with their generation algorithms.

4.1 Gaussian Processes

A real-valued stochastic process {X̃t, t ∈ T } is said to be a Gaussian process
if all its finite-dimensional distributions are Gaussian (normal); that is, if X =
(X1, . . . , Xn) = (X̃t1 , . . . , X̃tn)> has a multivariate Gaussian distribution for ☞ 56
any choice of n and t1, . . . , tn ∈ T , or equivalently, if any linear combination∑n

i=1 biX̃ti has a normal distribution.
The probability distribution of a Gaussian process is determined completely

by its expectation function

µ̃t = EX̃t, t ∈ T

and covariance function

Σ̃s,t = Cov(X̃s, X̃t), s, t ∈ T .

A zero-mean Gaussian process is one for which µ̃t = 0 for all t.
Gaussian processes can be thought of as generalizations of Gaussian random

vectors. To generate a realization of a Gaussian process with expectation func-
tion (µ̃t) and covariance function (Σ̃s,t) at times t1, . . . , tn we can simply sample

a multivariate normal random vector X = (X1, . . . , Xn)> = (X̃t1 , . . . , X̃tn)>.
As such, the fundamental generation method is the same as given in Algo-
rithm 3.16. ☞ 58

Algorithm 4.1 (Gaussian Process Generator)

1. Construct the mean vector µ = (µ1, . . . , µn)> and covariance matrix Σ =
(Σij) by setting µi = µ̃ti , i = 1, . . . , n and Σij = Σ̃ti,tj , i, j = 1, . . . , n.

2. Derive the Cholesky decomposition Σ = AA>.

3. Generate Z1, . . . , Zn
iid∼ N(0, 1). Let Z = (Z1, . . . , Zn)>.

4. Output X = µ +AZ.

Copyright c© 2011 D.P. Kroese

62 Random Process Generation

4.1.1 Markovian Gaussian Processes

Let {X̃t, t > 0} be a real-valued Markovian Gaussian process. Thus, in addition
to being Gaussian, the process also satisfies the Markov property:

(X̃t+s | X̃u, u 6 t) ∼ (X̃t+s | X̃t) for all s, t > 0 .

If the mean (µ̃t) and covariance function (Σ̃s,t) are known, then it is straight-

forward to generate realizations (X1, . . . , Xn) = (X̃t1 , . . . , X̃tn) of the process
at any selection of times 0 6 t1 < . . . < tn by using the conditional distributions
property of the multivariate normal distribution; see Property 4 on Page 57.
Denote the expectation and variance ofXi = X̃ti by µi and σi,i, respectively and
let σi,i+1 = Cov(Xi, Xi+1), i = 1, . . . , n−1. Then, by the marginal distributions
property (Property 3 on Page 57),

(
Xi

Xi+1

)
∼ N

((
µi

µi+1

)
,

(
σi,i σi,i+1

σi,i+1 σi+1,i+1

))
.

Hence, by the conditional distributions property we have

(Xi+1 |Xi = x) ∼ N

(
µi+1 +

σi,i+1

σi,i
(x− µi), σi+1,i+1 −

σ2
i,i+1

σi,i

)
.

This leads to the following algorithm.

Algorithm 4.2 (Generating a Markovian Gaussian Process)

1. Draw Z ∼ N(0, 1) and set X1 = µ1 +
√
σ1,1 Z.

2. For i = 1, . . . , n− 1, draw Z ∼ N(0, 1) and set

Xi+1 = µi+1 +
σi+1,i

σi,i
(Xi − µi) +

√
σi+1,i+1 −

σ2
i,i+1

σi,i
Z .

The algorithm can be easily generalized to generate multidimensional
Markovian Gaussian processes. In particular, let {X̃t, t > 0} be a d-dimensional
Markovian Gaussian process with expectation function µ̃t = EX̃t, t > 0, and
covariance function Σ̃s,t = Cov(X̃s, X̃t), s, t > 0. The following algorithm
generates realizations of the process at times 0 6 t1 < . . . < tn.

Algorithm 4.3 (Generating a Multidimensional Markovian Gaussian
Process)

1. Draw Z ∼ N(0, I) and set X̃t1 = µ̃t1 + BZ, where B is the (lower-

triangular) Cholesky square root matrix of Σ̃t1,t1.

2. For k = 1, . . . , n− 1,

(a) Compute the Cholesky square-root of

Σ̃tk+1,tk+1
− Σ̃tk,tk+1

Σ̃−1
tk,tk

Σ̃tk,tk+1
,

and denote it C.

(b) Draw Z ∼ N(0, I) and set

X̃tk+1
= µ̃tk+1

+ Σ̃tk+1,tkΣ̃−1
tk,tk

(
Xtk − µ̃tk

)
+ C Z .

Copyright c© 2011 D.P. Kroese

4.2 Markov Chains 63

4.2 Markov Chains

A Markov chain is a stochastic process {Xt, t ∈ T } with a countable index
set T ⊂ R which satisfies the Markov property

(Xt+s |Xu, u 6 t) ∼ (Xt+s |Xt) .

We discuss here only the main points pertinent to the simulation of such pro-
cesses. We assume throughout that the index set is T = {0, 1, 2, . . .}.

A direct consequence of the Markov property is that Markov chains can be
generated sequentially: X0, X1, . . ., as expressed in the following generic recipe.

Algorithm 4.4 (Generating a Markov Chain)

1. Draw X0 from its distribution. Set t = 0.

2. Draw Xt+1 from the conditional distribution of Xt+1 given Xt.

3. Set t = t+ 1 and repeat from Step 2.

The conditional distribution of Xt+1 given Xt can be specified in two com-
mon ways as follows.

• The process {Xt, t = 0, 1, 2, . . .} satisfies a recurrence relation

Xt+1 = g(t,Xt, Ut) , t = 0, 1, 2 . . . , (4.1)

where g is an easily evaluated function and Ut is an easily generated
random variable whose distribution may depend on Xt and t.

• The conditional distribution of Xt+1 given Xt is known and is easy to
sample from.

An important instance of the second case occurs when the Markov chain
{X0, X1, . . .} has a discrete state space E and is time-homogeneous. Its distri-
bution is then completely specified by the distribution of X0 (the initial distri-
bution) and the matrix of one-step transition probabilities P = (pij), where

pij = P(Xt+1 = j |Xt = i), i, j ∈ E .

The conditional distribution of Xn+1 given Xn = i is therefore a discrete dis-
tribution given by the i-th row of P . This leads to the following specification
of Algorithm 4.4.

Algorithm 4.5 (Generating a Time-Homogeneous Markov Chain on
a Discrete State Space)

1. Draw X0 from the initial distribution. Set t = 0.

2. Draw Xt+1 from the discrete distribution corresponding to the Xt-th row
of P .

3. Set t = t+ 1 and go to Step 2.

Copyright c© 2011 D.P. Kroese

64 Random Process Generation

Example 4.1 (A Markov Chain Maze) At time t = 0 a robot is placed in
compartment 3 of the maze in Figure 4.1. At each time t = 1, 2, . . . the robot
chooses one of the adjacent compartments with equal probability. Let Xt be
the robot’s compartment at time t. Then {Xt} is a time-homogeneous Markov
chain with transition matrix P given below.

6

1

2

8

3

start

4

57
P =

0 1 0 0 0 0 0 0
1
2 0 1

2 0 0 0 0 0
0 1

3 0 1
3 0 0 1

3 0
0 0 1

2 0 1
2 0 0 0

0 0 0 1
3 0 1

3
1
3 0

0 0 0 0 1 0 0 0
0 0 1

3 0 1
3 0 0 1

3
0 0 0 0 0 0 1 0

.

Figure 4.1: A maze and the corresponding transition matrix.

The following MATLAB program implements Algorithm 4.5. The first 100
values of the process are given in Figure 4.2.

%maze.m

n = 101

a = 0.5; b = 1/3;

P = [0, 1, 0, 0, 0, 0, 0, 0; a, 0, a, 0, 0, 0, 0, 0;

0, b, 0, b, 0, 0, b, 0; 0, 0, a, 0, a, 0, 0, 0;

0, 0, 0, b, 0, b, b, 0; 0, 0, 0, 0, 1, 0, 0, 0;

0, 0, b, 0, b, 0, 0, b; 0, 0, 0, 0, 0, 0, 1, 0]

x = zeros(1,n);

x(1)= 3;

for t=1:n-1

x(t+1) = min(find(cumsum(P(x(t),:))> rand));

end

hold on

plot(0:n-1,x,’.’)

plot(0:n-1,x)

hold off

Copyright c© 2011 D.P. Kroese

4.2 Markov Chains 65

0 20 40 60 80 100
1

2

3

4

5

6

7

8

t

X
t

Figure 4.2: Realization of the maze process.

Example 4.2 (Random Walk on an n-Dimensional Hypercube) A
typical example of a Markov chain that is specified by a recurrence relation
such as (4.1) is the random walk process. Here the recurrence is simply

Xt+1 = Xt + Ut , t = 1, 2, . . . ,

where U1, U2, . . . is an iid sequence of random variables from some discrete or
continuous distribution.

A similar recurrence can be used to generate a random walk on the set
of vertices of the unit n-dimensional hypercube — that is, the set of binary
vectors of length n. Denote by e1, . . . , en the unit vectors in Rn. Starting with
X0 somewhere on the unit hypercube, define

Xt+1 = Xt + eIt mod 2 ,

where I1, I2, . . .
iid∼ DU(1, . . . , n). Note that eI is simply a uniformly chosen

unit vector. Thus, the process performs a random walk on the unit hypercube,
where at each step the process jumps from one vertex to one of the n adjacent
vertices with equal probability. Since Xt+1 and Xt only differ in position It,
each state transition can be generated by simply flipping the component of
Xt at a randomly chosen index It. The following MATLAB program gives an
implementation of the generation algorithm for a 20-dimensional hypercube.
In Figure 4.3 the progress of the Markov chain Xt = (Xt1, . . . , Xtn)>, t =
0, 1, 2, . . . , 200 can be observed through its representation Yt =

∑n
i=1 2−iXti,

t = 0, 1, 2, . . . , 200 on the interval [0, 1].

%hypercube.m

N = 200; % number of samples

n = 20; %dimension

x = zeros(N,n);

for t=1:N

I = ceil(rand*n); %choose random position

Copyright c© 2011 D.P. Kroese

66 Random Process Generation

x(t+1,:) = x(t,:); %copy

x(t+1,I) = ~x(t+1,I); %flip bit at position I

end

b = 0.5.^[1:n];

y = x*b’;

hold on

plot(0:N,y,’.’), plot(0:N,y)

hold off

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

t

Y
t

Figure 4.3: Realization of the process {Yt}.

4.3 Markov Jump Processes

A Markov jump process is a stochastic process {Xt, t ∈ T } with a continuous
index set T ⊆ R and a discrete state space E, which satisfies the Markov
property

(Xt+s |Xu, u 6 t) ∼ (Xt+s |Xt) .

We discuss here only the main points pertinent to the simulation of such pro-
cesses. We assume throughout that the index set is T = [0,∞) and that the
state space is E = {1, 2, . . .}.

A time-homogeneous Markov jump process is often defined via its Q-matrix,

Q =

−q1 q12 q13 . . .
q21 −q2 q23 . . .
q31 q32 −q3 . . .
...

...
...

. . .

 ,

where qij is the transition rate from i to j:

qij = lim
h↓0

P(Xt+h = j |Xt = i)

h
, i 6= j, i, j ∈ E (4.2)

Copyright c© 2011 D.P. Kroese

4.3 Markov Jump Processes 67

and qi is the holding rate in i:

qi = lim
h↓0

1 − P(Xt+h = i |Xt = i)

h
, i ∈ E .

A typical assumption is that 0 6 qij < ∞ and that qi =
∑

j 6=i qij , so that all
row sums of Q are 0. The behavior of such a Markov jump process is as follows:
if the process in some state i at time t, it will remain there for an additional
Exp(qi)-distributed amount of time. When the process leaves a state i, it will
jump to a state j with probability Kij = qij/qi, independent of the history of
the process. In particular, the jump states Y0, Y1, . . . form a Markov chain with
transition matrix K = (Kij). Defining the holding times as A1, A2, . . . and the
jump times as T1, T2, . . . , the generation algorithm is as follows.

Algorithm 4.6 (Generating a Time-Homogeneous Markov Jump Process)

1. Set T0 = 0. Draw Y0 from its distribution. Set X0 = Y0 and n = 0.

2. Draw An+1 ∼ Exp(qYn).

3. Set Tn+1 = Tn +An+1.

4. Set Xt = Yn for Tn 6 t < Tn+1.

5. Draw Yn+1 from the distribution corresponding to the Yn-th row of K. Set
n = n+ 1 and go to Step 2.

Example 4.3 (Repairable System) Consider a reliability system with two
unreliable machines and one repairman. Both machines have exponentially
distributed life and repair times. The failure and repair rates are λ1, µ1 and
λ2, µ2 for machine 1 and machine 2, respectively. The repairman can only work
on one machine at a time, and if both have failed the repair man keeps working
on the machine that has failed first, while the other machine remains idle. All
life and repair times are independent of each other.

Because of the exponentiality and independence assumptions, the system
can be described via a Markov jump process with 5 states: 1 (both machines
working), 2 (machine 2 working, machine 1 failed), 3 (machine 1 working, ma-
chine 2 failed), 4 (both failed, machine 1 failed first), 5 (both failed, machine 2
failed first). The transition rate graph and Q-matrix are given in Figure 4.4.

µ2

2 4

53

λ1

λ2

µ1

λ1

λ2

µ2
1

µ1

Q =

−(λ1 + λ2) λ1 λ2 0 0
µ1 −(µ1 + λ2) 0 λ2 0
µ2 0 −(µ2 + λ1) 0 λ1

0 0 µ1 −µ1 0
0 µ2 0 0 −µ2

 .

Figure 4.4: Transition rate graph and Q-matrix of the repairable system.

Copyright c© 2011 D.P. Kroese

68 Random Process Generation

The following MATLAB program implements Algorithm 4.6 for the case
where λ1 = 1, λ2 = 2, µ1 = 3, and µ4 = 4. A realization of the process on
the interval [0, 5], starting in state 1, is given in Figure 4.5.

%mjprep.m

clear all, clf

lam1= 1; lam2 = 2; mu1= 3; mu2 = 4;

Q = [-(lam1 + lam2), lam1, lam2, 0, 0;

mu1, -(mu1+ lam2), 0, lam2, 0;

mu2, 0, -(mu2 + lam1), 0, lam1;

0, 0, mu1, -mu1, 0;

0, mu2, 0, 0, -mu2];

q = -diag(Q);

K = diag(1./q)*Q + eye(5);

T = 5;

n=0;

t = 0; y = 1;

yy = [y]; tt = [t];

while t < T

A = -log(rand)/q(y);

y = min(find(cumsum(K(y,:))> rand));

t = t + A;

tt = [tt,t];

yy= [yy,y];

n= n+1;

end

for i=1:n

line([tt(i),tt(i+1)],[yy(i),yy(i)],’Linewidth’,3);

line([tt(i+1),tt(i+1)],[yy(i),yy(i+1)],’LineStyle’,’:’);

end

axis([0,T,1,5.1])

0 1 2 3 4 5
1

2

3

4

5

t

S
ta

te
of

M
JP

Figure 4.5: Realization of the reliability Markov jump process.

Copyright c© 2011 D.P. Kroese

4.4 Poisson Processes 69

4.4 Poisson Processes

Poisson processes are used to model random configurations of points in space
and time. Specifically, let E be some subset of Rd and let E be the collection
of Borel sets on E. To any collection of random points {Tn} in E corresponds
a random counting measure N defined by

N(A) =
∑

k

I{Tk∈A}, A ∈ E ,

counting the random number of points in A. Such a random counting measure
is said to be a Poisson random measure with mean measure µ if the
following properties hold:

1. N(A) ∼ Poi(µ(A)) for any set A ∈ E , where µ(A) denotes the mean
measure of A.

2. For any disjoint sets A1, . . . , An ∈ E , the random variables
N(A1), . . . , N(An) are independent.

In most practical cases the mean measure has a density, called the intensity
or rate function, λ(x); so that

µ(A) =

∫

A
λ(x) dx .

We will assume from now on that such a rate function exists.

Informally, both the collection {Tk} and the random measure N are referred
to as a Poisson process on E. The Poisson process is said to be homoge-
neous if the rate function is constant. An important corollary of Properties 1
and 2 above is:

3. Conditional upon N(A) = n, the n points in A are independent of each
other and have pdf f(x) = λ(x)/µ(A).

This leads immediately to the following generic algorithm for generating a Pois-
son process on E, assuming that µ(E) =

∫
E λ(x) dx <∞.

Algorithm 4.7 (Generating a General Poisson Random Measure)

1. Generate a Poisson random variable N ∼ Poi(µ(E)).

2. Given N = n, draw X1, . . . ,Xn
iid∼ f , where f(x) is the mean density

λ(x)/µ(E), and return these as the points of the Poisson process.

Example 4.4 (Convex Hull of a Poisson Process) Figure 4.6 shows six
realizations of the point sets and their convex hulls of a homogeneous Pois-
son process on the unit square with rate 20. The MATLAB code is given below.
A particular object of interest could be the random volume of the convex hull
formed in this way.

Copyright c© 2011 D.P. Kroese

70 Random Process Generation

Figure 4.6: Realizations of a homogeneous Poisson process with rate 20. For
each case the convex hull is also plotted.

%hompoich.m

for i=1:6

N = poissrnd(20);

x = rand(N,2);

k = convhull(x(:,1),x(:,2));

%[K,v] = convhulln(x); %v is the area

subplot(2,3,i);

plot(x(k,1),x(k,2),’r-’,x(:,1),x(:,2),’.’)

end

For one-dimensional Poisson processes more direct generation algorithms
can be formulated, using the additional properties of such processes. Consider
first a homogeneous Poisson process with rate λ on R+. Denote the points of
the process by 0 < T1, T2, . . ., interpreted as arrival points of some sort, and let
Ai = Ti − Ti−1 be the i-th interarrival time, i = 1, 2, . . ., setting T0 = 0. The
interarrival times {Ai} are iid and Exp(λ) distributed. We can thus generate
the points of the Poisson process on some interval [0, T] as follows.

Algorithm 4.8 (One-Dimensional Homogeneous Poisson Process)

1. Set T0 = 0 and n = 1.

2. Generate U ∼ U(0, 1).

3. Set Tn = Tn−1 − 1
λ lnU .

4. If Tn > T , stop; otherwise, set n = n+ 1 and go to Step 2.

Copyright c© 2011 D.P. Kroese

4.4 Poisson Processes 71

Notice that the corresponding Poisson counting process {Nt, t > 0}, de-
fined by Nt = N([0, t]), is a Markov jump process on {0, 1, 2, . . .} with N0 = 0
and transition rates qi,i+1 = λ, i = 0, 1, 2, . . . and qi,j = 0 otherwise. The pro-
cess jumps at times T1, T2, . . . to states 1, 2, . . ., staying an Exp(λ)-distributed
amount of time in each state (including in state 0). In a similar way, the
counting process corresponding to a non-homogeneous one-dimensional Poisson
process on R+ with rate function λ(t), t > 0 is a non-homogeneous Markov
jump process with transition rates qi,i+1(t) = λ(t), i = 0, 1, 2, The tail
probabilities of the interarrival times are now

P(An+1 > t) = exp

(
−
∫ Tn+t

Tn

λ(s) ds

)
, t > 0 .

Therefore, a variety of generation methods are available to generate the interar-
rival times directly. However, it is often easier to construct the points indirectly,
as illustrated in Figure 4.7: First select a constant λ > sups6t λ(s), assuming
it exists. Then, generate the points of a two-dimensional homogeneous Poisson
process, M say, on [0, t] × [0, λ] with rate 1. Finally, project all points of M
that lie below the graph of λ(s), s 6 t onto the t-axis.

λ(t)

λ

t

Figure 4.7: Constructing a non-homogeneous Poisson process.

Let Rt = {(s, y), 0 6 s 6 t, y 6 λ(s)}. For each t > 0, we have

P(Nt = 0) = P(M(Rt) = 0) = exp

(
−
∫ t

0
λ(s) ds

)
,

which shows that the stochastic process {Nt, t > 0} constructed in this way is
a non-homogeneous Poisson counting process with rate function λ(t), t > 0. If
instead all points of M are projected onto the t-axis, we obtain a homogeneous
Poisson counting process with rate λ. To obtain the non-homogeneous pro-
cess we accept each point τ with probability λ(τ)

λ . This leads to the following
algorithm.

Copyright c© 2011 D.P. Kroese

72 Random Process Generation

Algorithm 4.9 (One-Dimensional Non-Homogeneous Poisson Pro-
cess)

1. Set t = 0 and n = 0.

2. Generate U ∼ U(0, 1).

3. Set t = t− 1
λ lnU .

4. If t > T, stop; otherwise, continue.

5. Generate V ∼ U(0, 1).

6. If V 6
λ(t)
λ , increase n by 1 and set Tn = t. Repeat from Step 2.

Example 4.5 (A Non-Homogeneous Poisson Counting Process)
Figure 4.8 gives a typical realization of a non-homogeneous Poisson counting
process {Nt, t > 0} with rate function λ(t) = sin2(t) on the interval [0, 50]. The
realization is obtained using the following MATLAB code, which implements
Algorithm 4.9.

%pois.m

T = 50; t = 0; n = 0;

tt = [t];

while t < T

t = t - log(rand);

if (rand < sin(t)^2)

tt = [tt,t];

n = n+1;

end

end

nn = 0:n;

for i =1:n

line([tt(i),tt(i+1)],[nn(i),nn(i)],’Linewidth’,2);

end

0 10 20 30 40 50
0

5

10

15

20

t

N
t

Figure 4.8: A typical realization of a non-homogeneous Poisson counting process
with rate function λ(t) = sin2(t).

Copyright c© 2011 D.P. Kroese

4.5 Wiener Process and Brownian Motion 73

4.5 Wiener Process and Brownian Motion

A Wiener process is a stochastic process W = {Wt, t > 0} characterized by
the following properties.

1. Independent increments: W has independent increments; that is, for
any t1 < t2 6 t3 < t4

Wt4 −Wt3 and Wt2 −Wt1

are independent random variables. In other words, Wt −Ws, t > s is
independent of the past history of {Wu, 0 6 u 6 s}.

2. Gaussian stationarity: For all t > s > 0,

Wt −Ws ∼ N(0, t− s) .

3. Continuity of paths: {Wt} has continuous paths, with W0 = 0.

The Wiener process plays a central role in probability and forms the basis
of many other stochastic processes. It can be viewed as a continuous version of
a random walk process. Two typical sample paths are depicted in Figure 4.9. ☞ 65

Remark 4.5.1 (Starting Position) Although by definition the Wiener pro-
cess starts at position 0, it is useful to consider Wiener processes starting from
some arbitrary state x under a probability measure Px.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

t

W
t

Figure 4.9: Two realizations of the Wiener process on the interval [0,1].

The two main properties of the Wiener process W = {Wt, t > 0} are

1. Gaussian process: W is a Gaussian process with EWt = 0 and
Cov(Ws,Wt) = min{s, t}. It is the only Gaussian process with contin-
uous sample paths that has these properties.

2. Markov property: W is a time-homogeneous strong Markov process. In
particular, for any finite stopping time τ and for all t > 0,

(Wτ+t |Wu, u 6 τ) ∼ (Wτ+t |Wτ) .

Copyright c© 2011 D.P. Kroese

74 Random Process Generation

The basic generation algorithm below uses the Markovian and Gaussian
properties of the Wiener process.

Algorithm 4.10 (Generating the Wiener Process)

1. Let 0 = t0 < t1 < t2 < · · · < tn be the set of distinct times for which
simulation of the process is desired.

2. Generate Z1, . . . , Zn
iid∼ N(0, 1) and output

Wtk =
k∑

i=1

√
tk − tk−1 Zi, k = 1, . . . , n .

The algorithm is exact, in that the {Wtk} are drawn exactly according to their
respective distributions. Nevertheless, the algorithm returns only a discrete
skeleton of the true continuous process. To obtain a continuous path ap-
proximation to the exact path of the Wiener process, one could use linear
interpolation on the points Wt1 , . . . ,Wtn . In other words, within each interval
[tk−1, tk], k = 1, . . . , n approximate the continuous process {Ws, s ∈ [tk−1, tk]}
via:

Ŵs =
Wtk(s− tk−1) +Wtk−1

(tk − s)

(tk − tk−1)
, s ∈ [tk−1, tk] .

It is possible to adaptively refine the path by using a Brownian bridge process,
see Section 4.7.

A process {Bt, t > 0} satisfying

Bt = µ t+ σWt, t > 0 ,

where {Wt} is a Wiener process, is called a Brownian motion with drift µ
and diffusion coefficient σ2. It is called a standard Brownian motion if
µ = 0 and σ2 = 1 (Wiener process).

The generation of a Brownian motion at times t1, . . . , tn follows directly
from its definition.

Algorithm 4.11 (Generating Brownian Motion)

1. Generate outcomes Wt1 , . . . ,Wtn of a Wiener process at times t1, . . . , tn.

2. Return Bti = µ ti + σWti, i = 1, . . . , n as the outcomes of the Brownian
motion at times t1, . . . , tn.

Let {Wt,i, t > 0}, i = 1, . . . , n be independent Wiener processes and let
Wt = (Wt,1, . . . ,Wt,n). The process {Wt, t > 0} is called an n-dimensional
Wiener process.

Example 4.6 (Three-Dimensional Wiener Process) The following
MATLAB program generates a realization of the three-dimensional Wiener pro-
cess at times 0, 1/N, 2/N, . . . , 1, for N = 104. Figure 4.10 shows a typical
realization.

Copyright c© 2011 D.P. Kroese

4.6 Stochastic Differential Equations and Diffusion Processes 75

−1

−0.5

0

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

1.2

X

Y

Z

Figure 4.10: Three-dimensional Wiener process {Wt, 0 6 t 6 1}. The arrow
points at the origin.

%wp3d.m

N=10^4; T=1; dt=T/N; %step size

X=cumsum([0,0,0;randn(N,3)*sqrt(dt)],1);

plot3(X(:,1),X(:,2),X(:,3))

4.6 Stochastic Differential Equations and Diffusion
Processes

A stochastic differential equation (SDE) for a stochastic process {Xt, t > 0}
is an expression of the form

dXt = a(Xt, t) dt+ b(Xt, t) dWt , (4.3)

where {Wt, t > 0} is a Wiener process and a(x, t) and b(x, t) are deterministic
functions. The coefficient (function) a is called the drift and b2 is called the
diffusion coefficient — some authors call b the diffusion coefficient. The result-
ing process {Xt, t > 0} — which is a Markov process with continuous sample
paths — is referred to as an (Itô) diffusion.

Stochastic differential equations are based on the same principle as ordinary
differential equations, relating an unknown function to its derivatives, but with
the additional feature that part of the unknown function is driven by random-
ness. Intuitively, (4.3) expresses that the infinitesimal change in dXt at time
t is the sum of an infinitesimal displacement a(Xt, t) dt and an infinitesimal
noise term b(Xt, t) dWt. The precise mathematical meaning of (4.3) is that the

Copyright c© 2011 D.P. Kroese

76 Random Process Generation

stochastic process {Xt, t > 0} satisfies the integral equation

Xt = X0 +

∫ t

0
a(Xs, s) ds+

∫ t

0
b(Xs, s) dWs , (4.4)

where the last integral is an Itô integral.
Multidimensional SDEs can be defined in a similar way as in (4.3). A

stochastic differential equation in Rm is an expression of the form

dXt = a(Xt, t) dt+B(Xt, t) dWt , (4.5)

where {Wt} is an n-dimensional Wiener process, a(x, t) is an m-dimensional
vector (the drift) and B(x, t) an m × n matrix, for each x ∈ Rm and t > 0.
The m ×m matrix C = BB> is called the diffusion matrix. The resulting
diffusion process is Markov, and if a and B do not depend explicitly on t then
the diffusion process is time-homogeneous.

We next discuss a simple technique for approximately simulating diffusion
processes.

4.6.1 Euler’s Method

Let {Xt, t > 0} be a diffusion process defined by the SDE

dXt = a(Xt, t) dt+ b(Xt, t) dWt , t > 0 , (4.6)

where X0 has a known distribution.
The Euler or Euler–Maruyama method for solving SDEs is a simple

generalization of Euler’s method for solving ordinary differential equations. The
idea is to replace the SDE with the stochastic difference equation

Yk+1 = Yk + a(Yk, kh)h+ b(Yk, kh)
√
hZk , (4.7)

where Z1, Z2, . . . ∼iid N(0, 1). For a small step size h the time series {Yk, k =
0, 1, 2, . . .} approximates the process {Xt, t > 0}; that is, Yk ≈ Xkh, k =
0, 1, 2,

Algorithm 4.12 (Euler’s Method)

1. Generate Y0 from the distribution of X0. Set k = 0.

2. Draw Zk ∼ N(0, 1).

3. Evaluate Yk+1 from (4.7) as an approximation to Xkh.

4. Set k = k + 1 and go to Step 2.

Remark 4.6.1 (Interpolation) The Euler procedure only returns approxi-
mations to {Xt} at times that are multiples of the step size h. To obtain
approximations for times s 6= kh one could simply approximate Xt by Yk for
t ∈ [kh, (k + 1)h), or use the linear interpolation

(
k + 1 − t

h

)
Yk +

(
t

h
− k

)
Yk+1, t ∈ [kh, (k + 1)h] .

Copyright c© 2011 D.P. Kroese

4.6 Stochastic Differential Equations and Diffusion Processes 77

For a multidimensional SDE of the form (4.5) the Euler method has the
following simple generalization.

Algorithm 4.13 (Multidimensional Euler Method)

1. Generate Y0 from the distribution of X0. Set k = 0.

2. Draw Zk ∼ N(0, I).

3. Evaluate

Yk+1 = Yk + a(Yk, kh)h+B(Yk, kh)
√
hZk

as an approximation to Xkh.

4. Set k = k + 1 and go to Step 2.

Example 4.7 (Simplified Duffing–Van der Pol Oscillator) Consider
the following two-dimensional SDE:

dXt = Yt dt ,

dYt =
(
Xt

(
α−X2

t

)
− Yt

)
dt+ σXt dWt .

The following MATLAB code generates the process with parameters α = 1
and σ = 1/2 for t ∈ [0, 1000], using a step size h = 10−3 and starting at (−2, 0).
Note that the process oscillates between two modes.

%vdpol.m

alpha = 1; sigma = 0.5;

a1 = @(x1,x2,t) x2;

a2 = @(x1,x2,t) x1*(alpha-x1^2)-x2;

b1 = @(x1,x2,t) 0 ;

b2 = @(x1,x2,t) sigma*x1;

n=10^6; h=10^(-3); t=h.*(0:1:n); x1=zeros(1,n+1); x2=x1;

x1(1)=-2;

x2(1)=0;

for k=1:n

x1(k+1)=x1(k)+a1(x1(k),x2(k),t(k))*h+ ...

b1(x1(k),x2(k),t(k))*sqrt(h)*randn;

x2(k+1)=x2(k)+a2(x1(k),x2(k),t(k))*h+ ...

b2(x1(k),x2(k),t(k))*sqrt(h)*randn;

end

step = 100; %plot each 100th value

figure(1),plot(t(1:step:n),x1(1:step:n),’k-’)

figure(2), plot(x1(1:step:n),x2(1:step:n),’k-’);

Copyright c© 2011 D.P. Kroese

78 Random Process Generation

0 200 400 600 800 1000
−2

−1

0

1

2

t

X
t

−2 −1 0 1 2

−1

0

1

2

Xt

Y
t

Figure 4.11: A typical realization with parameters α = 1 and σ = 1/2, starting
at (−2, 0).

4.7 Brownian Bridge

The standard Brownian bridge process {Xt, t ∈ [0, 1]} is a stochastic process
whose distribution is that of the Wiener process on [0, 1] conditioned upon
X1 = 0. In other words, the Wiener process is “tied-down” to be 0 at both
time 0 and time 1. The standard Brownian bridge process is a Gaussian process
with mean 0 and covariance function Cov(Xs, Xt) = min{s, t} − s t.

It is not difficult to show that if {Wt} is a Wiener process, then,

Xt = Wt − tW1, 0 6 t 6 1 ,

defines a standard Brownian bridge.

A realization of the process is given in Figure 4.12.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

t

X
t

Figure 4.12: Two realizations of the standard Brownian bridge process on the
interval [0, 1].

Generation of a sample path of the standard Brownian bridge is most easily
accomplished by the following algorithm.

Copyright c© 2011 D.P. Kroese

4.7 Brownian Bridge 79

Algorithm 4.14 (Generating a Standard Brownian Bridge)

1. Let 0 = t0 < t1 < t2 < · · · < tn+1 = 1 be the set of distinct times for
which simulation of the process is desired.

2. Generate a Wiener process on t1, . . . , tn using, for example, Algo-
rithm 4.10.

3. Set X0 = 0 and X1 = 0, and output for each k = 1, . . . , n:

Xtk = Wtk − tk Wtn .

A general (non-standard) Brownian bridge is a stochastic process {Xt, t ∈
[t0, tn+1]} whose distribution in that of the Wiener process on [t0, tn+1] condi-
tioned upon Xt0 = a and Xtn+1 = b. The general Brownian bridge is a Gaussian
process with mean function

µt = a+
(b− a)(t− t0)

(tn+1 − t0)

and covariance function

Cov(Xs, Xt) = min{s− t0, t− t0} −
(s− t0)(t− t0)

(tn+1 − t0)
.

A frequent use of the Brownian bridge is for adaptive refinement of the
discrete-time approximation of the Wiener process. Suppose that we have gen-
erated the Wiener process at certain time instants and wish to generate the
process for additional times. Specifically, suppose Wt0 = a and Wtn+1 = b and
we wish to generate the Wiener process for additional times t1, . . . , tn in the
interval [t0, tn+1].

a

b

tn+1t0 t

Figure 4.13: Conditional on Wt0 = a and Wtn+1 = b, the point Wt, t ∈ [t0, tn+1]
has a normal distribution.

Conditional on Wt0 = a and Wtn+1 = b, the process {Wt, t ∈ [t0, tn+1]} is
a Brownian bridge; see Figure 4.13. In particular, the distribution of Wt with
t ∈ [t0, tn+1] is normal with mean a + (b − a)(t − t0)/(tn+1 − t0) and variance

Copyright c© 2011 D.P. Kroese

80 Random Process Generation

(tn+1−t)(t−t0)/(tn+1−t0). We can thus generate the process at any number of
additional points t1 < · · · < tn within the interval [t0, tn+1] using the following
algorithm.

Algorithm 4.15 (Brownian Bridge Sampling Between Wt0 and Wtn+1
)

1. Generate Z1, . . . , Zn
iid∼ N(0, 1).

2. For each k = 1, . . . , n, output:

Wtk = Wtk−1
+ (b−Wtk−1

)
tk − tk−1

tn+1 − tk−1
+

√
(tn+1 − tk)(tk − tk−1)

tn+1 − tk−1
Zk .

In principle we need not generate the intermediate points Wt1 , . . . ,Wtn in any
particular order as long as at each step we condition on the two closest time
points already sampled. The following code implements the algorithm given
above.

function X=brownian_bridge(t,x_r,x_s,Z)

n=length(t)-2;X=nan(1,n+2);

X(1)=x_r; X(n+2)=x_s;s=t(n+2);

for k=2:n+1

mu=X(k-1)+(x_s-X(k-1))*(t(k)-t(k-1))/(s-t(k-1));

sig2=(s-t(k))*(t(k)-t(k-1))/(s-t(k-1));

X(k)=mu+sqrt(sig2)*Z(k-1);

end

4.8 Geometric Brownian Motion

The geometric Brownian motion process satisfies the homogeneous linear
SDE

dXt = µXt dt+ σXt dWt ,

which has strong solution

Xt = X0 e(µ−σ2

2
) t+σWt , t > 0 .

The special case where µ = 0 and σ = 1 is called the stochastic exponential
of the Wiener process {Wt}.

An important application is the Black–Scholes equity model, where Xt is
the price of the equity at time t, and the interest rate at time t is modeled as
the sum of a fixed rate µ and an uncertain rate σηt, with ηt = dWt/dt denoting
Gaussian “white noise” and σ a volatility factor.

One usually takes X0 = 1. The expectation and variance of Xt are then
given by

EXt = eµt and Var(Xt) = e2µt
(
eσ2t − 1

)
.

Copyright c© 2011 D.P. Kroese

4.8 Geometric Brownian Motion 81

The strong solution of the geometric Brownian motion suggests the following
exact simulation algorithm.

Algorithm 4.16 (Geometric Brownian Motion) Let 0 = t0 < t1 < t2 <
· · · < tn be the set of distinct times for which simulation of the process is desired.

1. Generate Z1, . . . , Zn
iid∼ N(0, 1).

2. Output

Xtk = X0 exp

((
µ− σ2

2

)
tk + σ

k∑

i=1

√
ti − ti−1 Zi

)
, k = 1, . . . , n .

The following code implements the algorithm.

%geometricbm.m

T=1; % final time

n=10000; h=T/(n-1); t= 0:h:T;

mu = 1; sigma = 0.2; xo=1; % parameters

W = sqrt(h)*[0, cumsum(randn(1,n-1))];

x = xo*exp((mu - sigma^2/2)*t + sigma*W);

plot(t,x)

hold on

plot(t, exp(mu*t),’r’); %plot exact mean function

Figure 4.14 depicts two realizations of a geometric Brownian motion on the
interval [0, 1], with parameters µ = 1 and σ = 0.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

t

X
t

Figure 4.14: Two realizations of a geometric Brownian motion on the inter-
val [0, 1], with parameters µ = 1 and σ = 0.2. The smooth line depicts the
expectation function.

Copyright c© 2011 D.P. Kroese

82 Random Process Generation

4.9 Ornstein–Uhlenbeck Process

The Ornstein–Uhlenbeck process satisfies the SDE

dXt = θ(ν −Xt) dt+ σ dWt , (4.8)

with σ > 0, θ > 0, and ν ∈ R. The (strong) solution of this linear SDE is given
by

Xt = e−θtX0 + ν(1 − e−θt) + σe−θt

∫ t

0
eθs dWs .

It follows that {Xt} is a Gaussian process whenever X0 is Gaussian, with mean
function

EXt = e−θt
EX0 + ν(1 − e−θt)

and covariance function

Cov(Xs, Xt) =
σ2

2θ
e−θ(s+t)

(
e2θ min{s,t} − 1

)
.

In particular,

Var(Xt) = σ2 1 − e−2θt

2θ
.

This shows that Xt converges in distribution to a N(ν, σ2/(2θ)) random variable
as t→ ∞. It can be shown that

Xt = e−θtX0 + ν(1 − e−θt) + σe−θtW

(
e2tθ − 1

2θ

)
, t > 0

defines an Ornstein–Uhlenbeck process, where {W (t) = Wt} is a Wiener pro-
cess. In particular, if Yt = Xt − ν(1 − e−θt), t > 0, then {Yt} is an Ornstein–
Uhlenbeck process with ν = 0, Y0 = X0 and exact solution:

Yt = e−θtY0 + σW

(
1 − e−2tθ

2θ

)
, t > 0 . (4.9)

It follows that if we can simulate from an Ornstein–Uhlenbeck process with
ν = 0, say {Yt}, then we can also simulate from an Ornstein–Uhlenbeck process,
say {Xt}, with ν 6= 0. The following exact algorithm simulates {Yt} exactly
and then uses the relation Xt = Yt + ν(1− e−θt) to construct a sample path for
{Xt}. The algorithm simulates {Xt} exactly for any discretization.

Algorithm 4.17 (Generating an Ornstein–Uhlenbeck Process) Let 0 =
t0 < t1 < t2 < · · · < tn be the set of distinct times for which simulation of the
process is desired.

1. If X0 is random, draw X0 from its distribution. Set Y0 = X0.

2. For k = 1, 2, . . . , n compute:

Yk = e−θ(tk−tk−1)Yk−1 + σ

√
1 − e−2θ(tk−tk−1)

2θ
Zk ,

where Z1, . . . , Zn
iid∼ N(0, 1).

Copyright c© 2011 D.P. Kroese

4.9 Ornstein–Uhlenbeck Process 83

3. Output (X0, Xt1 , . . . , Xtn), where

Xtk = Yk + ν(1 − e−θtk), k = 1, . . . , n .

A realization of the process is given in Figure 4.15 using three different
starting conditions. The following code implements the algorithm.

%ou_timechange_ex.m

T=4; % final time

N=10^4; % number of steps

theta=2;nu=1;sig=0.2; % parameters

x=nan(N,1); x(1)=0; % initial point

h=T/(N-1); % step size

t=0:h:T; % time

% code the right-hand side of the updating formula

f=@(z,x)(exp(-theta*h)*x+sig*...

sqrt((1-exp(-2*h*theta))/(2*theta))*z);

for i=2:N

x(i)=f(randn,x(i-1));

end

x=x+nu*(1-exp(-theta*t’));

plot(t,x)

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

2

2.5

t

X
t

Figure 4.15: Three realizations of an Ornstein–Uhlenbeck process with param-
eters ν = 1, θ = 2, and σ = 0.2, starting from 0, 1, and 2. After about 2 time
units all paths have reached “stationarity” and fluctuate around the long-term
mean ν.

The Ornstein–Uhlenbeck process has applications in physics and finance.
For example, Xt is used to describe the velocity of a Brownian particle. The
term ν is then usually taken to be 0, and the resulting SDE is said to be of
Langevin type. In finance, the process is used to describe price fluctuations
around a mean price ν such that the process “reverts to the mean” — that is,
when Xt > ν the drift is negative, and when Xt < ν the drift is positive, so
that at all times the process tends to drift toward ν.

Copyright c© 2011 D.P. Kroese

84 Random Process Generation

4.10 Exercises

1. Write a program to generate realizations of a random walk where, starting
from position 0, at each time instant a step of size 1 is taken to the left or right
of the current position with equal probability, independently of the history of
the process.

2. Consider a random walk on the undirected graph in Figure 4.16. For exam-
ple, if the random walk at some time is in state 5, it will jump to 3, 4, or 6 at
the next transition, each with probability 1/3.

1

62

3

4

5

Figure 4.16: A graph.

(a) Simulate the random walk on a computer and verify that, in the long
run, the proportion of visits to the various nodes is in accordance with
the stationary distribution π = (1

9 ,
1
6 ,

2
9 ,

2
9 ,

1
6 ,

1
9).

(b) Generate various sample paths for the random walk on the integers for
p = 1/2 and p = 2/3.

3. A birth and death process is a Markov jump process whose Q matrix is a
tri-diagonal. Thus from each state i only transitions i→ i+1 and i→ i−1 are
allowed, with rates bi (a birth) and di (a death), respectively. Write a MATLAB

program to draw realizations from the following birth and death processes:

(a) The M/M/1 queue. Here bi = λ > 0, i = 0, 1, 2, . . . and di = µ > 0,
i = 1, 2, Try different values for λ and µ.

(b) The Yule process. Here bi = (n − i)/n, i = 0, . . . , n and di = i/n, i =
1, . . . , n. Try different values for n.

4. Suppose the following chemical reaction occurs inside a volume V :

X
c1

c2
Y , 2X

c3

c4
Z , W +X

c5

c6

2X ,

where c1, . . . , c6 are volume independent reaction rates. This stochas-
tic chemical reaction can be modelled as a four-dimensional Markov jump

Copyright c© 2011 D.P. Kroese

4.10 Exercises 85

process with system state at time t represented by the vector JV (t) =
(wV (t), xV (t), yV (t), zV (t))>. The transition rates are:

qV ((w, x, y, z), (w, x− 1, y + 1, z)) = c1 x

qV ((w, x, y, z), (w, x+ 1, y − 1, z)) = c2 y

qV ((w, x, y, z), (w, x− 2, y, z + 1)) = c3 x(x− 1)/(2V)

qV ((w, x, y, z), (w, x+ 2, y, z − 1)) = c4 z

qV ((w, x, y, z), (w − 1, x+ 1, y, z)) = c5w x/V

qV ((w, x, y, z), (w + 1, x− 1, y, z)) = c6 x(x− 1)/(2V) .

(a) Explain why, reasoning probabilistically, the transition rates should be as
given above.

(b) Simulate the Markov jump process {JV (t)} under rates c1 = c2 = c3 =
c4 = c5 = 1 and c6 = 10, and initial concentrations of wV (0) = xV (0) =
yV (0) = zV (0) = 100. Draw realizations of the processes.

(c) What happens if we take initial concentrations wV (0) = xV (0) = yV (0) =
zV (0) = 100V and let V get larger and larger?

5. Implement the Ornstein–Uhlenbeck process via Euler’s method. Take ν = 1,
θ = 2, and σ = 0.2. Try different starting positions, and take 106 steps with a
step size of 10−4.

Copyright c© 2011 D.P. Kroese

86 Random Process Generation

Copyright c© 2011 D.P. Kroese

Chapter 5

Markov Chain Monte Carlo

The only good Monte Carlo is a dead Monte Carlo.

Trotter and Tukey

Markov chain Monte Carlo (MCMC) is a generic method for approxi-
mate sampling from an arbitrary distribution. The main idea is to generate a
Markov chain whose limiting distribution is equal to the desired distribution.

For exact methods for random variable generation from commonly used dis-
tributions, see Chapter 2. Applications of MCMC to optimization can be found ☞ 25
in Chapter 8, in particular Section 8.3, which discusses simulated annealing. ☞ 145

5.1 Metropolis–Hastings Algorithm

The MCMC method originates from Metropolis et al. and applies to the fol-
lowing setting. Suppose that we wish to generate samples from an arbitrary
multidimensional pdf

f(x) =
p(x)

Z , x ∈ X ,

where p(x) is a known positive function and Z is a known or unknown nor-
malizing constant. Let q(y |x) be a proposal or instrumental density: a
Markov transition density describing how to go from state x to y. Similar to
the acceptance–rejection method, the Metropolis–Hastings algorithm is based ☞ 38
on the following “trial-and-error” strategy.

Algorithm 5.1 (Metropolis–Hastings Algorithm) To sample from a den-
sity f(x) known up to a normalizing constant, initialize with some X0 for which
f(X0) > 0. Then, for each t = 0, 1, 2, . . . , T − 1 execute the following steps:

1. Given the current state Xt, generate Y ∼ q(y |Xt).

2. Generate U ∼ U(0, 1) and deliver

Xt+1 =

{
Y if U 6 α(Xt,Y)

Xt otherwise ,
(5.1)

Copyright c© 2011 D.P. Kroese

88 Markov Chain Monte Carlo

where

α(x,y) = min

{
f(y) q(x |y)

f(x) q(y |x)
, 1

}
. (5.2)

The probability α(x,y) is called the acceptance probability. Note that in
(5.2) we may replace f by p.

We thus obtain the so-called Metropolis–Hastings Markov chain,
X0,X1, . . . ,XT , with XT approximately distributed according to f(x) for large
T . A single Metropolis–Hastings iteration is equivalent to generating a point
from the transition density κ(xt+1 |xt), where

κ(y |x) = α(x,y) q(y |x) + (1 − α∗(x)) δx(y) , (5.3)

with α∗(x) =
∫
α(x,y) q(y |x) dy and δx(y) denoting the Dirac delta function.

Since
f(x)α(x,y) q(y |x) = f(y)α(y,x) q(x |y)

and
(1 − α∗(x)) δx(y) f(x) = (1 − α∗(y)) δy(x) f(y) ,

the transition density satisfies the detailed balance equation:

f(x)κ(y |x) = f(y)κ(x |y) ,

from which it follows that f is the stationary pdf of the chain. In addition, if
the transition density q satisfies the conditions

P(α(Xt,Y) < 1 |Xt) > 0 ,

that is, the event {Xt+1 = Xt} has positive probability, and

q(y |x) > 0 for all x,y ∈ X ,

then f is the limiting pdf of the chain. As a consequence, to estimate an
expectation EH(X), with X ∼ f , one can use the following ergodic estimator:

1

T + 1

T∑

t=0

H(Xt) . (5.4)

The original Metropolis algorithm is suggested for symmetric proposal func-
tions; that is, for q(y |x) = q(x |y). Hastings modified the original MCMC algo-
rithm to allow non-symmetric proposal functions, hence the name Metropolis–
Hastings algorithm.

5.1.1 Independence Sampler

If the proposal function q(y |x) does not depend on x, that is, q(y |x) = g(y)
for some pdf g(y), then the acceptance probability is

α(x,y) = min

{
f(y) g(x)

f(x) g(y)
, 1

}
,

Copyright c© 2011 D.P. Kroese

5.1 Metropolis–Hastings Algorithm 89

and Algorithm 5.1 is referred to as the independence sampler. The indepen-
dence sampler is very similar to the acceptance–rejection method in Chapter 2.
Just as in that method, it is important that the proposal density g is close
to the target f . Note, however, that in contrast to the acceptance–rejection
method the independence sampler produces dependent samples. In addition, if
there is a constant C such that

f(x) =
p(x)∫
p(x) dx

6 Cg(x)

for all x, then the acceptance rate in (5.1) is at least 1/C whenever the chain
is in stationarity; namely,

P(U 6 α(X,Y)) =

∫∫
min

{
f(y) g(x)

f(x) g(y)
, 1

}
f(x) g(y) dx dy

= 2

∫∫
I

{
f(y) g(x)

f(x) g(y)
> 1

}
f(x) g(y) dx dy

>
2

C

∫∫
I

{
f(y) g(x)

f(x) g(y)
> 1

}
f(x) f(y) dx dy

>
2

C
P

(
f(Y)

g(Y)
>
f(X)

g(X)

)
=

1

C
.

In contrast, the acceptance rate in Algorithm 2.8 (acceptance–rejection) using ☞ 38
g as a proposal is always equal to 1/C.

5.1.2 Random Walk Sampler

If the proposal is symmetric, that is, q(y |x) = q(x |y), then the acceptance
probability (5.2) is

α(x,y) = min

{
f(y)

f(x)
, 1

}
, (5.5)

and Algorithm 5.1 is referred to as the random walk sampler. An example
of a random walk sampler is when Y = Xt + σZ in Step 1 of Algorithm 5.1,
where Z is typically generated from some spherically symmetrical distribution
(in the continuous case), such as N(0, I).

Example 5.1 (Bayesian Analysis of the Logit Model) Consider the
Bayesian analysis of the logistic regression model or logit model. This is a
commonly used generalized linear model, where binary data y1, . . . , yn (the re-
sponses) are assumed to be conditionally independent realizations from Ber(pi)
given p1, . . . , pn (that is, yi | pi ∼ Ber(pi), i = 1, . . . , n, independently), with

pi =
1

1 + e−x>

i β
, i = 1, . . . , n .

Here, xi = (xi1, xi2, . . . , xik)
> are the explanatory variables or covariates for

the i-th response and β = (β1, . . . , βk)
> are the parameters of the model with

multivariate normal prior: N(β0, V0). Thus, the Bayesian logit model can be
summarized as:

Copyright c© 2011 D.P. Kroese

90 Markov Chain Monte Carlo

• Prior: f(β) ∝ exp
(
−1

2(β − β0)
>V −1

0 (β − β0)
)
, β ∈ Rk.

• Likelihood: f(y |β) =
∏n

i=1 p
yi
i (1 − pi)

1−yi , p−1
i = 1 + exp(−x>

i β).

Since the posterior pdf f(β |y) ∝ f(β,y) = f(β)f(y |β) cannot be written
in a simple analytical form, the Bayesian analysis proceeds by (approximately)
drawing a sample from the posterior f(β |y) in order to obtain estimates of
various quantities of interest such as E[β |y] and Cov(β |y). In addition, sim-
ulation allows a convenient way to explore the marginal posterior densities of
each model parameter.

To approximately draw from the posterior we use the random walk sampler
with a multivariate tν(µ,Σ) proposal tailored to match the overall shape of☞ 58
the posterior around its mode. The vector µ is taken as the mode of the
posterior; that is, as argmaxβ ln f(β |y), which can be obtained approximately
via a Newton–Raphson procedure with gradient

∇ ln f(β |y) =

n∑

i=1

(
yi −

1

1 + e−x>

i β

)
xi − V −1

0 (β − β0) ,

and Hessian

H = −
n∑

i=1

e−x>

i β

(1 + e−x>

i β)2
xi x

>
i − V −1

0 ,

where we have used the fact that the logarithm of the posterior (ignoring con-
stant terms) is:

−1

2
(β−β0)

>V −1
0 (β−β0)−

n∑

i=1

yi ln
(
1 + e−x>

i β
)
+(1−yi)

(
x>

i β + ln
(
1 + e−x>

i β
))

.

The scale matrix Σ of the proposal distribution tν(µ,Σ) is chosen as the inverse☞ 58
of the observed Fisher information matrix: Σ = −H−1. Finally, the shape ν
(degrees of freedom) is arbitrarily set to 10. The random walk sampler is
initialized at the mode µ of the posterior. If β∗ is a newly generated proposal
and β is the current value, the acceptance criterion (5.2) in the Metropolis–
Hastings algorithm can be written as:

α(β,β∗) = min

{
f(β∗,y)

f(β,y)
, 1

}
.

The following MATLAB code implements this procedure for the logit model using
an artificial data set.

%logit_model.m

clear all,clc

n=5000; % number of data points (y_1,...,y_n)

k=3; % number of explanatory variables

% generate artificial dataset

randn(’seed’, 12345); rand(’seed’, 67890);

truebeta = [1 -5.5 1]’;

Copyright c© 2011 D.P. Kroese

5.2 Gibbs Sampler 91

X = [ones(n,1) randn(n,k-1)*0.1]; % design matrix

Y = binornd(1,1./(1+exp(-X*truebeta)));

bo=zeros(k,1); % we set Vo=100*eye(k);

% determine the mode using Newton Raphson

err=inf; b=bo; % initial guess

while norm(err)>10^(-3)

p=1./(1+exp(-X*b));

g=X’*(Y-p)-(b-bo)/100;

H=-X’*diag(p.^2.*(1./p-1))*X-eye(k)/100;

err=H\g; % compute Newton-Raphson correction

b=b-err; % update Newton guess

end

% scale parameter for proposal

Sigma=-H\eye(k); B=chol(Sigma);

% logarithm of joint density (up to a constant)

logf=@(b)(-.5*(b-bo)’*(b-bo)/100-Y’*log(1+exp(-X*b))...

-(1-Y)’*(X*b+log(1+exp(-X*b))));

alpha=@(x,y)min(1,exp(logf(y)-logf(x)));

df=10; T=10^4; data=nan(T,k); %allocate memory

for t=1:T

% make proposal from multivariate t

b_star= b + B*(sqrt(df/gamrnd(df/2,2))*randn(k,1));

if rand<alpha(b,b_star)

b=b_star;

end

data(t,:)=b’;

end

b_hat=mean(data)

Cov_hat=cov(data)

Typical estimates for the posterior mean E[β |y] and covariance Cov(β |y) are

Ê[β |y] =

0.980
−5.313
1.136

 and ̂Cov(β |y) =

0.0011 −0.0025 0.0005
−0.0025 0.1116 −0.0095
0.0005 −0.0095 0.1061

 .

Since the prior we employed is relatively non-informative, it is not surprising
that the estimated posterior mean is very similar to the maximum likelihood
estimate: β̂ = (0.978,−5.346, 1.142)>.

5.2 Gibbs Sampler

The Gibbs sampler can be viewed as a particular instance of the Metropolis–
Hastings algorithm for generating n-dimensional random vectors. Due to its
importance it is presented separately. The distinguishing feature of the Gibbs

Copyright c© 2011 D.P. Kroese

92 Markov Chain Monte Carlo

sampler is that the underlying Markov chain is constructed from a sequence of
conditional distributions, in either a deterministic or random fashion.

Suppose that we wish to sample a random vector X = (X1, . . . , Xn) ac-
cording to a target pdf f(x). Let f(xi |x1, . . . , xi−1, xi+1, . . . , xn) represent
the conditional pdf of the i-th component, Xi, given the other components
x1, . . . , xi−1, xi+1, . . . , xn. Here we use a Bayesian notation.

Algorithm 5.2 (Gibbs Sampler) Given an initial state X0, iterate the fol-
lowing steps for t = 0, 1,

1. For a given Xt, generate Y = (Y1, . . . , Yn) as follows:

(a) Draw Y1 from the conditional pdf f(x1 |Xt,2, . . . , Xt,n).

(b) Draw Yi from f(xi |Y1, . . . , Yi−1, Xt,i+1, . . . , Xt,n), i = 2, . . . , n−1.

(c) Draw Yn from f(xn |Y1, . . . , Yn−1).

2. Let Xt+1 = Y.

The transition pdf is given by

κ1→n(y |x) =
n∏

i=1

f(yi | y1, . . . , yi−1, xi+1, . . . , xn) , (5.6)

where the subscript 1 → n indicates that the components of vector x are up-
dated in the order 1 → 2 → 3 → · · · → n. Note that in the Gibbs sampler every
“proposal” y, is accepted. The transition density of the reverse move y → x,
in which the vector y is updated in the order n→ n− 1 → n− 2 → · · · → 1 is

κn→1(x |y) =
n∏

i=1

f(xi | y1, . . . , yi−1, xi+1, . . . , xn) .

Hammersley and Clifford prove the following result.

Theorem 5.2.1 (Hammersley–Clifford) Let f(xi) be the i-th marginal den-
sity of the pdf f(x). Suppose that density f(x) satisfies the positivity condi-
tion, that is, for every y ∈ {x : f(xi) > 0, i = 1, . . . , n}, we have f(y) > 0.
Then,

f(y)κn→1(x |y) = f(x)κ1→n(y |x) .

Proof (outline): Observe that

κ1→n(y |x)

κn→1(x |y)
=

n∏

i=1

f(yi | y1, . . . , yi−1, xi+1, . . . , xn)

f(xi | y1, . . . , yi−1, xi+1, . . . , xn)

=

n∏

i=1

f(y1, . . . , yi, xi+1, . . . , xn)

f(y1, . . . , yi−1, xi, . . . , xn)

=
f(y)

∏n−1
i=1 f(y1, . . . , yi, xi+1, . . . , xn)

f(x)
∏n

j=2 f(y1, . . . , yj−1, xj , . . . , xn)

=
f(y)

∏n−1
i=1 f(y1, . . . , yi, xi+1, . . . , xn)

f(x)
∏n−1

j=1 f(y1, . . . , yj , xj+1, . . . , xn)
=
f(y)

f(x)
.

Copyright c© 2011 D.P. Kroese

5.2 Gibbs Sampler 93

The result follows by rearranging the last identity.

The Hammersley–Clifford condition is similar to the detailed balance condi-
tion for the Metropolis–Hastings sampler, because integrating both sides with
respect to x yields the global balance equation:

∫
f(x)κ1→n(y |x) dy = f(y) ,

from which we can conclude that f is the stationary pdf of the Markov chain
with transition density κ1→n(y |x). In addition, it can be shown that the
positivity assumption on f implies that the Gibbs Markov chain is irreducible
and that f is its limiting pdf. In practice the positivity condition is difficult to
verify. However, there are a number of weaker and more technical conditions
which ensure that the limiting pdf of the process {Xt, t = 1, 2, . . .} generated
via the Gibbs sampler is f , and that the convergence to f is geometrically fast.

Algorithm 5.2 presents a systematic (coordinatewise) Gibbs sampler. That
is, the components of vector X are updated in the coordinatewise order 1 → 2 →
· · · → n. The completion of all the conditional sampling steps in the specified
order is called a cycle. Alternative updating of the components of vector X
are possible. In the reversible Gibbs sampler a single cycle consists of the
coordinatewise updating

1 → 2 → · · · → n− 1 → n→ n− 1 → · · · → 2 → 1 .

In the random sweep/scan Gibbs sampler a single cycle can either consist
of one or several coordinates selected uniformly from the integers 1, . . . , n, or a
random permutation π1 → π2 → · · · → πn of all coordinates. In all cases, except
for the systematic Gibbs sampler, the resulting Markov chain {Xt, t = 1, 2, . . .}
is reversible. In the case where a cycle consists of a single randomly selected
coordinate, the random Gibbs sampler can be formally viewed as a Metropolis–
Hastings sampler with transition function

q(y |x) =
1

n
f(yi |x1, . . . , xi−1, xi+1, . . . , xn) =

1

n

f(y)∑
yi
f(y)

,

where y = (x1, . . . , xi−1, yi, xi+1, . . . , xn). Since
∑

yi
f(y) can also be written

as
∑

xi
f(x), we have

f(y) q(x |y)

f(x) q(y |x)
=
f(y) f(x)

f(x) f(y)
= 1 ,

so that the acceptance probability α(x,y) is 1 in this case.

Example 5.2 (Zero-Inflated Poisson Model) Gibbs sampling is one of the
main computational techniques used in Bayesian analysis. In the zero-
inflated Poisson model, the random data X1, . . . , Xn are assumed to be
of the form Xi = Ri Yi, where the Y1, . . . , Yn ∼iid Poi(λ) are independent of
R1, . . . , Rn ∼iid Ber(p). Given an outcome x = (x1, . . . , xn), the objective is to
estimate both λ and p. A typical Bayesian data analysis gives the following
hierarchical model:

Copyright c© 2011 D.P. Kroese

94 Markov Chain Monte Carlo

• p ∼ U(0, 1) (prior for p),

• (λ | p) ∼ Gamma(a, b) (prior for λ),

• (ri | p, λ) ∼ Ber(p) independently (from the model above),

• (xi | r, λ, p) ∼ Poi(λ ri) independently (from the model above),

where a and b are known parameters. It follows that the joint pdf of all param-
eters and x is

f(x, r, λ, p) =
baλa−1e−bλ

Γ(a)

n∏

i=1

e−λ ri(λ ri)
xi

xi!
pri(1 − p)1−ri

=
baλa−1e−bλ

Γ(a)
e−λ

P
i ri p

P
i ri (1 − p)n−P

i ri λ
P

i xi

n∏

i=1

rxi
i

(xi)!
.

The posterior pdf f(λ, p, r |x) ∝ f(x, r, λ, p) is of large dimension, which makes
analytical computation using Bayes’ formula intractable. Instead, the Gibbs
sampler (Algorithm 5.2) provides a convenient tool for approximate sampling
and exploration of the posterior. Here the conditionals of the posterior are:

• f(λ | p, r,x) ∝ λa−1+
P

i xi e−λ(b+
P

i ri),

• f(p |λ, r,x) ∝ p
P

i ri (1 − p)n−P
i ri ,

• f(rk |λ, p,x) ∝

(
p e−λ

1 − p

)rk

rxk
k .

In other words, we have:

• (λ | p, r,x) ∼ Gamma
(
a+

∑

i

xi, b+
∑

i

ri

)
,

• (p |λ, r,x) ∼ Beta
(
1 +

∑

i

ri, n+ 1 −
∑

i

ri

)
,

• (rk |λ, p,x) ∼ Ber

(
p e−λ

p e−λ + (1 − p)I{xk=0}

)
.

To test the accuracy of the Gibbs sampler (Algorithm 5.2), we generate n =
100 random data points from the zero-inflated Poisson model using parameters
p = 0.3 and λ = 2. To recover the parameters from the data, we choose a = 1
and b = 1 for the prior distribution of λ, and generate a (dependent) sample
of size 105 from the posterior distribution using the Gibbs sampler. A 95%
Bayesian confidence interval (credible interval) is constructed using the script
below. Note that MATLAB’s statistics toolbox function gamrnd(a,b) draws from
the Gamma(a, 1/b) distribution. The estimated Bayesian confidence intervals
are (1.33, 2.58) for λ and (0.185, 0.391) for p. Observe that the true values lie
within these intervals.

%zip.m

n=100; p=.3; lambda=2;

% generate ZIP random variables

Copyright c© 2011 D.P. Kroese

5.3 Hit-and-Run Sampler 95

data=poissrnd(lambda,n,1).*(rand(n,1)<p);

% now try to recover the ZIP parameters from the data

P=rand; % starting guess for p

lam=gamrnd(1,1); % starting guess for lambda

r=(rand(n,1)<P); % starting guess for r

Sum_data=sum(data);

gibbs_sample=zeros(10^5,2);

% apply the Gibbs sampler

for k=1:10^5

Sum_r=sum(r);

lam=gamrnd(1+Sum_data,1/(1+Sum_r));

P=betarnd(1+Sum_r,n+1-Sum_r);

prob=exp(-lam)*P./(exp(-lam)*P+(1-P)*(data==0));

r=(rand(n,1)<prob);

gibbs_sample(k,:)=[P,lam];

end

% 95% probability interval for lambda

prctile(gibbs_sample(:,2),[2.5,97.5])

% 95% probability interval for p

prctile(gibbs_sample(:,1),[2.5,97.5])

Gibbs sampling is advantageous whenever it is easy to sample from the
conditional distributions of the joint density. Note that it is not necessary to
update each component of the random vector X individually. Instead, blocks
or groups of variables can be updated simultaneously. For example, to sample
from the joint pdf f(x1, x2, x3) we can consider the following version of the
Gibbs sampler.

Algorithm 5.3 (Grouped Gibbs Sampler) To sample from f(x1, x2, x3)
with a given initial state X0, iterate the following steps for t = 0, 1, 2,

1. For a given Xt = (Xt,1, Xt,2, Xt,3), generate Y = (Y1, Y2, Y3) as follows:

(a) Draw (Y1, Y2) from the conditional pdf f(y1, y2 |Xt,3).

(b) Draw Y3 from the conditional pdf f(y3 |Y1, Y2).

2. Let Xt+1 = Y.

The grouped variables in Algorithm 5.3 are x1 and x2. Significant speed-up of
the convergence of the chain can be achieved when highly correlated variables
are grouped together.

5.3 Hit-and-Run Sampler

The hit-and-run sampler, pioneered by Smith, is among the first MCMC sam-
plers in the category of line samplers.. As in previous sections, the objective
is to sample from a target distribution f(x) = p(x)/Z on X ⊆ Rn.

Copyright c© 2011 D.P. Kroese

96 Markov Chain Monte Carlo

We first describe the original hit-and-run sampler for generating from a
uniform distribution on a bounded open region X of Rn. At each iteration,
starting from a current point x, a direction vector d is generated uniformly
on the surface of an n-dimensional hypersphere. The intersection of the corre-
sponding bidirectional line through x and the enclosing box of X defines a line
segment L . The next point y is then selected uniformly from the intersection
of L and X .

Figure 5.1 illustrates the hit-and-run algorithm for generating uniformly
from the set X (the gray region) which is bounded by a rectangle. Given the
point x in X , the direction d is generated, which defines the line segment
L = uv. Then, a point y is chosen uniformly on L ∩ X , for example, by
the acceptance–rejection method, that is, generate a point uniformly on L and
then accept this point only if it lies in X .

u

v

d

X

x

y

Figure 5.1: Illustration of hit-and-run on a square in two dimensions.

The uniform hit-and-run sampler asymptotically generates uniformly dis-
tributed points over arbitrary open regions of Rn. One desirable property of
hit-and-run is that it can globally reach any point in the set in one step; that
is, there is a positive probability of sampling any neighborhood in the set.
Lovász proves that hit-and-run on a convex body in n dimensions produces
an approximately uniformly distributed sample in polynomial time, O(n3). He
notes that in practice the hit-and-run algorithm appears to offer the most rapid
convergence to a uniform distribution.

We now describe a more general version of the hit-and-run algorithm for
sampling from a any strictly positive continuous pdf f(x) = p(x)/Z on any
region X — bounded or unbounded. Similar to the Metropolis–Hastings al-
gorithm we generate a proposal move, which is then accepted or rejected with
probability that depends on f . A proposal move y is generated by stepping
away from the current point (at iteration t) x in the direction d with a step
of size λ. The step size λ at iteration t is generated from a proposal density
gt(λ |d,x). The candidate point y = x + λd is then accepted with probability

α(x,y) = min

{
f(y) gt

(
|λ|
∣∣− sgn(λ)d,y

)

f(x) gt

(
|λ|
∣∣ sgn(λ)d,x

) , 1

}
, (5.7)

Copyright c© 2011 D.P. Kroese

5.3 Hit-and-Run Sampler 97

as in the Metropolis–Hastings acceptance criterion (5.1); otherwise, the Markov
chain remains in the current state x. The condition (5.7) ensures that gt satisfies
the detailed balance condition:

gt

(
‖x − y‖

∣∣∣∣
y − x

‖x − y‖ ,x
)
α(x,y)f(x) = gt

(
‖x − y‖

∣∣∣∣
x − y

‖x − y‖ ,y
)
α(y,x)f(y) .

We refer to proposal densities that satisfy the detailed balance equations as
valid proposals. At iteration t, let

Mt
def
= {λ ∈ R : x + λd ∈ X } .

A valid proposal density gt(λ |d,x) can be one of the following:

• gt(λ |d,x) = g̃t(x + λd), λ ∈ R. The acceptance probability (5.7) then
simplifies to

α(x,y) = min

{
f(y) g̃t(x)

f(x) g̃t(y)
, 1

}
.

A common choice is

gt(λ |d,x) =
f(x + λd)∫

Mt
f(x + ud) du

, λ ∈ Mt , (5.8)

in which case (5.7) further simplifies to α(x,y) = 1.

• gt(λ |d,x) = g̃t(λ), λ ∈ R, is a symmetric (g̃t(λ) = g̃t(−λ)) continuous
pdf that may depend only on Mt. The acceptance probability (5.7) then
simplifies to

α(x,y) = min{f(y)/f(x), 1} .
If X is unbounded it is common to choose g̃t(λ) as the normal pdf with
mean 0 and variance that depends on Mt. Alternatively, if X is bounded
a common choice is

g̃t(λ) =
I{λ∈Mt}∫

R
I{u∈Mt} du

.

In summary, the hit-and-run algorithm reads as follows.

Algorithm 5.4 (Hit-and-Run)

1. Initialize with X1 ∈ X and set t = 1.

2. Generate a random direction dt according to a uniform distribution on
the unit n-dimensional hypersphere. In other words, generate:

dt =

(
Z1

‖Z‖ , · · · ,
Zn

‖Z‖

)>
, Z1, . . . , Zn

iid∼ N(0, 1) ,

where ‖Z‖ =
√
Z2

1 + · · · + Z2
n.

3. Generate λ from a valid proposal density gt(λ |dt,Xt).

Copyright c© 2011 D.P. Kroese

98 Markov Chain Monte Carlo

4. Set Y = Xt + λdt, and let:

Xt+1 =

{
Y with probability α(Xt,Y) in (5.7)
Xt otherwise.

5. If a stopping criterion is met, stop; otherwise, increment t and repeat
from Step 2.

Note that the proposal (5.8) gives a Gibbs-type sampling algorithm in which
every candidate point is accepted and Xt+1 6= Xt.

Example 5.3 (Truncated Multivariate Normal Generator) A common
computational problem in Bayesian data analysis involves sampling from a trun-
cated multivariate normal pdf:

f(x) ∝ p(x) = exp
(
− 1

2
(x − µ)>Σ−1(x − µ)

)
I{x∈X } ,

where X ⊂ Rn. The hit-and-run sampler can be used to efficiently sample in
such cases. With (5.8) as the proposal, the pdf of λ is:

gt(λ |d,x) ∝ exp

(
−d>Σ−1d

2
λ2 − d>Σ−1(x − µ) λ

)
I{x+λd∈X } ,

which corresponds to a truncated univariate normal distribution with mean

−d>Σ−1(x − µ)

d>Σ−1d

and variance (d>Σ−1d)−1, truncated to the set Mt = {λ : x + λd ∈ X }.
For example, suppose that X = {x ∈ R2 : x>x > 25}, then denoting D =
(d>x)2 − x>x + 25, we have two cases:

• Mt ≡ R, if D < 0;

• Mt ≡ (−∞, −
√
D − d>x] ∪ [

√
D − d>x, ∞), if D > 0.

The following code implements this particular example and generates 104 points
in R2 with µ = (1/2, 1/2)> and covariance matrix with Σ11 = Σ22 = 1, Σ12 =
0.9. Figure 5.2 shows a scatter plot of the output and the boundary of X .

Copyright c© 2011 D.P. Kroese

5.3 Hit-and-Run Sampler 99

−6 −4 −2 0 2 4 6
−5

0

5

x1

x
2

Figure 5.2: Hit-and-run sampling from a truncated bivariate normal density.

%Hit_and_run.m

Sig=[1,0.9;0.9,1]; Mu=[1,1]’/2; B=chol(Sig)’;

x=[5,5]’; %starting point

T=10^4; data=nan(T,2);% number of points desired

for t=1:T

d=randn(2,1); d=d/norm(d);

D=(d’*x)^2-x’*x+25;

z1=B\d; z2=B\(x-Mu);

% determine mean and std of lambda dist.

sig=1/norm(z1); mu=-z1’*z2*sig^2;

if D<0

lam=mu+randn*sig;

else

lam=normt2(mu,sig,-sqrt(D)-d’*x,sqrt(D)-d’*x);

end

x=x+lam*d;

data(t,:)=x’;

end

plot(data(:,1),data(:,2),’r.’),axis equal,

hold on

ezplot(’x^2+y^2-25’)

The code above uses the function normt2.m, which draws from the N(µ, σ2)
distribution truncated on the set (−∞, a] ∪ [b,∞), via the inverse-transform
method.

Copyright c© 2011 D.P. Kroese

100 Markov Chain Monte Carlo

function out=normt2(mu,sig,a,b)

pb=normcdf((b-mu)/sig);

pa=normcdf((a-mu)/sig);

if rand<pa/(pa+1-pb)

out=mu+sig*norminv(pa*rand(size(mu)));

else

out=mu+sig*norminv((1-pb)*rand(size(mu))+pb);

end

5.4 Exercises

1. Consider a diffusion process defined by the SDE

dXt =
1

2
∇ ln f(Xt) dt+ dWt ,

where f is a probability density and ∇ ln f(Xt) denotes the gradient of ln f(x)
evaluated at Xt. Suppose the proposal state Y in Step 1 of Algorithm 5.1
corresponds to the Euler discretization of this SDE for some step size h:☞ 76

Y = Xt +
h

2
∇ ln f(Xt) +

√
hZ, Z ∼ N(0, I) .

This gives a Langevin Metropolis–Hastings sampler. Implement the sam-
pler to draw N = 105 dependent samples from the Gamma(2, 1) distribution.
Use the kde.m program (see Exercise 3 in Section 3.4) to assess how well the
estimated pdf fits the true pdf. Investigate how the step size h and the length
of the burn-in period affect the fit.

2. LetX1, . . . , Xn be a random sample from the N(µ, σ2) distribution. Consider
the following Bayesian model:

• f(µ, σ2) = 1/σ2;

• (xi |µ, σ) ∼ N(µ, σ2), i = 1, . . . , n independently.

Note that the prior for (µ, σ2) is improper. That is, it is not a pdf in itself, but
by obstinately applying Bayes’ formula, it does yield a proper posterior pdf.
In some sense it conveys the least amount of information about µ and σ2. Let
x = (x1, . . . , xn) represent the data. The posterior pdf is given by

f(µ, σ2 |x) =
(
2π σ2

)−n/2
exp

{
−1

2

∑
i(xi − µ)2

σ2

}
1

σ2
.

We wish to sample from this pdf.

(a) Derive the distribution of µ given (σ2,x).

Copyright c© 2011 D.P. Kroese

5.4 Exercises 101

(b) Prove that

f(σ2 |µ,x) ∝ 1

(σ2)n/2+1
exp

(
−n

2

Vµ

σ2

)
, (5.9)

where Vµ =
∑

i(xi − µ)2/n.

(c) Using (a) and (b) write a Gibbs sampler (in pseudo code) to draw a
dependent sample from the posterior pdf.

3. Let X = (X,Y)> be a random column vector with a bivariate normal
distribution with expectation vector 0 = (0, 0)> and covariance matrix

Σ =

(
1 %
% 1

)
.

(a) Show that (Y |X = x) ∼ N(% x, 1 − %2) and (X |Y = y) ∼ N(% y, 1 − %2).

(b) Write a systematic Gibbs sampler to draw 104 samples from the bivariate
distribution N(0,Σ) and plot the data for % = 0, 0.7, and 0.9.

4. Consider the 2-dimensional pdf

f(x1, x2) = c exp(−(x2
1x

2
2 + x2

1 + x2
2 − 8x1 − 8x2)/2) ,

where c is a normalization constant.

(a) Plot the (3D) graph of f and the corresponding contour plot.

(b) Implement a Gibbs sampler to draw from f .

(c) Implement a random walk sampler to draw from f , using proposals of the
form Y = x + Z, where Z is 2-dimensional standard normal.

Copyright c© 2011 D.P. Kroese

102 Markov Chain Monte Carlo

Copyright c© 2011 D.P. Kroese

Chapter 6

Variance Reduction

The estimation of performance measures in Monte Carlo simulation can be made
more efficient by utilizing known information about the simulation model. The
more that is known about the behavior of the system, the greater the amount
of variance reduction that can be achieved. The main variance reduction tech-
niques discussed in this chapter are:

1. Antithetic random variables.

2. Control variables.

3. Conditional Monte Carlo.

4. Importance sampling.

6.1 Variance Reduction Example

Each of the variance reduction methods is illustrated using the following es-
timation problem concerning a bridge network. The problem is sufficiently
complicated to warrant Monte Carlo simulation, while easy enough to imple-
ment, so that the workings of each technique can be concisely illustrated within
the same context.

Example 6.1 (Bridge Network) Consider the undirected graph in Fig-
ure 6.1, depicting a bridge network.X1X2 X3 X4X5

1

A B

Figure 6.1: What is the expected length of the shortest path from A to B?

Copyright c© 2011 D.P. Kroese

104 Variance Reduction

Suppose we wish to estimate the expected length ` of the shortest path
between nodes (vertices) A and B, where the lengths of the links (edges) are
random variables X1, . . . , X5. We have ` = EH(X), where

H(X) = min{X1 +X4, X1 +X3 +X5, X2 +X3 +X4, X2 +X5} . (6.1)

Note that H(x) is nondecreasing in each component of the vector x. Sup-
pose the lengths {Xi} are independent and Xi ∼ U(0, ai), i = 1, . . . , 5
with (a1, . . . , a5) = (1, 2, 3, 1, 2). Writing Xi = ai Ui, i = 1, . . . , 5 with
{Ui} ∼iid U(0, 1), we can restate the problem as the estimation of

` = Eh(U) , (6.2)

where U = (U1, . . . , U5) and h(U) = H(a1U1, . . . , a5U5). The exact value can
be determined by conditioning (see Section 6.4) and is given by

` =
1339

1440
= 0.9298611111

Crude Monte Carlo (CMC) proceeds by generating U1, . . . ,UN
iid∼ U(0, 1)5

and returning

̂̀=
1

N

N∑

k=1

h(Uk)

as an estimate for `. To assess the accuracy of the estimate, we need to look at
the probability distribution of the estimator ̂̀. In particular, the expectation of
̂̀ is ` (the estimator is unbiased), and the variance of ̂̀ is σ2/N , where σ2 is the
variance of h(U). Hence, if σ2 is finite, then Var(̂̀) → 0 as N → ∞. Moreover,
by the central limit theorem, ̂̀has approximately a N(`, σ2/N) distribution for
large N . This implies that for large N

P

(
|̂̀− `|√
σ2

√
N
> z1−α/2

)
≈ α ,

where z1−α/2 is the 1 − α/2 quantile of the standard normal distribution. Re-

placing σ2 with its unbiased estimator S2 =
∑N

i=1(h(Ui) − ̂̀)2/(N − 1) — the
sample variance of h(U1), . . . , h(UN)—, it follows that for large N

P

(
̂̀− z1−α/2

S√
N

6 ` 6 ̂̀+ z1−α/2
S√
N

)
≈ α .

In other words, (̂̀−z1−α/2
S√
N
, ̂̀+z1−α/2

S√
N

) is an approximate α-confidence

interval for `. Typical values for α are 0.90 and 0.95, with corresponding (0.95
and 0.975) quantiles 1.65 and 1.96. The accuracy of an estimate ̂̀ is often
reported by stating its estimated relative error S/(̂̀

√
N).

Copyright c© 2011 D.P. Kroese

6.2 Antithetic Random Variables 105

The following MATLAB program implements the CMC simulation. For a
sample size of N = 104 a typical estimate is ̂̀ = 0.930 with an estimated
relative error of 0.43%.

%bridgeCMC.m

N = 10^4;

U = rand(N,5);

y = h(U);

est = mean(y)

percRE = std(y)/sqrt(N)/est*100

function out=h(u)

a=[1,2,3,1,2]; N = size(u,1);

X = u.*repmat(a,N,1);

Path_1=X(:,1)+X(:,4);

Path_2=X(:,1)+X(:,3)+X(:,5);

Path_3=X(:,2)+X(:,3)+X(:,4);

Path_4=X(:,2)+X(:,5);

out=min([Path_1,Path_2,Path_3,Path_4],[],2);

6.2 Antithetic Random Variables

A pair of real-valued random variables (Y, Y ∗) is called an antithetic pair if
Y and Y ∗ have the same distribution and are negatively correlated. The main
application of antithetic random variables in Monte Carlo estimation is based
on the following theorem.

Theorem 6.2.1 (Antithetic Estimator) Let N be an even number and let
(Y1, Y

∗
1), . . . , (YN/2, Y

∗
N/2) be independent antithetic pairs of random variables,

where each Yk and Y ∗
k is distributed as Y . The antithetic estimator

̂̀(a) =
1

N

N/2∑

k=1

{Yk + Y ∗
k } , (6.3)

is an unbiased estimator of ` = EY , with variance

Var(̂̀(a)) =
N/2

N2
(Var(Y) + Var(Y ∗) + 2 Cov(Y, Y ∗))

= (Var(Y) + Cov(Y, Y ∗))/N

=
Var(Y)

N
(1 + %Y,Y ∗) ,

where %Y,Y ∗ is the correlation between Y and Y ∗.

Copyright c© 2011 D.P. Kroese

106 Variance Reduction

Note that (6.3) is simply the sample mean of the independent random vari-
ables {(Yk+Y ∗

k)/2}. Since the variance of the CMC estimator ̂̀= N−1
∑N

k=1 Yi

is Var(Y)/N , the above theorem shows that the use of antithetic variables leads
to a smaller variance of the estimator by a factor of 1 + %Y,Y ∗ . The amount of
reduction depends crucially on the amount of negative correlation between the
antithetic variables.

In general, the output of a simulation run is of the form Y = h(U), where
h is a real-valued function and U = (U1, U2, . . .) is a random vector of iid
U(0, 1) random variables. Suppose that U∗ is another vector of iid U(0, 1)
random variables which is dependent on U and for which Y and Y ∗ = h(U∗)
are negatively correlated. Then (Y, Y ∗) is an antithetic pair. In particular, if h
is a monotone function in each of its components, then the choice U∗ = 1−U,
where 1 is the vector of 1s, yields an antithetic pair.

An alternative to CMC for estimating ` = EY = Eh(U) is thus as follows.

Algorithm 6.1 (Antithetic Estimation for Monotone h)

1. Generate Y1 = h(U1), . . . , YN/2 = h(UN/2) from independent simulation
runs.

2. Let Y ∗
1 = h(1 − U1), . . . , Y

∗
N/2 = h(1 − UN/2).

3. Compute the sample covariance matrix corresponding to the pairs
{(Yk, Y

∗
k)}:

C =

1
N/2−1

∑N/2
k=1 (Yk − Ȳ)2 1

N/2−1

∑N/2
k=1 (Yk − Ȳ)(Y ∗

k − Ȳ ∗)

1
N/2−1

∑N/2
k=1 (Yk − Ȳ)(Y ∗

k − Ȳ ∗) 1
N/2−1

∑N/2
k=1 (Y ∗

k − Ȳ ∗)2

 .

4. Estimate ` via the antithetic estimator ̂̀(a) in (6.3) and determine an
approximate 1 − α confidence interval as

(
̂̀(a) − z1−α/2SE, ̂̀(a) + z1−α/2SE

)
,

where SE is the estimated standard error:

SE =

√
C1,1 + C2,2 + 2C1,2

2N
,

and zγ denotes the γ-quantile of the N(0, 1) distribution.

For each of the N/2 runs in Step 2 one does not necessarily have to store
the complete sequence U = (U1, U2, . . .) of random numbers in memory, but
simply save the random seeds for each sequence.☞ 10

Example 6.2 (Antithetic Estimation for the Bridge Network) The
following MATLAB program implements an antithetic estimator of the expected
length of the shortest path ` in Example 6.1.

A typical estimate using N = 104 samples is ̂̀(a) = 0.929 with an estimated
relative error of 0.2%. Figure 6.2 illustrates that the correlation between h(U)

Copyright c© 2011 D.P. Kroese

6.2 Antithetic Random Variables 107

and h(1−U) is relatively high in this case. The correlation coefficient is around
−0.77, which means a more than four-fold reduction in simulation effort when
compared to CMC. Function h.m in the code that follows is the same as in
Example 6.1.

%compare_CMC_and_ARV.m

N=10^4;

U=rand(N/2,5); % get uniform random variables

y = h(U); ya = h(1-U);

ell=(mean(y) + mean(ya))/2;

C=cov(y,ya);

var_h = sum(sum(C))/(2*N);

corr = C(1,2)/sqrt(C(1,1)*C(2,2));

fprintf(’ell= %g,RE = %g,corr = %g\n’,ell,sqrt(var_h)/ell, corr)

plot(y,ya,’.’)

U = rand(N,5);

yb = h(U);

var_hb = var(yb)/N;

ReB = sqrt(var_hb)/ell

0 0.5 1 1.5 2
0

0.5

1

1.5

2

h(U)

h
(1

−
U

)

Figure 6.2: Scatter plot of N = 104 antithetic pairs (Y, Y ∗) for the bridge
network.

Remark 6.2.1 (Normal Antithetic Random Variables) Antithetic pairs
can also be based on distributions other than the uniform. For example, sup-
pose that Y = H(Z), where Z = (Z1, Z2, . . .) is a vector of iid standard normal
random variables. By the inverse-transform method we can write Y = h(U), ☞ 26
with h(u) = H(Φ−1(u1),Φ

−1(u2), . . .), where Φ is the cdf of the N(0, 1) distri-
bution. Taking U∗ = 1 − U gives Z∗ = (Φ−1(U∗

1),Φ−1(U∗
2), . . .) = −Z, so that

(Y, Y ∗) with Y ∗ = H(−Z) forms an antithetic pair provided that Y and Y ∗ are
negatively correlated, which is the case if H is a monotone function in each of
its components.

Copyright c© 2011 D.P. Kroese

108 Variance Reduction

6.3 Control Variables

Let Y be the output of a simulation run. A random variable Ỹ , obtained from
the same simulation run, is called a control variable for Y if Y and Ỹ are
correlated (negatively or positively) and the expectation of Ỹ is known. The use
of control variables for variance reduction is based on the following observation.

Theorem 6.3.1 (Control Variable Estimation) Let Y1, . . . , YN be the out-
put of N independent simulation runs, and let Ỹ1, . . . , ỸN be the corresponding
control variables, with EỸk = ˜̀ known. Let %

Y,eY be the correlation coefficient

between each Yk and Ỹk. For each α ∈ R the (linear) estimator

̂̀(c) =
1

N

N∑

k=1

[
Yk − α

(
Ỹk − ˜̀

)]
(6.4)

is an unbiased estimator for ` = EY . The minimal variance of ̂̀(c) is

Var(̂̀(c)) =
1

N
(1 − %2

Y,eY)Var(Y) (6.5)

which is obtained for α = Cov(Y, Ỹ)/Var(Ỹ).

Usually the optimal α in (6.5) is unknown, but it can be easily estimated
from the sample covariance matrix of the {(Yk, Ỹk)}. This leads to the following
algorithm.

Algorithm 6.2 (Control Variable Estimation)

1. From N independent simulation runs generate Y1, . . . , YN and the control
variables Ỹ1, . . . , ỸN .

2. Compute the sample covariance matrix of {(Yk, Ỹk)}:

C =

1
N−1

∑N
k=1 (Yk − Ȳ)2 1

N−1

∑N
k=1 (Yk − Ȳ)(Ỹk − ¯̃

Y)

1
N−1

∑N
k=1 (Yk − Ȳ)(Ỹk − ¯̃

Y) 1
N−1

∑N
k=1 (Ỹk − ¯̃

Y)2

 .

3. Estimate ` via the control variable estimator ̂̀(c) in (6.4) with α =
C1,2/C2,2 and determine an approximate 1 − α confidence interval as

(
̂̀(c) − z1−α/2SE, ̂̀(c) + z1−α/2SE

)
,

where zγ denotes the γ-quantile of the N(0, 1) distribution and SE is the
estimated standard error:

SE =

√√√√ 1

N

(
1 −

C2
1,2

C1,1C2,2

)
C1,1 .

Copyright c© 2011 D.P. Kroese

6.3 Control Variables 109

Example 6.3 (Control Variable Estimation for the Bridge Network)
Consider again the stochastic shortest path estimation problem for the bridge
network in Example 6.1. As a control variable we can use, for example,

Ỹ = min{X1 +X4, X2 +X5} .

This is particularly convenient for the current parameters (1, 2, 3, 1, 2), as with
high probability the shortest path will have a length equal to Ỹ ; indeed, it will
most likely have length X1 + X4, so that the latter would also be useful as a
control variable. With a little calculation, the expectation of Ỹ can be found
to be EỸ = 15/16 = 0.9375. Figure 6.3 shows the high correlation between
the length of the shortest path Y = H(X) defined in (6.1) and Ỹ . The cor-
responding correlation coefficient is around 0.98, which shows that a fifty-fold
variance reduction in simulation effort is achieved compared with CMC estima-
tion. The MATLAB program below implements the control variable estimator,
using a sample size of N = 104. A typical estimate is ̂̀(c) = 0.92986 with an
estimated relative error of 0.05%. Function h.m in the code below is the same
as in Example 6.1.

%bridgeCV.m

N=10^4;

u = rand(N,5);

Y = h(u);

Yc = hc(u);

plot(Y,Yc,’.’)

C = cov(Y,Yc);

cor = C(1,2)/sqrt(C(1,1)*C(2,2))

alpha = C(1,2)/C(2,2);

yc = 15/16;

est = mean(Y - alpha*(Yc - yc))

RE = sqrt((1 - cor^2)*C(1,1)/N)/est

function out=hc(u)

a=[1,2,3,1,2];

N = size(u,1);

X = u.*repmat(a,N,1);

Path_1=X(:,1)+X(:,4);

Path_4=X(:,2)+X(:,5);

out=min([Path_1,Path_4],[],2);

Copyright c© 2011 D.P. Kroese

110 Variance Reduction

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

Y

Ỹ

Figure 6.3: Scatter plot of N = 104 pairs (Y, Ỹ) for the output Y and control
variable Ỹ of the stochastic shortest path problem.

Remark 6.3.1 (Multiple Control Variables) Algorithm 6.2 can be ex-
tended straightforwardly to the case where more than one control variable is
used for each output Y . Specifically, let Ỹ = (Ỹ1, . . . , Ỹm)> be a (column)
vector of m control variables with known mean vector ˜̀ = EỸ = (˜̀1, . . . , ˜̀m)>,
where ˜̀i = EỸi. Then, the control vector estimator of the optimal ` = EY
based on independent random variables Y1, . . . , YN with control vectors Ỹ1 =
(Ỹ11, . . . , Ỹ1m)>, . . . , ỸN = (ỸN1, . . . , ỸNm)> is given by

̂̀(c) =
1

N

N∑

k=1

[
Yk − α>

(
Ỹk − ˜̀

)]
,

where α is an estimator of the optimal vector α∗ = Σ−1
eY

σ
Y, eY. Here Σ eY is

the m ×m covariance matrix of Ỹ, and σ
Y, eY is the m × 1 vector whose i-th

component is the covariance of Y and Ỹi, i = 1, . . . ,m. The variance of ̂̀(c) for
α = α∗ is

Var(̂̀(c)) =
1

N
(1 −R2

Y, eY)Var(Y) , (6.6)

where
R2

Y, eY = (σ
Y, eY)> Σ−1

eY
σ

Y, eY/Var(Y)

is the square of the multiple correlation coefficient of Y and Ỹ. Again, the
larger R2

Y, eY is, the greater the variance reduction.

6.4 Conditional Monte Carlo

Variance reduction using conditional Monte Carlo is based on the following
result.

Theorem 6.4.1 (Conditional Variance) Let Y be a random variable and Z
a random vector. Then

Var(Y) = E Var(Y |Z) + Var(E[Y |Z]) , (6.7)

Copyright c© 2011 D.P. Kroese

6.4 Conditional Monte Carlo 111

and hence Var(E[Y |Z]) 6 Var(Y).

Suppose that the aim is to estimate ` = EY , where Y is the output from a
Monte Carlo experiment, and that one can find a random variable (or vector),
Z ∼ g, such that the conditional expectation E[Y |Z = z] can be computed
analytically. By the tower property,

` = EY = E E[Y |Z] , (6.8)

it follows that E[Y |Z] is an unbiased estimator of `. Moreover, by Theo-
rem 6.4.1 the variance of E[Y |Z] is always smaller than or equal to the vari-
ance of Y . The conditional Monte Carlo idea is sometimes referred to as Rao–
Blackwellization.

Algorithm 6.3 (Conditional Monte Carlo)

1. Generate a sample Z1, . . . ,ZN
iid∼ g.

2. Calculate E[Y |Zk], k = 1, . . . , N analytically.

3. Estimate ` = EY by

̂̀
c =

1

N

N∑

k=1

E[Y |Zk] (6.9)

and determine an approximate 1 − α confidence interval as
(
̂̀
c − z1−α/2

S√
N
, ̂̀

c + z1−α/2
S√
N

)
,

where S is the sample standard deviation of the {E[Y |Zk]} and zγ denotes
the γ-quantile of the N(0, 1) distribution.

Example 6.4 (Conditional Monte Carlo for the Bridge Network) We
return to Example 6.1. Let Z1 = min{X4, X3 +X5}, Z2 = min{X5, X3 +X4},
Y1 = X1 + Z1, Y2 = X2 + Z2, and Z = (Z1, Z2). Then, Y = H(X) can be
written as

Y = min{Y1, Y2} ,
where conditional upon Z = z, (Y1, Y2) is uniformly distributed on the rectangle
Rz = [z1, z1 + 1] × [z2, z2 + 2]. The conditional expectation of Y given Z = z
can be evaluated exactly, and is given by

E[Y |Z = z] =

1
2 + z1 if z ∈ A0 ,
5
12 + 3z1

4 − z2
1
4 − z3

1
12 + z2

4 + z1z2
2 +

z2
1z2

4 − z2
2
4 − z1z2

2
4 +

z3
2

12 if z ∈ A1 ,

1
12(5 − 3z2

1 + 3z2 − 3z2
2 + z1(9 + 6z2)) if z ∈ A2 ,

where

A0 = {z : 0 6 z1 6 1, z1 + 1 6 z2 6 2},
A1 = {z : 0 6 z1 6 1, z1 6 z2 6 z1 + 1},
A2 = {z : 0 6 z1 6 1, 0 6 z2 6 z1} .

Copyright c© 2011 D.P. Kroese

112 Variance Reduction

For example, if z ∈ A1, then the domain Rz of (Y1, Y2) intersects the line
y1 = y2 at y1 = z2 and y1 = z1 + 1, so that

E[Y |Z = z] =

∫ z2

z1

∫ z2+2

z2

y1
1

2
dy2 dy1 +

∫ z1+1

z2

∫ z2+2

y1

y1
1

2
dy2 dy1

+

∫ z1+1

z2

∫ y1

z2

y2
1

2
dy2 dy1 .

The following MATLAB program gives an implementation of the corresponding
conditional Monte Carlo estimator. A typical outcome for sample size N =
104 is ̂̀c = 0.9282 with an estimated relative error of 0.29%, compared with
0.43% for CMC, indicating more than a two-fold reduction in simulation effort.
Interestingly, the joint pdf of Z on [0, 1]× [0, 2] can, with considerable effort, be
determined analytically, so that ` = EY can be evaluated exactly. This leads
to the exact value given in the introduction:

EY =
1339

1440
= 0.9298611111

%bridgeCondMC.m

N = 10^4;

S = zeros(N,1);

for i = 1:N

u = rand(1,5);

Z = Zcond(u);

if Z(2)> Z(1) + 1

S(i) = 1/2 + Z(1);

elseif (Z(2) > Z(1))

S(i) = 5/12 + (3*Z(1))/4 - Z(1)^2/4 - Z(1)^3/12 ...

+ Z(2)/4 + (Z(1)*Z(2))/2 + (Z(1)^2*Z(2))/4 ...

- Z(2)^2/4 - (Z(1)*Z(2)^2)/4 + Z(2)^3/12;

else

S(i) = (5 - 3*Z(1)^2 + 3*Z(2) - 3*Z(2)^2 ...

+ Z(1)*(9 + 6*Z(2)))/12;

end

end

est = mean(S)

RE = std(S)/sqrt(N)/est

function Z=Zcond(u)

a=[1,2,3,1,2];

X = u*diag(a);

Z = [min([X(:,4), X(:,3) + X(:,5)],[],2),...

min([X(:,5), X(:,3) + X(:,4)],[],2)];

Copyright c© 2011 D.P. Kroese

6.5 Importance Sampling 113

6.5 Importance Sampling

One of the most important variance reduction techniques is importance sam-
pling. This technique is especially useful for the estimation of rare-event prob-
abilities. The standard setting is the estimation of a quantity

` = EfH(X) =

∫
H(x) f(x) dx , (6.10)

where H is a real-valued function and f the probability density of a random
vector X, called the nominal pdf. The subscript f is added to the expectation
operator to indicate that it is taken with respect to the density f .

Let g be another probability density such that H f is dominated by g.
That is, g(x) = 0 ⇒ H(x) f(x) = 0. Using the density g we can represent ` as

` =

∫
H(x)

f(x)

g(x)
g(x) dx = EgH(X)

f(X)

g(X)
. (6.11)

Consequently, if X1, . . . ,XN ∼iid g, then

̂̀=
1

N

N∑

k=1

H(Xk)
f(Xk)

g(Xk)
(6.12)

is an unbiased estimator of `. This estimator is called the importance sam-
pling estimator and g is called the importance sampling density. The ratio
of densities,

W (x) =
f(x)

g(x)
, (6.13)

is called the likelihood ratio — with a slight abuse of nomenclature, as the
likelihood is usually seen in statistics as a function of the parameters.

Algorithm 6.4 (Importance Sampling Estimation)

1. Select an importance sampling density g that dominates Hf .

2. Generate X1, . . . ,XN
iid∼ g and let Yi = H(Xi)f(Xi)/g(Xi), i = 1, . . . , N .

3. Estimate ` via ̂̀ = Ȳ and determine an approximate 1 − α confidence
interval as (

̂̀− z1−α/2
S√
N
, ̂̀+ z1−α/2

S√
N

)
,

where zγ denotes the γ-quantile of the N(0, 1) distribution and S is the
sample standard deviation of Y1, . . . , YN .

Example 6.5 (Importance Sampling for the Bridge Network) The ex-
pected length of the shortest path in Example 6.1 can be written as (see (6.2))

` = Eh(U) =

∫
h(u) du ,

Copyright c© 2011 D.P. Kroese

114 Variance Reduction

where U = (U1, . . . , U5) and U1, . . . , U5
iid∼ U(0, 1). The nominal pdf is thus

f(u) = 1,u ∈ (0, 1)5. Suppose the importance sampling pdf is of the form

g(u) =
5∏

i=1

νi u
νi−1
i ,

which means that under g the components of U are again independent and
Ui ∼ Beta(νi, 1) for some νi > 0, i = 1, . . . , 5. For the nominal (uniform)
distribution we have νi = 1, i = 1, . . . , 5. Generating U under g is easily carried
out via the inverse-transform method. A good choice of {νi} is of course crucial.
The MATLAB program below implements the importance sampling estimation
of ` using, for example, (ν1, . . . , ν5) = (1.3, 1.1, 1, 1.3, 1.1). For a sample size of
N = 104 a typical estimate is ̂̀= 0.9295 with an estimated relative error of
0.24%, which gives about a four-fold reduction in simulation effort compared
with CMC estimation, despite the fact that the {νi} are all quite close to their
nominal value 1.

%bridgeIS.m

N = 10^4;

nu0 = [1.3, 1.1, 1, 1.3, 1.1];

nu = repmat(nu0,N,1);

U = rand(N,5).^(1./nu);

W = prod(1./(nu.*U.^(nu - 1)),2);

y = h(U).*W;

est = mean(y)

percRE = std(y)/sqrt(N)/est*100

The main difficulty in importance sampling is how to choose the impor-
tance sampling distribution. A poor choice of g may seriously compromise
the estimate and the confidence intervals. The following sections provide some
guidance toward choosing a good importance sampling distribution.

6.5.1 Minimum-Variance Density

The optimal choice g∗ for the importance sampling density minimizes the vari-
ance of ̂̀, and is therefore the solution to the functional minimization program

min
g

Varg

(
H(X)

f(X)

g(X)

)
. (6.14)

It is not difficult to show that

g∗(x) =
|H(x)| f(x)∫
|H(x)| f(x) dx

. (6.15)

In particular, if H(x) > 0 or H(x) 6 0 then

g∗(x) =
H(x) f(x)

`
, (6.16)

Copyright c© 2011 D.P. Kroese

6.5 Importance Sampling 115

in which case Varg∗(̂̀) = Varg∗(H(X)W (X)) = Varg∗(`) = 0, so that the

estimator ̂̀ is constant under g∗. An obvious difficulty is that the evaluation
of the optimal importance sampling density g∗ is usually not possible. For
example, g∗(x) in (6.16) depends on the unknown quantity `. Nevertheless, a
good importance sampling density g should be “close” to the minimum variance
density g∗.

One of the main considerations for choosing a good importance sampling
pdf is that the estimator (6.12) should have finite variance. This is equivalent
to the requirement that

EgH
2(X)

f2(X)

g2(X)
= EfH

2(X)
f(X)

g(X)
<∞ . (6.17)

This suggests that g should not have lighter tails than f , and that, preferably,
the likelihood ratio, f/g, should be bounded.

6.5.2 Variance Minimization Method

When the pdf f belongs to some parametric family of distributions, it is of-
ten convenient to choose the importance sampling distribution from the same
family. In particular, suppose that f(·;θ) belongs to the family

{f(·;η), η ∈ Θ} .

Then, the problem of finding an optimal importance sampling density in this
class reduces to the following parametric minimization problem

min
η∈Θ

Varη (H(X)W (X; θ,η)) , (6.18)

where W (X; θ,η) = f(X; θ)/f(X; η). We call θ the nominal parameter
and η the reference parameter vector or tilting vector. Since under any
f(·;η) the expectation of H(X)W (X; θ,η) is `, the optimal solution of (6.18)
coincides with that of

min
η∈Θ

V (η) , (6.19)

where

V (η) = EηH
2(X)W 2(X; θ,η) = EθH

2(X)W (X; θ,η) . (6.20)

We call either of the equivalent problems (6.18) and (6.19) the variance min-
imization (VM) problem; and we call the parameter vector ∗η that minimizes
the programs (6.18) – (6.19) the VM-optimal reference parameter vector.
The VM problem can be viewed as a stochastic optimization problem, and can
be approximately solved via Monte Carlo simulation by considering the sample
average version of (6.19) – (6.20): ☞ 142

min
η∈Θ

V̂ (η) , (6.21)

Copyright c© 2011 D.P. Kroese

116 Variance Reduction

where

V̂ (η) =
1

N

N∑

k=1

H2(Xk)W (Xk; θ,η) , (6.22)

and X1, . . . ,XN ∼iid f(·;θ). This problem can be solved via standard numerical
optimization techniques. This gives the following modification of Algorithm 6.4.

Algorithm 6.5 (Variance Minimization Method)

1. Select a parameterized family of importance sampling densities {f(·;η)}.

2. Generate a pilot sample X1, . . . ,XN
iid∼ f(·;θ), and determine the solution

∗η̂ to the variance minimization problem (6.21).

3. Generate X1, . . . ,XN1

iid∼ f(·; ∗η̂) and let Yi = H(Xi)f(Xi; θ)/f(Xi; ∗η̂),
i = 1, . . . , N1.

4. Estimate ` via ̂̀ = Ȳ and determine an approximate 1 − α confidence
interval as (

̂̀− z1−α/2
S√
N1

, ̂̀+ z1−α/2
S√
N1

)
,

where zγ denotes the γ-quantile of the N(0, 1) distribution and S is the
sample standard deviation of Y1, . . . , YN1.

Example 6.6 (Variance Minimization for the Bridge Network)
Consider the importance sampling approach for the bridge network in Exam-
ple 6.5. There, the importance sampling distribution is the joint distribution of
independent Beta(νi, 1) random variables, for i = 1, . . . , 5. Hence, the reference
parameter is ν = (ν1, . . . , ν5).

The following MATLAB program determines the optimal reference parame-
ter vector ∗ν̂ via the VM method using a pilot run of size N = 103 and the
standard MATLAB minimization routine fminsearch. A typical value for ∗ν̂
is (1.262, 1.083, 1.016, 1.238, 1.067), which is similar to the one used in Exam-
ple 6.5; the relative error is thus around 0.24%.

%vmceopt.m

N = 10^3;

U = rand(N,5);

[nu0,minv] =fminsearch(@(nu)f_var(nu,U,N),ones(1,5))

N1 = 10^4;

nu = repmat(nu0,N1,1);

U = rand(N1,5).^(1./nu);

w = prod(1./(nu.*U.^(nu - 1)),2);

y = h(U).*w;

est = mean(y)

percRE = std(y)/sqrt(N1)/est*100

Copyright c© 2011 D.P. Kroese

6.5 Importance Sampling 117

function out = f_var(nu,U,N)

nu1 = repmat(nu,N,1);

W = prod(1./(nu1.*U.^(nu1 - 1)),2);

y = H(U);

out = W’*y.^2;

6.5.3 Cross-Entropy Method

An alternative approach to the VM method for choosing an “optimal” im-
portance sampling distribution is based on the Kullback–Leibler cross-entropy
distance, or simply cross-entropy (CE) distance. The CE distance between
two continuous pdfs g and h is given by

D(g, h) = Eg ln
g(X)

h(X)
=

∫
g(x) ln

g(x)

h(x)
dx

=

∫
g(x) ln g(x) dx −

∫
g(x) lnh(x) dx .

(6.23)

For discrete pdfs replace the integrals with the corresponding sums. Observe
that, by Jensen’s inequality, D(g, h) > 0, with equality if and only if g = h.
The CE distance is sometimes called the Kullback–Leibler divergence, because
it is not symmetric, that is, D(g, h) 6= D(h, g) for g 6≡ h.

The idea of the CE method is to choose the importance sampling density,
h say, such that the CE distance between the optimal importance sampling
density g∗ in (6.15) and h, is minimal. We call this the CE-optimal pdf. This
pdf solves the functional optimization program minh D (g∗, h). If we optimize
over all densities h, then it is immediate that the CE-optimal pdf coincides with
the VM-optimal pdf g∗.

As with the VM approach in (6.18) and (6.19), we shall restrict ourselves to a
parametric family of densities {f(·;η),η ∈ Θ} that contains the nominal density
f(·;θ). Moreover, without any loss of generality, we only consider positive
functions H. The CE method now aims to solve the parametric optimization
problem

min
η∈Θ

D (g∗, f(·;η)) . (6.24)

The optimal solution coincides with that of

max
η∈Θ

D(η) , (6.25)

where
D(η) = EθH(X) ln f(X; η) . (6.26)

Similar to the VM program (6.19), we call either of the equivalent pro-
grams (6.24) and (6.25) the CE program; and we call the parameter vector
η∗ that minimizes the program (6.24) and (6.25) the CE-optimal reference
parameter.

Copyright c© 2011 D.P. Kroese

118 Variance Reduction

Similar to (6.21) we can estimate η∗ via the stochastic counterpart method☞ 142
as the solution of the stochastic program

max
η

D̂(η) = max
η

1

N

N∑

k=1

H(Xk) ln f(Xk; η) , (6.27)

where X1, . . . ,XN ∼iid f(·;θ).

In typical applications the function D̂ in (6.27) is convex and differentiable
with respect to η. In such cases the solution of (6.27) may be obtained by
solving (with respect to η) the following system of equations:

1

N

N∑

k=1

H(Xk) ∇ ln f(Xk; η) = 0 , (6.28)

where the gradient is with respect to η. Various numerical and theoretical stud-
ies have shown that the solutions to the VM and CE programs are qualitatively
similar. The main advantage of the CE approach over the VM approach is that
the solution to (6.27) (or (6.28)) can often be found analytically, as specified in
the following theorem.

Theorem 6.5.1 (Exponential Families) If the importance sampling density
is of the form

f(x; η) =
n∏

i=1

fi(xi; ηi) ,

where each {fi(xi; ηi), ηi ∈ Θi} forms a 1-parameter exponential family pa-
rameterized by the mean, then the solution to the CE program (6.27) is η̂∗ =
(η̂∗1, . . . , η̂

∗
n), with

η̂∗i =

∑N
k=1H(Xk)Xki∑N

k=1H(Xk)
, i = 1, . . . , n , (6.29)

where Xki is the i-th coordinate of Xk.

For rare-event simulation the random variable H(X) often takes the form of
an indicator I{S(X)>γ}. If the event {S(X) > γ} is rare under f(·;θ), then with
high probability the numerator and denominator in (6.29) are both zero, so that
the CE-optimal parameter cannot be estimated in this way. Chapter 9 discusses
how this can be remedied by using a multilevel approach or by sampling directly
from the zero-variance importance sampling pdf g∗.

Example 6.7 (CE Method for the Bridge Network) In Example 6.6 the
VM-optimal reference parameter is obtained by numerical minimization. We
can use the CE method instead by applying (6.29) after suitable reparameteri-
zation. Note that for each i, Beta(νi, 1) forms an exponential family, and that
the corresponding expectation is ηi = νi/(1+νi). It follows that the assignment
νi = ηi/(1 − ηi) reparameterizes the family in terms of the mean ηi.

Copyright c© 2011 D.P. Kroese

6.6 Exercises 119

The first four lines of the following MATLAB program implement the
CE method for estimating the CE-optimal reference parameter. A typ-
ical outcome is η̂ = (0.560, 0.529, 0.500, 0.571, 0.518), so that ν̂ =
(1.272, 1.122, 1.000, 1.329, 1.075), which gives comparable results to the VM-
optimal parameter vector. The corresponding relative error is estimated as
0.25%.

%bridgeCE.m

N = 10^3;

U = rand(N,5);

y = repmat(h(U),1,5);

v = sum(y.*U)./sum(y)

N1 = 10^4;

nu = repmat(v./(1-v),N1,1);

U = rand(N1,5).^(1./nu);

w = prod(1./(nu.*U.^(nu - 1)),2);

y = h(U).*w;

est = mean(y)

percRE = std(y)/sqrt(N1)/est*100

6.6 Exercises

1. Estimate

` =

∫ 1

0

∫ 1

0

sin(x) e−(x+y)

ln(1 + x)
dxdy

via crude Monte Carlo, and give a 95% confidence interval.

2.We wish to estimate ` =
∫ 2
−2 e−x2/2 dx =

∫
H(x)f(x) dx via Monte Carlo

simulation using two different approaches: (1) defining H(x) = 4 e−x2/2 and f
the pdf of the U[−2, 2] distribution and (2) defining H(x) =

√
2π I{−26x62} and

f the pdf of the N(0, 1) distribution.

(a) For both cases estimate ` via the estimator ̂̀

̂̀= N−1
N∑

i=1

H(Xi) . (6.30)

Use a sample size of N = 1000.

(b) For both cases estimate the relative error κ of ̂̀.

(c) Give a 95% confidence interval for ` for both cases.

(d) Using the estimate found in (b), assess how large N should be such that
the relative width of the confidence interval is less than 0.01, and carry out
the simulation with this N . Compare the result with the true (numerical)
value of `.

Copyright c© 2011 D.P. Kroese

120 Variance Reduction

3. Let H(x) = x2/(1 + |x1|) and

X =

(
X1

X2

)
∼ N

((
0
1

)
,

(
4 3
3 9

))
.

Estimate ` = H(X)

(a) via crude Monte Carlo,

(b) via a control variable X2,

(c) via conditional Monte Carlo, by conditioning on X1.

Which is the most accurate method in terms of relative error?

4. Let Z ∼ N(0, 1). Estimate P(Z > 4) via importance sampling, using a
shifted exponential sampling pdf:

g(x) = λe−λ(x−4), x > 4

for some λ. Find a good λ, e.g., via the cross-entropy method, and choose N
large enough to obtain accuracy to at least three significant digits. Compare
with the exact value.

5. Consider the estimation of the tail probability ` = P(X > γ) of some random
variable X where γ is large. The crude Monte Carlo (CMC) estimator of ` is

̂̀=
1

N

N∑

i=1

Zi (6.31)

where X1, . . . , XN is are iid copies of X and Zi = I{Xi>γ}, i = 1, . . . , N .

(a) Express the relative error of ̂̀ in terms of N and `.

(b) We say that an estimator (6.31) of ` = EZ is logarithmically efficient if

lim
γ→∞

ln EZ2

ln `2
= 1 . (6.32)

Show that the CMC estimator is not logarithmically efficient.

6. Prove (see (6.14)) that the solution of

min
g

Varg

(
H(X)

f(X)

g(X)

)

is

g∗(x) =
|H(x)| f(x)∫
|H(x)| f(x) dx

.

7. Let ` = EθH(X), with X distributed according to f(x; θ), from the expo-
nential family

f(x; η) = c(η) eη·t(x) h(x) , (6.33)

with t(x) = (t1(x), . . . , tm(x))T and η · t(x) denoting the inner product∑m
i=1 ηiti(x). Suppose we wish to estimate ` via importance sampling using

a pdf f(x; η) for some η.

Copyright c© 2011 D.P. Kroese

6.6 Exercises 121

(a) Show that the CE-optimal parameter η satisfies

Eθ

[
H(X)

(∇c(η)

c(η)
+ t(X)

)]
= 0 . (6.34)

(b) As an application of (6.34), suppose that we wish to estimate the expec-
tation of H(X), with X ∼ Exp(λ0). Show that the corresponding CE
optimal parameter is

λ∗ =
Eλ0H(X)

Eλ0 [H(X)X]
.

(c) Explain how to estimate λ∗ via simulation.

Copyright c© 2011 D.P. Kroese

122 Variance Reduction

Copyright c© 2011 D.P. Kroese

Chapter 7

Estimation of Derivatives

In this chapter we discuss three methods for gradient estimation: the finite
difference method, infinitesimal perturbation analysis, and the likelihood ratio
or score function method. The efficient estimation of derivatives is important in
sensitivity analysis of simulation output and in stochastic or noisy optimization.
Details on noisy optimization are given in Chapter 8. ☞ 137

7.1 Gradient Estimation

It is often the case that the performance measure ` from a Monte Carlo simula-
tion can be viewed as a function of various parameters used in the simulation.
These parameters can pertain to the distributions used in the simulation and to
the mechanism under which the simulation is carried out. A typical setting is
where ` is the expected output of a random variable Y whose value is dependent
on a simulation parameter vector θ, such that

`(θ) = EY = Eθ2H(X; θ1) =

∫
H(x; θ1)f(x; θ2) dx , (7.1)

where θ = (θ1,θ2), H(·;θ1) is a sample performance function, and f(·;θ2) is
a pdf (for the discrete case replace the integral with a sum). In this context
we refer to the parameter θ1 as a structural parameter and θ2 as a distribu-
tional parameter. An estimation problem formulated with only distributional
parameters can often be transformed into one with only structural parameters,
and vice versa; see Remark 7.1.1. It should be noted, however, that not all
performance measures are of the form (7.1). For example, `(θ) could be the
median or a quantile of Y ∼ f(y; θ).

In addition to estimating `(θ) it is often relevant to estimate various deriva-
tives (gradients, Hessians, etc.) of `(θ). Two main applications are:

1. Sensitivity analysis: The gradient ∇`(θ) indicates how sensitive the out-
put `(θ) is to small changes in the input parameters θ, and can thus be
used to identify its most significant components.

2. Stochastic optimization and root finding: Gradient estimation is closely
related to optimization through the root-finding problem ∇`(θ) = 0, as

Copyright c© 2011 D.P. Kroese

124 Estimation of Derivatives

any solution of the latter is a stationary point of ` and hence a candidate
for a local maximum or minimum. Estimating the gradient via simulation
can therefore be used to approximately determine the optimal solution(s),
leading to gradient-based noisy optimization algorithms; see Sections 8.1–
8.2.☞ 137

Central to the discussion of gradient estimation is the interchange between
differentiation and integration. The following theorem provides sufficient con-
ditions.

Theorem 7.1.1 (Interchanging Differentiation and Integration) Let the
function g(x; θ) be differentiable at θ0 ∈ Rk. Denote the corresponding gradient
by ∇θ g(x; θ0). We assume that as a function of x this gradient is integrable.
If there exists a neighborhood Θ of θ0 and an integrable function M(x; θ0) such
that for all θ ∈ Θ

|g(x; θ) − g(x; θ0)|
‖θ − θ0‖

6 M(x; θ0) , (7.2)

then

∇θ

∫
g(x; θ) dx

∣∣∣∣
θ=θ0

=

∫
∇θ g(x; θ0) dx . (7.3)

Proof: Let

ψ(x; θ,θ0) =
g(x; θ) − g(x; θ0) − (θ − θ0)

>∇θg(x; θ0)

‖θ − θ0‖
.

Condition (7.2) implies that |ψ(x; θ,θ0)| 6 M(x; θ0) + ‖∇θg(x; θ0)‖ for all
θ ∈ Θ. Moreover, by the existence of the gradient at θ0, we have that
ψ(x; θ,θ0) → 0 as θ → θ0. Therefore, by the dominated convergence theo-
rem,

∫
ψ(x; θ,θ0) dx → 0 as θ → θ0, which shows that (7.3) must hold.

An important special case where differentiation and integration can be in-
terchanged arises in the theory of (natural) exponential families as summarized
by the following theorem.

Theorem 7.1.2 (Interchange in Exponential Families) For any function
φ for which ∫

φ(x) eη>t(x) dx <∞ ,

the integral as a function of η has partial derivatives of all orders, for all η in
the interior of the natural parameter space. Moreover, these derivatives can be
obtained by differentiating under the integral sign. That is,

∇η

∫
φ(x) eη>t(x) dx =

∫
φ(x) t(x) eη>t(x) dx .

Copyright c© 2011 D.P. Kroese

7.2 Finite Difference Method 125

Remark 7.1.1 (Distributional and Structural Parameters) In many
cases it is possible to switch from structural to distributional parameters
and vice versa by making appropriate transformations. We discuss two
common situations for the case where x = x is scalar (generalizations to the
multidimensional case are straightforward).

1. Push-out method: Suppose the estimation problem involves only struc-
tural parameters; for example,

`(θ) =

∫
H(x;θ) f(x) dx . (7.4)

The push-out method involves a (problem-dependent) change of vari-
able y = a(x;θ) such that the transformed integral has the form

`(θ) =

∫
L(y) g(y; θ) dy . (7.5)

In other words, the parameter θ is “pushed-out” into the pdf g.

As a simple example consider the estimation of `(θ) = E exp(−Xθ), θ > 0,
where X ∼ f(x) is a positive random variable. This is of the form (7.4)
with H(x; θ) = exp(−xθ). Defining y = xθ, L(y) = exp(−y), and

g(y; θ) = f
(
y

1
θ
)1
θ
y

1
θ
−1 = f(x)

1

θ
x1−θ ,

the structural problem (7.4) is transformed into a distributional one (7.5).

2. Inverse-transform method: The inverse-transform method for random ☞ 26
variable generation can be used to convert distributional estimation prob-
lems into structural ones. In particular, suppose `(θ) = EθL(Y) is of the
form (7.5), and G(y; θ) is the cdf of Y ∼ g(y; θ). By the inverse-transform
method we can write Y = G−1(X; θ), where X ∼ U(0, 1). If we now de-
fine H(X; θ) = L(G−1(X; θ)), then `(θ) = EH(X; θ) is of the form (7.4)
with f(x) = I{0<x<1}.

7.2 Finite Difference Method

Let the performance measure `(θ) depend on a parameter θ ∈ Rd. Suppose ̂̀(θ)
is an estimator of `(θ) obtained via simulation. A straightforward estimator
of the i-th component of ∇`(θ), that is, ∂`(θ)/∂θi, is the forward difference
estimator

̂̀(θ + ei δ) − ̂̀(θ)

δ
,

where ei denotes the i-th unit vector in Rd and δ > 0. An alternative is the
central difference estimator

̂̀(θ + ei δ/2) − ̂̀(θ − ei δ/2)

δ
.

Copyright c© 2011 D.P. Kroese

126 Estimation of Derivatives

In general, both estimators are biased. The bias of the forward difference esti-
mator is of the order O(δ), whereas the bias of the central difference estimator is
of the order O(δ2), so that the latter estimator is generally preferred. However,
the forward difference estimator requires the evaluation of only d+1 points per
estimate, while the central difference estimator requires evaluation of 2d points
per estimate.

A good choice of δ depends on various factors. It should be small enough to
reduce the bias, but large enough to keep the variance of the estimator small.
The choice of δ is usually determined via a trial run in which the variance of
the estimator is assessed.

It is important to implement the finite difference method using common
random variables (CRVs). The idea is similar to that of antithetic random
variables and is as follows. As both terms in the difference estimator are pro-☞ 105
duced via a simulation algorithm, they can be viewed as functions of a stream
of independent uniform random variables. The important point to notice is
that both terms need not be independent. In fact (considering only the central
difference estimator), if we denote Z1 = ̂̀(θ − ei δ/2) and Z2 = ̂̀(θ + ei δ/2),
then

Var(Z2 − Z1) = Var(Z1) + Var(Z2) − 2 Cov(Z1, Z2) , (7.6)

so that the variance of the estimator (Z2 − Z1)/δ can be reduced (relative to
the independent case) by an amount 2 Cov(Z1, Z2)/δ

2, provided that Z1 and Z2

are positively correlated. This can be achieved in practice by taking the same
random numbers in the simulation procedure to generate Z1 and Z2. Because
δ is typically small, the correlation between Z1 and Z2 is typically close to 1,
so that a large variance reduction can be achieved relative to the case where Z1

and Z2 are independent.
For the case where `(θ) = EY = EH(X; θ) = Eh(U; θ), with U ∼ U(0, 1)d,

this leads to the following algorithm.

Algorithm 7.1 (Central Difference Estimation With CRVs)

1. Generate U1, . . . ,UN
iid∼ U(0, 1)d.

2. Let Lk = h(Uk; θ − ei δ/2) and Rk = h(Uk; θ + ei δ/2), k = 1, . . . , N .

3. Compute the sample covariance matrix corresponding to the pairs
{(Lk, Rk)}:

C =

1
N−1

∑N
k=1 (Lk − L̄)2 1

N−1

∑N
k=1 (Lk − L̄)(Rk − R̄)

1
N−1

∑N
k=1 (Lk − L̄)(Rk − R̄) 1

N−1

∑N
k=1 (Rk − R̄)2

 .

4. Estimate ∂`(θ)/∂θi via the central difference estimator

R̄− L̄

δ

with an estimated standard error of

SE =
1

δ

√
C1,1 + C2,2 − 2C1,2

N
.

Copyright c© 2011 D.P. Kroese

7.2 Finite Difference Method 127

Example 7.1 (Bridge Network via the Finite Difference Method)
Consider the bridge network in Example 6.1 on Page 103. There, the
performance measure ` is the expected length of the shortest path between
the two end nodes and is of the form `(a) = h(U;a), where U ∼ U(0, 1)5

and a is a parameter vector. We wish to estimate the gradient of `(a) at
a = (1, 2, 3, 1, 2)>. The central difference estimator is implemented in the
MATLAB program below. A typical estimate for the gradient based on N = 106

samples is

∇̂`(a) =

0.3977 ± 0.0003
0.0316 ± 0.0001

0.00257 ± 0.00002
0.3981 ± 0.0003
0.0316 ± 0.0001

,

where the notation x± ε indicates an estimate of x with an estimated standard
error of ε. The above estimate suggests that the expected length of the shortest
path is most sensitive to changes in the lengths of components 1 and 4, as is
to be expected for these parameter values, because the shortest path is highly
likely to consist of these two edges. Component 3 contributes very little to the
shortest path and its gradient is close to 0.

%fd_bridge.m

N = 10^6;

a = [1,2,3,1,2];

delta = 10^-3;

u = rand(N,5);

for comp=1:5

de = zeros(1,5);

de(comp) = delta;

L = h1(u,a - de/2);

R = h1(u,a + de/2);

c = cov(L,R);

se = sqrt((c(1,1) + c(2,2) - 2*c(1,2))/N)/delta;

gr = (mean(R) - mean(L))/delta;

fprintf(’%g pm %3.1e\n’, gr, se);

end

function out=h1(u,a)

N = size(u,1);

X = u.*repmat(a,N,1);

Path_1=X(:,1)+X(:,4);

Path_2=X(:,1)+X(:,3)+X(:,5);

Path_3=X(:,2)+X(:,3)+X(:,4);

Path_4=X(:,2)+X(:,5);

out=min([Path_1,Path_2,Path_3,Path_4],[],2);

Copyright c© 2011 D.P. Kroese

128 Estimation of Derivatives

7.3 Infinitesimal Perturbation Analysis

Infinitesimal perturbation analysis (IPA) concerns the estimation of the
gradient of a performance measure `(θ) of the form (7.1) with only structural
parameters. In particular, the objective is to estimate ∇`(θ) = ∇θEH(X; θ)
for some function H(x; θ) and X ∼ f(x) through an interchange of the gradient
and the expectation operator; that is,

∇θEH(X; θ) = E∇θH(X; θ) . (7.7)

Such an interchange is allowed under certain regularity conditions on H, see
Theorem 7.1.1. If (7.7) holds, then the gradient can be estimated via crude
Monte Carlo as

∇̂`(θ) =
1

N

N∑

k=1

∇θH(Xk; θ) , (7.8)

where X1, . . . ,XN ∼iid f . In contrast to the finite difference method, the IPA
estimator is unbiased. Moreover, because the procedure is basically a crude
Monte Carlo method, its rate of convergence is O(1/

√
N). The IPA procedure

is summarized in the following algorithm.

Algorithm 7.2 (IPA Estimation)

1. Generate X1, . . . ,XN
iid∼ f .

2. Evaluate ∇θH(Xk; θ), k = 1, . . . , N and estimate the gradient of `(θ) via
(7.8). Determine an approximate 1 − α confidence interval as

(
∇̂`(θ) − z1−α/2 S/

√
N, ∇̂`(θ) + z1−α/2 S/

√
N
)
,

where S is the sample standard deviation of {∇θH(Xk; θ)} and zγ denotes
the γ-quantile of the N(0, 1) distribution.

Example 7.2 (Bridge Network via IPA) We consider the same derivative
estimation problem as in Example 7.1, but deal with it via IPA. Denote the
four possible paths in the bridge network by

P1 = {1, 4}, P2 = {1, 3, 5}, P3 = {2, 3, 4}, P4 = {2, 5} .

Then we can write
h(U;a) = min

k=1,...,4

∑

i∈Pk

ai Ui . (7.9)

Let K ∈ {1, 2, 3, 4} be the (random) index of the minimum-length path;
hence, h(U;a) =

∑
i∈PK

ai Ui. The partial derivatives of h(U;a) now follow
immediately from (7.9):

∂h(U;a)

∂ai
=

{
Ui if K ∈ Ai,

0 otherwise,

Copyright c© 2011 D.P. Kroese

7.4 Score Function Method 129

where Ai is the set of indices of all paths that contain component i; that is,

A1 = {1, 2}, A2 = {3, 4}, A3 = {2, 3}, A4 = {1, 3}, A5 = {2, 4} .

The IPA procedure is implemented in the MATLAB program below. A typical
estimate for the gradient at a = (1, 2, 3, 1, 2)> is

∇̂`(a) =

0.3980 ± 0.0003
0.0316 ± 0.0001

0.00255 ± 0.00002
0.3979 ± 0.0003
0.0316 ± 0.0001

,

where the same notation is used as in Example 7.1. We see that the accuracy is
similar to that of the central difference method with common random numbers.
However, the IPA estimate is unbiased.

%ipabridge.m

N = 10^6;

a = [1,2,3,1,2];

A = [1,2;3,4;2,3;1,3;2,4];

u = rand(N,5);

for comp=1:5

dh = zeros(N,1);

[y,K] = HK(u,a);

ind = find(K == A(comp,1) | K==A(comp,2));

dh(ind) = u(ind,comp);

gr = mean(dh);

se = std(dh)/sqrt(N);

fprintf(’%g pm %3.1e\n’, gr, se);

end

function [y,K]=HK(u,a)

N = size(u,1);

X = u.*repmat(a,N,1);

Path_1=X(:,1)+X(:,4);

Path_2=X(:,1)+X(:,3)+X(:,5);

Path_3=X(:,2)+X(:,3)+X(:,4);

Path_4=X(:,2)+X(:,5);

[y,K] =min([Path_1,Path_2,Path_3,Path_4],[],2);

7.4 Score Function Method

In the score function method, also called the likelihood ratio method,
the performance function `(θ) is assumed to be of the form (7.1) with only

Copyright c© 2011 D.P. Kroese

130 Estimation of Derivatives

distributional parameters. In particular, the objective is to estimate (in the
continuous case) the gradient of

`(θ) = EθH(X) =

∫
H(x) f(x; θ) dx

for some function H and pdf f (for the discrete case replace the integral with a
sum). As with the IPA method the key is to interchange the gradient and the
integral; that is,

∇θ

∫
H(X) f(x; θ) dx =

∫
H(X)∇θf(x; θ) dx , (7.10)

which is allowed under quite general conditions (see Theorem 7.1.1). Note that
the right-hand side of (7.10) can be written as

∫
H(X)∇θf(x; θ) dx =

∫
H(X)

∇θf(x; θ)

f(x; θ)
f(x; θ) dx

=

∫
H(X) [∇θ ln f(x; θ)] f(x; θ) dx

= EθH(X) S(θ;X) ,

where S(θ;x) = ∇θ ln f(x; θ) is the score function of f . Hence, if (7.10) holds,
the gradient can be estimated via crude Monte Carlo as

∇̂`(θ) =
1

N

N∑

k=1

H(Xk) S(θ;Xk) , (7.11)

where X1, . . . ,XN ∼iid f . The score function estimator is unbiased, and, being
the sample mean of iid random variables, achieves O(1/

√
N) convergence.

Algorithm 7.3 (Gradient Estimation via the Score Function Method)

1. Generate X1, . . . ,XN
iid∼ f(·;θ).

2. Evaluate the scores S(θ;Xk), k = 1, . . . , N and estimate the gradient of
`(θ) via (7.11). Determine an approximate 1 − α confidence interval as

(
∇̂`(θ) − z1−α/2 σ̂/

√
N, ∇̂`(θ) + z1−α/2 σ̂/

√
N
)
,

where σ̂ is the sample standard deviation of {H(Xk)S(θ;Xk)} and zγ
denotes the γ-quantile of the N(0, 1) distribution.

Remark 7.4.1 (Higher-Order Derivatives) Higher-order derivatives of `
can be estimated in a similar fashion. Specifically, the r-th order derivative
is given by

∇r`(θ) = Eθ

[
H(X) S

(r)(θ;X)
]
, (7.12)

Copyright c© 2011 D.P. Kroese

7.4 Score Function Method 131

where

S
(r)(θ;x) =

∇r
θf(x; θ)

f(x; θ)
(7.13)

is the r-th order score function, r = 0, 1, 2, In particular, S(0)(θ;x) =
1 (by definition), S(1)(θ;x) = S(θ;x) = ∇θ ln f(x; θ), and S(2)(θ;x) can be
represented as

S(2)(θ;x) = ∇θS(θ;x) + S(θ;x) S(θ;x)>

= ∇2
θ ln f(x; θ) + ∇θ ln f(x; θ) [∇θ ln f(x; θ)]> .

(7.14)

The higher-order ∇r`(θ), r = 0, 1, . . . , can be estimated via simulation as

∇̂r`(θ) =
1

N

N∑

k=1

H(Xk) S
(r)(θ;Xk) . (7.15)

It follows that the function `(θ), and all the sensitivities ∇r`(θ) can be esti-
mated from a single simulation, because in (7.12) all of them are expressed as
expectations with respect to the same pdf, f(x; θ).

Example 7.3 (Bridge Network via the Score Function Method)
Consider again the derivative estimation problem in Examples 7.1 and 7.2. As
in Example 6.1 on Page 103 we can write

`(a) =

∫
H(x)f(x;a) dx ,

with H(x) = min{x1 + x4, x1 + x3 + x5, x2 + x3 + x4, x2 + x5} and

f(x;a) =
5∏

i=1

I{0<xi<ai}
ai

. (7.16)

This is a typical example where the interchange of gradient and integral is not
appropriate, because of the discontinuities at a1, . . . , a5. However, the situation
can easily be fixed by including a continuity correction. Taking the derivative
with respect to a1 gives,

∂

∂a1
`(a) =

∂

∂a1

∫ a1

0

(∫ a2

0
· · ·
∫ a5

0
H(x)

1

a1 · · · a5
dx2 · · ·dx5

)
dx1

=

∫ a2

0
· · ·
∫ a5

0
H(a1, x2, . . . , x5)

1

a1 · · · a5
dx2 · · ·dx5

− 1

a1

∫
H(x)f(x;a) dx

=
1

a1
(EH(X∗) − EH(X)) ,

(7.17)

where X ∼ f(x;a) and X∗ ∼ f(x;a |x1 = a1). Both EH(X∗) and EH(X) or
E[H(X∗) −H(X)] can easily be estimated via Monte Carlo. The other partial
derivatives follow by symmetry.

Copyright c© 2011 D.P. Kroese

132 Estimation of Derivatives

The following MATLAB program implements the procedure. The results are
similar to those of the IPA and finite difference methods.

%sfbridge.m

N = 10^6;

a = [1,2,3,1,2];

u = rand(N,5);

for comp=1:5

X = u.*repmat(a,N,1);

hx = H(X);

X(:,comp) = a(comp);

hxs = H(X);

R = (-hx + hxs)/a(comp);

gr = mean(R);

se = std(R)/sqrt(N);

fprintf(’%g pm %3.1e\n’, gr, se);

end

function out=H(X)

Path_1=X(:,1)+X(:,4);

Path_2=X(:,1)+X(:,3)+X(:,5);

Path_3=X(:,2)+X(:,3)+X(:,4);

Path_4=X(:,2)+X(:,5);

out=min([Path_1,Path_2,Path_3,Path_4],[],2);

7.4.1 Score Function Method With Importance Sampling

By combining the score function method with importance sampling one can es-
timate the derivatives ∇r`(θ) = Eθ[H(X) S(r)(θ;X)] simultaneously for several
values of θ ∈ Θ, using a single simulation run. The idea is as follows. Let g(x)
be an importance sampling density. Then ∇r`(θ) can be written as

∇r`(θ) = Eg[H(X) S
(r)(θ;X)W (X; θ)] , (7.18)

where

W (x; θ) =
f(x; θ)

g(x)
(7.19)

is the likelihood ratio of f(x; θ) and g(x). The importance sampling estimator
of ∇r`(θ) can be written as

∇̂r`(θ) =
1

N

N∑

k=1

H(Xk) S
(r)(θ;Xk)W (Xk; θ) , (7.20)

Copyright c© 2011 D.P. Kroese

7.4 Score Function Method 133

where X1, . . . ,XN ∼iid g. Note that ∇̂r`(θ) is an unbiased estimator of ∇r`(θ)
for all θ. This means that by varying θ and keeping g fixed we can, in principle,
estimate the whole response surface {∇r`(θ),θ ∈ Θ} without bias from a single
simulation.

Often the importance sampling distribution is chosen in the same class of
distributions as the original one. That is, g(x) = f(x; θ0), for some θ0 ∈ Θ. If
we denote the importance sampling estimator of `(θ) for a given θ0 by ̂̀(θ; θ0),
that is,

̂̀(θ; θ0) =
1

N

N∑

k=1

H(Xk)W (Xk; θ; θ0) , (7.21)

with W (x; θ,θ0) = f(x; θ)/f(x; θ0), and the estimators in (7.20) by ∇̂r`(θ; θ0),
then

∇̂r`(θ; θ0) = ∇r
θ
̂̀(θ; θ0) =

1

N

N∑

k=1

H(Xk) S
(r)(θ;Xk)W (Xk; θ; θ0) . (7.22)

Thus, the estimators of the sensitivities are simply the sensitivities of the esti-
mators.

For a given importance sampling pdf f(x; θ0), the algorithm for estimating
the sensitivities ∇r`(θ), r = 0, 1, . . ., for multiple values of θ from a single
simulation run, is as follows.

Algorithm 7.4 (Gradient Estimation via the Score Function Method)

1. Generate a sample X1, . . . ,XN
iid∼ f(·;θ0).

2. Calculate the sample performance H(Xk) and the scores S(r)(θ;Xk), k =
1, . . . , N , for the desired parameter θ.

3. Calculate ∇r
θ
̂̀(θ; θ0) according to (7.22).

Confidence regions for ∇r`(θ) can be obtained by standard statistical tech-
niques. In particular, N1/2

[
∇r

θ
̂̀(θ; θ0) − ∇r`(θ)

]
converges in distribution to

a multivariate normal random vector with mean zero and covariance matrix

Covθ0(H S
(r)W) = Eθ0

[
H2W 2

S
(r)

S
(r) >

]
− [∇r`(θ)][∇r`(θ)]>, (7.23)

using the abbreviations H = H(X), S(r) = S(r)(θ;X) and W = W (X; θ,θ0).

Example 7.4 (Gradient Estimation for the Bridge Network) We
return to Example 6.1. Let the lengths X2, . . . , X5 of links 2, . . . , 5 be indepen- ☞ 103
dent and uniformly distributed on (0, 2), (0, 3), (0, 1), and (0, 2), respectively.
But let X1 ∼ Exp(θ), independently of the other Xi. Hence, the only change
in the setting of Example 6.1 is that the first component has an Exp(θ)
distribution, rather than a U(0, 1) distribution. Denote the expected length
of the shortest path by `(θ). Suppose the simulation is carried out under

Copyright c© 2011 D.P. Kroese

134 Estimation of Derivatives

θ = θ0 = 3. We wish to estimate the derivative ∇`(θ; θ0) for all θ in the
neighborhood of θ0. This is achieved by differentiating ̂̀(θ; θ0), giving

∇̂`(θ; θ0) = ∇̂̀(θ; θ0) = ∇ θ0
θ N

N∑

k=1

H(Xk) eXk1(1/θ0−1/θ)

=
θ0
θ3N

N∑

k=1

H(Xk) (Xk1 − θ) eXk1(1/θ0−1/θ)

=
1

N

N∑

k=1

H(Xk)W (Xk; θ; θ0) S(θ;Xk1) ,

with S(θ;x) = (x−θ)/θ2 being the score function corresponding to the Exp(1/θ)
distribution. The estimate of the derivative curve is given in Figure 7.1.

0 1 2 3 4 5 6
0

0.5

1

1.5

θ

∇̂
`(
θ
)

Figure 7.1: Estimates of the gradient of `(θ) with 95% confidence bounds.

The following MATLAB program implements the gradient estimation proce-
dure.

%gradresponsesurfis.m

N = 10000;

theta0 = 3;

a = [theta0,2,3,1,2];

u = rand(N,5);

X = u.*repmat(a,N,1);

X(:,1) = -log(u(:,1))*theta0;

W = zeros(N,1);

Sc = zeros(N,1);

HX = H(X);

theta = 0.1:0.01:theta0*2;

num = numel(theta);

gradell = zeros(1,num);

Copyright c© 2011 D.P. Kroese

7.4 Score Function Method 135

gradellL = zeros(1,num);

gradellU = zeros(1,num);

stgradell = zeros(1,num);

for i=1:num

th = theta(i);

Sc = (-th + X(:,1))/th^2;

W = (exp(-(X(:,1)/th))/th)./(exp(-(X(:,1)/theta0))/theta0);

HWS = H(X).*W.*Sc;

gradell(i) = mean(HWS);

stgradell(i) = std(HWS);

gradellL(i)= gradell(i) - stgradell(i)/sqrt(N)*1.95;

gradellU(i)= gradell(i) + stgradell(i)/sqrt(N)*1.95;

end

plot(theta,gradell, theta, gradellL, theta, gradellU)

Copyright c© 2011 D.P. Kroese

136 Estimation of Derivatives

Copyright c© 2011 D.P. Kroese

Chapter 8

Randomized Optimization

In this chapter we discuss optimization methods that have randomness as a core
ingredient. Such randomized algorithms can be useful for solving optimization
problems with many local optima and complicated constraints, possibly involv-
ing a mix of continuous and discrete variables. Randomized algorithms are also
used to solve noisy optimization problems, in which the objective function is
unknown and has to be obtained via Monte Carlo simulation.

We consider randomized optimization methods for both noisy and deter-
ministic problems, including stochastic approximation, the stochastic counter-
part method, simulated annealing, and evolutionary algorithms. Another such
method, the cross-entropy method, is discussed in more detail in Chapter 9.

We refer to Chapter 7 for gradient estimation techniques. ☞ 123

Throughout this chapter we use the letter S to denote the objective function.

8.1 Stochastic Approximation

Suppose we have a minimization problem on X ⊆ Rn of the form

min
x∈X

S(x) , (8.1)

where S is an unknown function of the form ES̃(x, ξ), with ξ a random vector
and S̃ a known function. A typical example is where S(x) is the (usually un-
known) expected performance measure from a Monte Carlo simulation. Such a
problem is said to be a noisy optimization problem, as typically only realiza-
tions of S̃(x, ξ) can be observed.

Because the gradient ∇S is unknown, one cannot directly apply classical op-
timization methods. The stochastic approximation method mimics simple
gradient descent by replacing a deterministic gradient with a random approx-
imation. More generally, one can approximate a subgradient instead of the
gradient. It is assumed that an estimate of the gradient of S is available at any
point x ∈ X . We denote such an estimate by ∇̂S(x). There are several es-

tablished ways of obtaining ∇̂S(x). These include the finite difference method,
infinitesimal perturbation analysis, the score function method, and the method
of weak derivatives — see Chapter 7, where S is replaced by ` and x by θ. ☞ 123

Copyright c© 2011 D.P. Kroese

138 Randomized Optimization

In direct analogy to gradient descent methods, the stochastic approximation
method produces a sequence of iterates, starting with some x1 ∈ X , via

xt+1 = ΠX

(
xt − βt ∇̂S(xt)

)
, (8.2)

where β1, β2, . . . is a sequence of strictly positive step sizes and ΠX is a pro-
jection operator that takes a point in Rn and returns a closest (typically in
Euclidean distance) point in X , ensuring that iterates remain feasible. That
is, for any y ∈ Rn, ΠX (y) ∈ argminz∈X ‖z − y‖. Naturally, if X = Rn, then
ΠX (y) = y. A generic stochastic approximation algorithm is as follows.

Algorithm 8.1 (Stochastic Approximation)

1. Initialize x1 ∈ X . Set t = 1.

2. Obtain an estimated gradient ∇̂S(xt) of S at xt.

3. Determine a step size βt.

4. Set xt+1 = ΠX

(
xt − βt ∇̂S(xt)

)
.

5. If a stopping criterion is met, stop; otherwise, set t = t + 1 and repeat
from Step 2.

For an arbitrary deterministic positive sequence β1, β2, . . . such that

∞∑

t=1

βt = ∞,
∞∑

t=1

β2
t <∞ ,

the random sequence x1,x2, . . . converges in the mean square sense to the min-
imizer x∗ of S(x) under certain regularity conditions.

We now present one of the simplest convergence theorems from Shapiro.

Theorem 8.1.1 (Convergence of Stochastic Approximation) Suppose
the following conditions are satisfied:

1. The feasible set X ⊂ Rn is convex, nonempty, closed, and bounded.

2. ΠX is the Euclidean projection operator.

3. The objective function S is well defined, finite valued, continuous, differ-
entiable, and strictly convex in X with parameter β > 0. That is, there
exists a β > 0 such that

(y − x)>(∇S(y) −∇S(x)) > β ‖y − x‖2 for all x,y ∈ X .

4. The error in the stochastic gradient vector ∇̂S(x) possesses a bounded
second moment. That is, for some K > 0,

E ‖∇̂S(x)‖2
6 K2 <∞ for all x ∈ X .

Copyright c© 2011 D.P. Kroese

8.1 Stochastic Approximation 139

Then, if βt = c/t for c > 1/(2β),

E ‖xt − x∗‖2
6
Q(c)

t
, t = 1, 2, . . . ,

where
Q(c) = max{c2K2 (2cβ − 1)−1 , ‖x1 − x∗‖2} ,

with minimal Q attained by choosing c = 1/β. In other words, the expected
error in terms of Euclidean distance of the iterates is of order O(t−1/2).

Moreover, if x∗ is an interior point of X and if there is some constant
L > 0 such that

‖∇S(y) −∇S(x)‖ 6 L‖y − x‖ for all x,y ∈ X ,

(that is, ∇S(x) is uniformly Lipschitz continuous in X), then

E |S(xt) − S(x∗)| 6
LQ(c)

2t
, t = 1, 2,

In other words, the expected error in terms of Euclidean distance of the objective
function values is of order O(t−1).

An attractive feature of the stochastic approximation method is its sim-
plicity and ease of implementation in those cases where the projection ΠX

can be easily computed. For example with box-constraints, where X =
[a1, b1]× · · · × [an, bn], any component xk of x is projected to ak if xk < ak and
to bk if xk > bk, and otherwise remains unchanged.

A weak point of the method is the ambiguity in choosing the step size
sequence β1, β2, Small step sizes lead to slow convergence and large step
sizes may result in “zigzagging” behavior of the iterates. A commonly used
choice is βt = c/t for some constant c, as suggested by Theorem 8.1.1. The
practical performance of the algorithm using this step size rule depends crucially
on c. This naturally leads to the idea of adaptively tuning this constant to the
problem at hand.

If βt/βt+1 = 1+o(βt), as is the case when βt = 1/tγ with γ ∈ (0, 1), then the
averaged iterate sequence defined by x̄t = 1

t

∑t
k=1 xk tends to give better results

than {xt} itself. This is known as Polyak averaging or iterate averaging.
One advantage here is that the algorithm will take larger step sizes than the
1/t case, speeding up the location of a solution.

When ∇̂S(xt) is an unbiased estimator of ∇S(xt) in (8.2) the stochastic
approximation Algorithm 8.1 is referred to as the Robbins–Monro algorithm.
When finite differences are used to estimate ∇̂S(xt) the resulting algorithm
is known as the Kiefer–Wolfowitz algorithm. As noted in Section 7.2, the ☞ 125
gradient estimate usually has a bias that depends on the length of the interval
corresponding to the central or forward difference estimators.

In high dimensions the random directions procedure can be used instead
of the usual Kiefer–Wolfowitz algorithm, reducing the number of function eval-
uations per gradient estimate to two. This can be achieved as follows. Let
D1,D2, . . . be a sequence of random direction vectors in Rn, typically satisfy-
ing (though these are not strictly required the following conditions.

Copyright c© 2011 D.P. Kroese

140 Randomized Optimization

• The vectors are iid and symmetrically distributed with respect to each of
the coordinate axes, with EDtD

>
t = I and ‖Dt‖2 = n.

For example, one can take each Dt distributed uniformly on the sphere of
radius

√
n, or each Dt distributed uniformly on {−1, 1}n (that is, each compo-

nent takes the values ±1 with probability 1/2). However, the random directions
method can exhibit poor behavior if the number of iterations is not sufficiently
large.

Example 8.1 (Noisy Optimization by Stochastic Approximation) We
illustrate the stochastic approximation procedure via a simple problem of the
form (8.1), with

S̃(x, ξ) = ‖ξ − x‖2, ξ ∼ N(µ, I) .

The function S(x) = ES̃(x, ξ) has its minimum at x∗ = µ, with S(x∗) = n.
For this example we have ∇S(x) = 2(x − µ). An unbiased (Robbins–Monro)
estimator is

∇̂S(x)RM =
1

N

N∑

k=1

2(x − ξk) ,

where ξ1, . . . , ξN ∼iid N(µ, I). A central difference (Kiefer–Wolfowitz) estima-
tor, with difference interval δ, is

(∇̂S(x)KW)i =
1

N

N∑

k=1

S̃(x + ei δ/2, ξk) − S̃(x − ei δ/2, ζk)

δ
, i = 1, . . . , n ,

where ξ1, ζ1, . . . , ξN , ζN ∼iid N(µ, I). As observed in Section 7.2, the variance of☞ 125
this estimator can be reduced significantly by using common random variables.
A practical way to do this here is to take ζk = ξk for each k = 1, . . . , N .

Figure 8.1 illustrates the typical performance of the Robbins–Monro and
Kiefer–Wolfowitz algorithms for this problem. The Kiefer–Wolfowitz algorithm
is run with and without using common random variables. For each method
we use 104 iterations. The problem dimension is n = 100 and µ = (n, n −
1, . . . , 2, 1)>. Each gradient estimate is computed using N = 10 independent
trials. The MATLAB implementation is given below.

Copyright c© 2011 D.P. Kroese

8.1 Stochastic Approximation 141

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−2

10
−1

10
0

10
1

10
2

Iteration t

‖x
t
−
x
∗
‖ KW

KW (with CRV)

RM

Figure 8.1: Typical convergence of Robbins–Monro and Kiefer–Wolfowitz algo-
rithms (with and without making use of common random variables).

%StochApprox.m

maxits=10^4; % number of iterations

n=10^2; % dimension

N=10^1; % number of trials

mu=(n:-1:1); rmu=repmat(mu,N,1); % problem data

L=zeros(N,n); R=L; % allocate space for the c-diff. estimator

c=1; % constant for the step size

delta = 1; % constant for the FD sequence

betat=@(t) c./t; % step size functions

deltat=@(t) delta/t.^(1/6); % difference interval function

xrm=10.*n.*ones(1,n); % initial Robbins-Monro iterate

xkw=10.*n.*ones(1,n); % initial Kiefer-Wolfowitz iterate

xkwCRV=10.*n.*ones(1,n); % inital Kiefer-Wolfowitz iterate (CRV)

% allocate space for the convergence history of each iterate

rmhist=zeros(1,maxits);

kwhist=zeros(1,maxits);

kwCRVhist=zeros(1,maxits);

% compute initial distance to optimal solution

rmhist(1)=sqrt(sum((xrm-mu).^2));

kwhist(1)=sqrt(sum((xkw-mu).^2));

kwCRVhist(1)=sqrt(sum((xkwCRV-mu).^2));

t=1; % iteration Counter

while (t<maxits)

% RM gradient est.

xi=rmu+randn(N,n);

grm=mean(2.*(repmat(xrm,N,1)-xi),1); % unbiased est.

Copyright c© 2011 D.P. Kroese

142 Randomized Optimization

% KW gradient est.

xiL=rmu+randn(N,n);

xiR=rmu+randn(N,n);

xkwN=repmat(xkw,N,1);

e1=zeros(1,n);e1(1)=deltat(t)/2;

ekN=repmat(e1,N,1);

for k=1:n

L(:,k)=sum((xiL-(xkwN+ekN)).^2,2);

R(:,k)=sum((xiR-(xkwN-ekN)).^2,2);

ekN=circshift(ekN,[0 1]);

end

gkw=mean((L-R)./deltat(t),1);

% KW gradient est. with CRV

xiL=rmu+randn(N,n);

xiR=xiL; % practical CRV

xkwCRVN=repmat(xkwCRV,N,1);

for k=1:n

L(:,k)=sum((xiL-(xkwCRVN+ekN)).^2,2);

R(:,k)=sum((xiR-(xkwCRVN-ekN)).^2,2);

ekN=circshift(ekN,[0 1]);

end

gkwCRV=mean((L-R)./deltat(t),1);

% Update Iterates

xrm=xrm-betat(t).*grm;

xkw=xkw-betat(t).*gkw;

xkwCRV=xkwCRV-betat(t).*gkwCRV;

% increase counter and record new distance to optimum

t=t+1;

rmhist(t)=sqrt(sum((xrm-mu).^2));

kwhist(t)=sqrt(sum((xkw-mu).^2));

kwCRVhist(t)=sqrt(sum((xkwCRV-mu).^2));

end

% plot the results

tt=(1:1:(maxits));

figure,semilogy(tt,rmhist,’k-’,tt,kwhist,’b-’,tt,...

kwCRVhist,’r-’,’Linewidth’,1.5)

8.2 Stochastic Counterpart Method

Consider again the noisy optimization setting (8.1). The idea of the stochastic
counterpart method (also called sample average approximation) is to
replace the noisy optimization problem (8.1) with

min
x∈Rn

Ŝ(x) , (8.3)

Copyright c© 2011 D.P. Kroese

8.2 Stochastic Counterpart Method 143

where

Ŝ(x) =
1

N

N∑

i=1

S̃(x, ξi)

is a sample average estimator of S(x) = ES̃(x, ξ) on the basis of N iid samples
ξ1, . . . , ξN .

A solution x̂∗ to this sample average version is taken to be an estimator of
a solution x∗ to the original problem (8.1). Note that (8.3) is a deterministic
optimization problem.

Example 8.2 (Stochastic Counterpart) Consider the following parametric
optimization problem that arises when applying the CE method: given a family ☞ 155
of densities {f(·;v),v ∈ V } and a target density g, locate the CE optimal
parameter v∗ that maximizes

D(v)
def
= Eg ln f(Z;v) = Ep

[
g(Z)

p(Z)
ln f(Z;v)

]
,

where p is any pdf that dominates g; that is, p(z) = 0 ⇒ g(z) = 0. Typically
this optimization problem is difficult to solve, but one can consider solving the
stochastic counterpart instead, here given by

max
v∈V

D̂(v)
def
= max

v∈V

1

N

N∑

k=1

g(Zk)

p(Zk)
ln f(Zk;v) , (8.4)

where Z1, . . . ,ZN ∼iid p. For various parametric families {f(·;v)} this proxy
problem is solvable analytically, providing the key updating formulæ for the
CE method.

As a particular instance, suppose f is a Cauchy density, given by

f(z;v) =
1

πσ

1

1 +
(z−µ

σ

)2 , v = (µ, σ) ,

and the target density is

g(z) ∝
∣∣ exp(−z2) cos(3πz)

∣∣ exp

(
−1

2

(
z − 1√

2

)2
)
.

The standard Cauchy density p(z) = 1/(π(1 + z2)) dominates g(z).

Figure 8.2 depicts the pdfs obtained by solving 100 independent instances of
the stochastic counterpart (8.4) for this problem, using approximating sample
sizes of N = 103 and N = 105, respectively.

Copyright c© 2011 D.P. Kroese

144 Randomized Optimization

−5 0 5
0

0.2

0.4

0.6

0.8

1

z

D
en

si
ty

−5 0 5
0

0.2

0.4

0.6

0.8

1

z

D
en

si
ty

Figure 8.2: The pdfs of 100 independent solutions of the stochastic counterpart
procedure using N = 103 (left) and N = 105 (right) samples. The dotted line
is the target density g.

Figure 8.3 plots a typical sequence of estimates for µ and σ as a function of
the sample size N = 1, . . . , 105. The estimates of µ and σ obtained in this way
strongly suggest convergence to an optimal value.

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Sample Size N

E
st

im
at

ed
µ

0 2000 4000 6000 8000 10000
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Sample Size N

E
st

im
at

ed
σ

Figure 8.3: The estimates for µ and σ obtained by solving a sequence of stochas-
tic counterpart problems for increasing N .

MATLAB code for the left panel in Figure 8.2 follows. Simply change the
variable N to obtain the right panel. Code for Figure 8.3 is quite similar, and
can be found on the Handbook website as SCMb.m.

%SCM.m

clear all

N=10^3; % Sample size

M=10^2; % Number of trials

g=@(Z) abs(exp(-Z.^2).*cos(3.*pi.*Z)).*...

exp(-0.5.*((Z-1)./sqrt(2)).^2)./sqrt(2*pi*2);

Copyright c© 2011 D.P. Kroese

8.3 Simulated Annealing 145

h=@(Z,mu,sigma) (sigma>0)./(pi.*sigma.*(1+((Z-mu)./sigma).^2));

p=@(Z) 1./(pi.*(1+Z.^2)); % standard cauchy

f=@(x,Z) sum((g(Z)./p(Z)).*log(h(Z,x(1),x(2))));% S-Counterpart

approxnormg=.2330967533;% Approx. norm. const. for g

zz=linspace(-5,5,10^3);% Range to plot densities over

figure,hold on

for k=1:M

Z=randn(N,1)./randn(N,1);% Z_1,...,Z_N are iid with pdf p

sol=fminsearch(@(x) -f(x,Z),[1,2]);% Solve the SC

plot(zz,h(zz,sol(1),sol(2)),’r-’)

end

plot(zz,g(zz)./approxnormg,’k:’,’LineWidth’,2) % Plot g

hold off

8.3 Simulated Annealing

Simulated annealing is a Markov chain Monte Carlo technique for approxi- ☞ 87
mately locating a global maximum of a given density f(x). The idea is to create
a sequence of points X1,X2, . . . that are approximately distributed according
to pdfs f1(x), f2(x), . . . with ft(x) ∝ f(x)1/Tt , where T1, T2, . . . is a sequence
of temperatures (known as the annealing schedule) that decreases to 0. If
each Xt were sampled exactly from f(x)1/Tt , then Xt would converge to a global
maximum of f(x) as Tt → 0. However, in practice sampling is approximate and
convergence to a global maximum is not assured.

A high-level simulated annealing algorithm is as follows.

Algorithm 8.2 (Simulated Annealing)

1. Choose a starting state X0 and an initial temperature T0. Set t = 1.

2. Select a temperature Tt 6 Tt−1 according to the annealing schedule.

3. Approximately generate a new state Xt from ft(x) ∝ (f(x))1/Tt .

4. Set t = t+ 1 and repeat from Step 2 until stopping.

The most common application for simulated annealing is in optimization.
In particular, consider the minimization problem

min
x∈X

S(x)

for some deterministic real-valued function S(x). Define the Boltzmann pdf
as

f(x) ∝ e−S(x), x ∈ X .

Copyright c© 2011 D.P. Kroese

146 Randomized Optimization

For T > 0 close to 0 the global maximum of f(x)1/T ∝ exp(−S(x)/T) is close
to the global minimum of S(x). Hence, by applying simulated annealing to
the Boltzmann pdf, one can also minimize S(x). Maximization problems can
be handled in a similar way, by using a Boltzmann pdf f(x) ∝ exp(S(x)).
Note that this may not define a valid pdf if the exponential terms are not
normalizable.

There are many different ways to implement simulated annealing algorithms,
depending on (1) the choice of Markov chain Monte Carlo sampling algorithm,
(2) the length of the Markov chain between temperature updates, and (3) the
annealing schedule. A popular annealing schedule is geometric cooling, where
Tt = βTt−1, t = 1, 2, . . ., for a given initial temperature T0 and a cooling factor
β ∈ (0, 1). Appropriate values for T0 and β and are problem-dependent, and
this has traditionally required tuning on the part of the user.

The following algorithm describes a popular simulated annealing framework
for minimization, which uses a random walk sampler; that is, a Metropolis–☞ 89
Hastings sampler with a symmetric proposal distribution. Note that the tem-
perature is updated after a single step of the Markov chain.

Algorithm 8.3 (Simulated Annealing for Minimization)

1. Initialize the starting state X0 and temperature T0. Set t = 1.

2. Select a temperature Tt 6 Tt−1 from the annealing schedule.

3. Generate a candidate state Y from the symmetric proposal density
q(Y |Xt) = q(Xt |Y).

4. Compute the acceptance probability

α(Xt,Y) = min

{
e
− (S(Y)−S(Xt))

Tt , 1

}
.

Generate U ∼ U(0, 1) and set

Xt+1 =

{
Y if U 6 α(Xt,Y) ,

Xt if U > α(Xt,Y) .

5. Set t = t+ 1 and repeat from Step 2 until a stopping criterion is met.

Example 8.3 (Continuous Optimization by Simulated Annealing)
We illustrate the simulated annealing Algorithm 8.3 by applying it to the
minimization of the trigonometric function. For n-dimensional x, this function
is given by

S(x) = 1 +
n∑

i=1

(
8 sin2(η(xi − x∗i)

2) + 6 sin2(2η(xi − x∗i)
2) + µ(xi − x∗i)

2
)
,

and has minimal value of 1 at x = x∗. In this example, we choose n = 10,
x∗ = (10, . . . , 10), η = 0.8, and µ = 0.1.

Copyright c© 2011 D.P. Kroese

8.3 Simulated Annealing 147

In order to implement the method with Metropolis–Hastings sampling, there
are four ingredients we must specify: (1) an appropriate initialization of the
algorithm; (2) an annealing schedule {Tt}; (3) a proposal pdf q; and (4) a
stopping criterion.

For initialization, we set T0 = 10 and draw X0 uniformly from the n-
dimensional hypercube [−50, 50]n. We use a geometric cooling scheme with
cooling factor β = 0.99999. The (symmetric) proposal distribution (starting
from x) is taken to be N(x, σ2I), with σ = 0.75. The algorithm is set to stop
after a 106 iterations. The MATLAB code is given below.

%SA.m

% Initialization

n=10; % dimension of the problem

beta=0.99999; % Factor in geometric cooling

sigma=ones(1,n).*0.75; % Variances for the proposal

N=1; %Number of steps to perform of MH

maxits=10^6; % Number of iterations

xstar=10.*ones(1,n); eta=0.8; mu=0.1;

S=@(X) 1+sum(mu.*(X-xstar).^2+6.*...

(sin(2.*eta.*(X-xstar).^2)).^2+8.*(sin(eta.*(X-xstar).^2)).^2);

T=10; % Initial temperature

a=-50;b=50; X=(b-a).*rand(1,n)+a; %Initialize X

Sx=S(X); % Score the initial sample

t=1; % Initialize iteration counter

while (t<=maxits)

T=beta*T; % Select New Temperature

% Generate New State

it=1;

while (it<=N)

Y=X+sigma.*randn(1,n);

Sy=S(Y);

alpha=min(exp(-(Sy-Sx)/T),1);

if rand<=alpha

X=Y; Sx=Sy;

end

it=it+1;

end

t=t+1; % Increment Iteration

end

[X,Sx,T] % Display final state, score, and temperature

For this example, we can sample exactly from the Boltzmann distribution
via a straightforward application of acceptance–rejection (see Section 2.1.5). ☞ 38
As a consequence, we can see precisely how well our approximate sampling
performs with respect to the ideal case.

Copyright c© 2011 D.P. Kroese

148 Randomized Optimization

In Figure 8.4, the average performance per iteration over 10 independent
trials is plotted for both the approximate Metropolis–Hastings sampling from
the Boltzmann pdf used above and exact sampling from the Boltzmann pdf via
acceptance–rejection. For these parameters, the approximate scheme typically
fails to locate the optimal solution.

1 2 3 4 5 6 7 8 9 10

x 10
5

10
0

10
1

10
2

Iteration t

A
ve

ra
g
e

P
er

fo
rm

a
n
ce

Approximate Sampling

Exact Sampling

Figure 8.4: Average performance per iteration of exact and approximate sam-
pling from the Boltzmann pdf, over 10 independent trials.

The MATLAB code used for this figure can be found on the Handbook website
as SAnnealing Multi SA.m

8.4 Evolutionary Algorithms

Evolutionary algorithms refer to any metaheuristic framework that is in-
spired by the process of natural evolution. An algorithm of this type begins
with a population P of individuals x: objects such as points in Rn, paths
in a graph, etc. The population “evolves” from generation to generation in
two stages. First, some selection mechanism is applied to create a new pop-
ulation. Second, some alteration mechanism is applied to the newly created
population.

The objective is to create a population of individuals with superior qualities
with respect to some performance measure(s) on the population. The simplest
example is where P is a collection of n-dimensional points x and the goal is
to minimize some objective function S(x). In this case the evaluation of P

corresponds to calculating S(x) for all x ∈ P. Typically this information is
used in the selection phase, for instance by only permitting the best performing
10% to be involved in creating the new generation.

The general framework for an evolutionary algorithm is summarized next.

Copyright c© 2011 D.P. Kroese

8.4 Evolutionary Algorithms 149

Algorithm 8.4 (Generic Evolutionary Algorithm)

1. Set t = 0. Initialize a population of individuals Pt. Evaluate Pt.

2. Select a new population Pt+1 from Pt.

3. Alter the population Pt+1.

4. Evaluate Pt+1.

5. If a stopping criterion is met, stop; otherwise, set t = t + 1 and repeat
from Step 2.

There are many well-known heuristic algorithms under the umbrella of evo-
lutionary algorithms. We will discuss three in particular: genetic algorithms,
differential evolution, and estimation of distribution algorithms.

8.4.1 Genetic Algorithms

The genetic algorithm metaheuristic is traditionally applied to discrete op-
timization problems. Individuals in the population are vectors, coded to repre-
sent potential solutions to the optimization problem. Each individual is ranked
according to a fitness criterion (typically just the objective function value as-
sociated with that individual). A new population is then formed as children of
the previous population. This is often the result of cross-over and mutation
operations applied to the fittest individuals.

Suppose that individuals in the population are n-dimensional binary vectors
x, and the goal is to minimize some objective function S(x). A possible cross-
over mechanism in this case is one-point crossover: given two parents x
and y, and a random location r between 0 and n, create a new individual
z = (x1, . . . , xr, yr+1, . . . , yn) whose first r components are copied from the first
parent and the remaining n− r components from the second parent.

Determining the M “fittest” individuals could be via tournament selec-
tion. In basic tournament selection with tournaments of size K, this involves
selecting K individuals uniformly from the population, and selecting the indi-
vidual with the lowest objective function value as the winner. The winner then
joins the reproduction pool. This process is repeated M times, until the desired
number of fittest individuals is selected.

A typical binary encoded genetic algorithm is as follows.

Algorithm 8.5 (Binary Encoded Genetic Algorithm)

1. Set t = 0. Initialize a population of individuals Pt = {xt
1, . . . ,x

t
N} via

uniform sampling over {0, 1}n. Evaluate Pt.

2. Construct a reproduction pool Rt of individuals from Pt via tourna-
ment selection.

3. Combine individuals in the reproduction pool to obtain an intermediate
population Ct via one-point crossover.

Copyright c© 2011 D.P. Kroese

150 Randomized Optimization

4. Mutate the intermediate population Ct by flipping each component of
each binary vector independently with probability p = 1/n. Denote the
resulting population by St.

5. Create the new generation as Pt+1 = St. Evaluate Pt+1.

6. If a stopping criterion is met, stop; otherwise, set t = t + 1 and repeat
from Step 2.

Example 8.4 (Genetic Algorithm for the Satisfiability Problem) We
illustrate the binary encoded genetic Algorithm 8.5 by applying it to solving
the satisfiability problem (SAT). The problem is to find a binary vector
x = (x1, x2, . . . , xn) ∈ {0, 1}n which, given a set of m clause functions cj(·),
satisfies all of them. Each clause function returns cj(x) = 1 if x satisfies clause
j and cj(x) = 0 otherwise.

In Algorithm 8.5, we select a population and reproduction pool size of N =
104, a tournament size of K = 2 (binary tournament selection), and a we run
the algorithm for 103 iterations.

In Figure 8.5, the scores of the best and worst performing indi-
viduals are plotted for a typical algorithm run on the difficult prob-
lem F34-5-23-31 from http://www.is.titech.ac.jp/~watanabe/gensat/

a2/index.html. Note that there are 361 clauses and 81 literals, and that the
algorithm in this case locates solutions that satisfy at most 359 clauses.

0 100 200 300 400 500 600 700 800 900 1000
290

300

310

320

330

340

350

360

Iteration t

M
in

a
n
d

M
a
x

S
co

re

Figure 8.5: Typical best and worst performances of individuals using Algo-
rithm 8.5 on the F34-5-23-31 problem.

The MATLAB code used for this example can be found on the Handbook
website as GA ex fig.m.

8.4.2 Differential Evolution

The method of differential evolution by Price et al. is traditionally applied
to continuous optimization problems. In its simplest version, on each iteration,

Copyright c© 2011 D.P. Kroese

8.4 Evolutionary Algorithms 151

a new population of points is constructed from the old parent population by
moving each of the old points by a fixed step size in a direction determined
by taking the difference of two other randomly determined points. The new
population then produces a child population through crossover with the old
parent population. Finally, each child only replaces its corresponding parent in
the new parent population if it has a better performance.

A typical differential evolution algorithm for minimization of a function
S(x) is as follows.

Algorithm 8.6 (Differential Evolution Algorithm for Minimization)

1. Set t = 0. Initialize a population of individuals Pt = {xt
1, . . . ,x

t
N}, say

via uniform sampling over a known bounding box.

2. For each individual in the population, say individual xt
k:

(a) Construct a vector yt+1
k = xt

R1
+α (xt

R2
−xt

R3
), where R1 6= R2 6= R3

are three integers uniformly sampled from the set {1, 2, . . . , k−1, k+
1, . . . , N}.

(b) Apply binary crossover between yt+1
k and xt

k to obtain a trial vector
x̃t+1

k ; that is,

x̃t+1
k = (U1 y

t+1
k,1 + (1 − U1)x

t
k,1, . . . , Un y

t+1
k,n + (1 − Un)xt

k,n) ,

where U1, . . . , Ud ∼iid Ber(p). Additionally, select a random index I,
uniformly distributed on {1, . . . , n} and set x̃t+1

k,I = yt+1
k,I .

(c) If S(x̃t+1
k) 6 S(xt

k), set xt+1
k = x̃t+1

k ; otherwise, retain the old indi-
vidual via xt+1

k = xt
k.

3. If a stopping criterion is met, stop; otherwise, set t = t + 1 and repeat
from Step 2.

The scaling factor α and the crossover factor p are algorithm parame-
ters. Typical values to try are α = 0.8 and p = 0.9, with a suggested population
size of N = 10n.

Example 8.5 (Differential Evolution) We illustrate differential evolution
by applying it to minimize the 50-dimensional Rosenbrock function, given by

S(x) =
49∑

i=1

(
100 (xi+1 − x2

i)
2 + (xi − 1)2

)
, (8.5)

which has minimal value of S(x) = 0 at x = (1, . . . , 1).
The population size is N = 50, the scaling factor is α = 0.8, and the

crossover probability is p = 0.9. The population is initialized by sampling
uniformly on [−50, 50]50 and is stopped after 5 × 104 iterations.

Figure 8.6 shows the typical progress of differential evolution on this prob-
lem. The best and worst performance function values per iteration are depicted.
A MATLAB implementation follows.

Copyright c© 2011 D.P. Kroese

152 Randomized Optimization

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−5

10
0

10
5

10
10

Iteration t

M
in

a
n
d

M
a
x

S
co

re

Figure 8.6: Best and worst performance function values on a typical run of a
differential evolution algorithm on the 50-dimensional Rosenbrock function.

%DE_ex.m

M=50; % Population Size

n=50; % Dimension of the problem

F=0.8; % Scaling factor

CR=0.9; % Crossover factor

maxits=5*10^4; % Maximum number of iterations

Smaxhist=NaN.*ones(1,maxits); Sminhist=NaN.*ones(1,maxits);

% Rosenbrock Function

S=@(X)sum(100.*(X(:,2:n)-X(:,1:(n-1)).^2).^2+ ...

(X(:,1:(n-1))-1).^2,2);

a=-50; b=50; X=(b-a).*rand(M,n)+a; % Initialize population

t=1; % Iteration Counter

while (t<maxits)

SX=S(X); [SX,idx]=sort(SX,1,’ascend’); % Score and Sort

Smaxhist(t)=SX(M); Sminhist(t)=SX(1); % Update histories

% Construct the new generation

for i=1:M

% Mutation

r=[1:i-1,i+1:M];

r=r(randperm(M-1));

V=X(r(1),:)+F.*(X(r(2),:)-X(r(3),:));

% Binomial Crossover

U=X(i,:);

idxr=1+floor(rand(1).*n);

for j=1:n

if (rand(1)<=CR)||(j==idxr)

U(j)=V(j);

end

end

Copyright c© 2011 D.P. Kroese

8.5 Exercises 153

if S(U)<=S(X(i,:))

X(i,:)=U;

end

end

t=t+1;

end

SX=S(X); [SX,idx]=sort(SX,1,’ascend’); % Score and Sort

Smaxhist(t)=SX(M); Sminhist(t)=SX(1); % Update histories

% Display worst & best score, and best performing sample

[SX(M),SX(1),X(idx(1),:)]

% Plot the results

figure, plot((1:1:t),Smaxhist,’k-’,(1:1:t),Sminhist,’r-’)

8.5 Exercises

1. Write a simulated annealing algorithm based on the random walk sampler
to maximize the function

S(x) =

∣∣∣∣
sin8(10x) + cos5(5x+ 1)

x2 − x+ 1

∣∣∣∣ , x ∈ R .

Use a N(x, σ2) proposal function, given the current state x. Start with x = 0.
Plot the current best function value against the number of evaluations of S for
various values of σ and various annealing schedules. Repeat the experiments
several times to assess what works best.

2. Implement a stochastic counterpart algorithm for the noisy optimization
problem in Example 8.1, and compare it with the stochastic approximation
method in that example.

Copyright c© 2011 D.P. Kroese

154 Randomized Optimization

Copyright c© 2011 D.P. Kroese

Chapter 9

Cross-Entropy Method

The cross-entropy methodology provides a systematic way to design simple and
efficient simulation procedures. This chapter describes the method for:

1. Importance sampling (see also Section 6.5.3); ☞ 117

2. Rare-event simulation;

3. Optimization, with examples of discrete, continuous, and noisy problems.

9.1 Cross-Entropy Method

The cross-entropy (CE) method is a generic Monte Carlo technique for
solving complicated estimation and optimization problems. The approach was
introduced by R.Y. Rubinstein, extending his earlier work on variance mini-
mization methods for rare-event probability estimation.

The CE method can be applied to two types of problems:

1. Estimation: Estimate ` = EH(X), where X is a random variable or
vector taking values in some set X and H is a function on X . An
important special case is the estimation of a probability ` = P(S(X) > γ),
where S is another function on X .

2. Optimization: Maximize or minimize S(x) over all x ∈ X , where S is an
objective function on X . S can be either a known or a noisy function. In
the latter case the objective function needs to be estimated, for example,
via simulation.

In the estimation setting of Section 9.2, the CE method can be viewed as an
adaptive importance sampling procedure that uses the CE or Kullback–Leibler
divergence as a measure of closeness between two sampling distributions. In the
optimization setting of Section 9.3, the optimization problem is first translated
into a rare-event estimation problem and then the CE method for estimation
is used as an adaptive algorithm to locate the optimum.

Copyright c© 2011 D.P. Kroese

156 Cross-Entropy Method

9.2 Cross-Entropy Method for Estimation

Consider the estimation of

` = EfH(X) =

∫
H(x) f(x) dx , (9.1)

where H is a sample performance function and f is the probability density
of the random vector X. For notational convenience it is assumed that X is
continuous. If X is discrete, simply replace the integral in (9.1) by a sum. Let
g be another probability density such that g(x) = 0 implies that H(x) f(x) = 0
for all x. Then, we can represent ` as

` =

∫
H(x)

f(x)

g(x)
g(x) dx = EgH(X)

f(X)

g(X)
. (9.2)

Consequently, if X1, . . . ,XN ∼iid g, then

̂̀=
1

N

N∑

k=1

H(Xk)
f(Xk)

g(Xk)
(9.3)

is an unbiased importance sampling estimator of `. The optimal (minimum☞ 113
variance) importance sampling probability density is given by

g∗(x) ∝ |H(x)| f(x) , (9.4)

whose normalization constant is unknown. The idea of the CE method is to
choose the importance sampling density g in a specified class of densities G

such that the Kullback–Leibler divergence (see (6.23) on Page 117) between the
optimal importance sampling density g∗ and g is minimal. That is, find a g ∈ G

that minimizes

D(g∗, g) = Eg∗

[
ln
g∗(X)

g(X)

]
. (9.5)

In most cases of interest the sample performance functionH is non-negative,
and the nominal probability density f is parameterized by a finite-dimensional
vector u; that is, f(x) = f(x;u). It is then customary to choose the importance
sampling probability density g in the same family of probability densities; thus,
g(x) = f(x;v) for some reference parameter v. The CE minimization pro-
cedure then reduces to finding an optimal reference parameter vector, v∗ say,
by cross-entropy minimization:

v∗ = argmax
v

∫
H(x)f(x;u) ln f(x;v) dx , (9.6)

which in turn can be estimated via simulation by solving with respect to v the
stochastic counterpart program☞ 142

max
v

1

N

N∑

k=1

H(Xk)
f(Xk;u)

f(Xk;w)
ln f(Xk;v) , (9.7)

Copyright c© 2011 D.P. Kroese

9.2 Cross-Entropy Method for Estimation 157

where X1, . . . ,XN ∼iid f(·;w), for any reference parameter w. The maximiza-
tion (9.7) can often be solved analytically, in particular when the class of sam-
pling distributions forms an exponential family. Analytical formulas for the
solution to (9.7) can be found whenever explicit expressions for the maximum
likelihood estimators of the parameters can be found.

Often ` in (9.1) is of the form P(S(X) > γ) for some performance function
S and level γ, in which case H(x) takes the form of an indicator function:
H(x) = I{S(X)>γ}, so that (9.7) becomes

max
v

1

N

∑

Xk∈E

f(Xk;u)

f(Xk;w)
ln f(Xk;v) , (9.8)

and E is the elite set of samples: those Xk for which S(Xk) > γ.
A complication in solving (9.8) occurs when ` is a rare-event probability;

that is, a very small probability (say less than 10−4). Then, for a moderate
sample size N most or all of the values H(Xk) in (9.8) are zero, and the max-
imization problem becomes useless. To overcome this difficulty, the following
multilevel CE procedure is used.

Algorithm 9.1 (Multilevel CE Algorithm for Estimating P(S(X) > γ))

1. Define v̂0 = u. Let N e = d%Ne. Set t = 1 (iteration counter).

2. Generate X1, . . . ,XN ∼iid f(·; v̂t−1). Calculate the performances S(Xi)
for all i and order them from smallest to largest: S(1) 6 . . . 6 S(N). Let
γ̂t be the sample (1−%)-quantile of performances; that is, γ̂t = S(N−Ne+1).
If γ̂t > γ, reset γ̂t to γ.

3. Use the same sample X1, . . . ,XN to solve the stochastic program (9.8)
with w = v̂t−1. Denote the solution by v̂t.

4. If γ̂t < γ, set the counter t = t + 1 and reiterate from Step 2; otherwise,
proceed with Step 5.

5. Let T be the final iteration counter. Generate X1, . . . ,XN1 ∼iid f(·; v̂T)
and estimate ` via importance sampling as in (9.3).

The algorithm requires specification of the family of sampling probability den-
sities {f(·;v) ,v ∈ V }, the sample sizes N and N1, and the rarity parameter
% (typically between 0.01 and 0.1). Typical values for the sample sizes are
N = 103 and N1 = 105. Under certain technical conditions the deterministic
version of Algorithm 9.1 is guaranteed to terminate (reach level γ) provided
that % is chosen small enough.

Example 9.1 (Rare-Event Probability Estimation) Suppose the prob-
lem is to estimate ` = P(min{X1, . . . , Xn} > γ), where Xk ∼ Beta(1, uk/(1 −
uk)), k = 1, . . . , n independently. Note that this parameterization ensures that

Copyright c© 2011 D.P. Kroese

158 Cross-Entropy Method

EXk = uk, and that we do not assume that the {uk} are the same. However,
if u1 = · · · = un = 1/2, then we have X1, . . . , Xn ∼iid U(0, 1). In that case
` = (1− γ)n. In particular, if we take n = 5, γ = 0.999, and uk = 1/2 for all k,
then ` = 10−15.

For these particular problem parameters, typical output of Algorithm 9.1
using a rarity parameter of % = 0.1, and sample sizes of N = 103 and N1 = 106,
is given below.

Table 9.1: Typical convergence of parameter vectors with multilevel CE.

t γ̂t v̂t

0 - 0.5 0.5 0.5 0.5 0.5
1 0.60117 0.79938 0.80341 0.79699 0.79992 0.80048
2 0.88164 0.93913 0.94094 0.94190 0.94138 0.94065
3 0.96869 0.98423 0.98429 0.98446 0.98383 0.98432
4 0.99184 0.99586 0.99588 0.99590 0.99601 0.99590
5 0.99791 0.99896 0.99895 0.99893 0.99897 0.99896
6 0.999 0.99950 0.99949 0.99949 0.99950 0.99950

This gives a final estimate of ̂̀= 1.0035× 10−15 with an estimated relative
error of 0.003.

In this example, we can calculate the exact CE optimal parameters from
(9.6). With u1 = · · · = un = 1/2, and due to independence, each component of
the optimal parameter vector is solved from

v∗ = argmax
v∈(0,1)

∫ 1

γ
ln

((
v − 1

v

)
x(v/(v−1)−1)

)
dx .

The solution is given by

v∗ =
1 − γ

2(1 − γ) + γ ln γ
.

With γ = 0.999, this gives v∗ = 0.99950 to five significant digits, which is as
found via the multilevel algorithm in Table 9.1. MATLAB code for this example
follows.

%CEest.m

f=’minbeta’; % performance function name

gam=0.999; % Desired level parameter

n=5; % dimension of problem

N=10^5; % sample size

rho=0.01;

N1=10^6; % Final estimate sample size

N_el=round(N*rho); % elite sample size

u=0.5.*ones(1,n); % Nominal ref. parameter in Beta(1,u/(1-u))

v=u; gt=-inf; % Initialize v and gamma

Copyright c© 2011 D.P. Kroese

9.3 Cross-Entropy Method for Optimization 159

maxits=10^5; % Fail-safe stopping after maxits exceeded

it=0; tic

while (gt<gam)&(it<maxits)

it=it+1;

% Generate and score X’s

X=rand(N,n).^(1./repmat(v./(1-v),N,1)); % Beta(1,v/(1-v))

S=feval(f,X); [U,I]=sort(S); % Score & Sort

% Update Gamma_t

gt=U(N-N_el+1);

if gt>gam, gt=gam; N_el=N-find(U>=gam,1)+1; end

Y=X(I(N-N_el+1:N),:);

% Calculate likelihood ratios and update v

W=prod(repmat((u./(1-u))./(v./(1-v)),N_el,1).*...

Y.^(repmat((u./(1-u))-(v./(1-v)),N_el,1)),2);

v=sum(repmat(W,1,n).*Y)./sum(repmat(W,1,n));

[gt,v] % Display gamma and v

end

% Final estimation step

X1=rand(N1,n).^(1./repmat(v./(1-v),N1,1));

S1=feval(f,X1);

W1=prod(repmat((u./(1-u))./(v./(1-v)),N1,1).*...

X1.^(repmat((u./(1-u))-(v./(1-v)),N1,1)),2);

H1=(S1>=gam);

ell=mean(W1.*H1);

re=sqrt((mean((W1.*H1).^2)/(ell^2))-1)/sqrt(N1);

% Display final results

time=toc; disp(time), disp(v), disp(ell), disp(re)

ell_true=(1-gam)^n;disp(ell_true) % Display true quantity

function out=minbeta(X)

out=min(X,[],2);

9.3 Cross-Entropy Method for Optimization

Let S be a real-valued performance function on X . Suppose we wish to find the
maximum of S over X , and the corresponding state x∗ at which this maximum
is attained (assuming for simplicity that there is only one such state). Denoting
the maximum by γ∗, we thus have

S(x∗) = γ∗ = max
x∈X

S(x) . (9.9)

This setting includes many types of optimization problems: discrete (com-
binatorial), continuous, mixed, and constrained problems. If one is interested
in minimizing rather than maximizing S, one can simply maximize −S.

Copyright c© 2011 D.P. Kroese

160 Cross-Entropy Method

Now associate with the above problem the estimation of the probability ` =
P(S(X) > γ), where X has some pdf f(x;u) on X (for example corresponding
to the uniform distribution on X) and γ is some level. If γ is chosen close to the
unknown γ∗, then ` is typically a rare-event probability, and the CE approach
of Section 9.2 can be used to find an importance sampling distribution close
to the theoretically optimal importance sampling density, which concentrates
all its mass at the point x∗. Sampling from such a distribution thus produces
optimal or near-optimal states. A main difference with the CE method for rare-
event simulation is that, in the optimization setting, the final level γ = γ∗ is
not known in advance. The CE method for optimization produces a sequence
of levels {γ̂t} and reference parameters {v̂t} such that the former tends to the
optimal γ∗ and the latter to the optimal reference vector v∗ corresponding to
the point mass at x∗.

Given the class of sampling probability densities {f(·;v),v ∈ V }, the sam-
ple size N , and the rarity parameter %, the CE algorithm for optimization is as
follows.

Algorithm 9.2 (CE Algorithm for Optimization)

1. Choose an initial parameter vector v̂0. Let N e = d%Ne. Set the level
counter to t = 1.

2. Generate X1, . . . ,XN ∼iid f(·; v̂t−1). Calculate the performances S(Xi)
for all i and order them from smallest to largest: S(1) 6 . . . 6 S(N). Let
γ̂t be the sample (1−%)-quantile of performances; that is, γ̂t = S(N−Ne+1).

3. Use the same sample X1, . . . ,XN to determine the elite set of samples
Et = {Xk : S(Xk) > γ̂t} and solve the stochastic program

max
v

∑

Xk∈Et

ln f(Xk;v) . (9.10)

Denote the solution by v̂t.

4. If some stopping criterion is met, stop; otherwise, set t = t+1, and return
to Step 2.

Any CE algorithm for optimization thus involves the following two main itera-
tive phases:

1. Generate an iid sample of objects in the search space X (trajectories,
vectors, etc.) according to a specified probability distribution.

2. Update the parameters of that distribution, based on the N e best per-
forming samples (the elite samples), using cross-entropy minimization.

There are two key differences between Algorithm 9.1 and Algorithm 9.2:
(1) Step 5 is missing for optimization, and (2) the likelihood ratio term
f(Xk;u)/f(Xk; v̂t−1) in (9.7) is missing in (9.10).

Copyright c© 2011 D.P. Kroese

9.3 Cross-Entropy Method for Optimization 161

Often a smoothed updating rule is used, in which the parameter vector v̂t

is taken as

v̂t = diag(α) ṽt + diag(1 − α) v̂t−1 , (9.11)

where ṽt is the solution to (9.10) and α is a vector of smoothing parameters,
with each component in [0, 1]. Many other modifications exist. When there are
two or more optimal solutions, the CE algorithm typically “fluctuates” between
the solutions before focusing on one of the solutions.

9.3.1 Combinatorial Optimization

When the state space X is finite, the optimization problem (9.9) is often re-
ferred to as a discrete or combinatorial optimization problem. For ex-
ample, X could be the space of combinatorial objects such as binary vectors,
trees, paths through graphs, etc. To apply the CE method, one first needs to
specify a convenient parameterized random mechanism to generate objects in
X . For example, when X is the set of binary vectors of length n, an easy gen-
eration mechanism is to draw each component independently from a Bernoulli
distribution; that is, X = (X1, . . . , Xn), where Xi ∼ Ber(pi), i = 1, . . . , n, in-
dependently. Given an elite sample set E of size N e, the updating formula is
then

p̂i =

∑
X∈E

Xi

N e
, i = 1, . . . , n . (9.12)

A possible stopping rule for combinatorial optimization problems is to stop
when the overall best objective value does not change over a number of iter-
ations. Alternatively, one could stop when the sampling distribution has “de-
generated” enough. In particular, in the Bernoulli case (9.12) one could stop
when all {pi} are less than some small distance ε > 0 away from either 0 or 1.

Example 9.2 (Satisfiability Problem) We illustrate the CE optimization
Algorithm 9.2 by applying it to the satisfiability problem (SAT) considered in ☞ 150
Example 8.4.

We take our sampling pdf g to be of the form

g(x) =
n∏

i=1

pxi
i (1 − pi)

1−xi .

In this case, the i-th component of x is generated according to the Ber(pi)
distribution, independently of all other components.

The Bernoulli probabilities are updated using (9.12), where the set of elite
samples E on iteration t is the proportion % of best performers — in this case,
the proportion % of samples that satisfy the most clauses.

If we write p̂t = (p̂t1, . . . , p̂tn) for the solution from (9.12) in iteration t,
then the idea is that the sequence p̂0, p̂1, . . . converges to one of the solutions
to the satisfiability problem.

We run the algorithm with a sample size of N = 104 and a rarity pa-
rameter of % = 0.1, giving N e = 103 elite samples per iteration. We take

Copyright c© 2011 D.P. Kroese

162 Cross-Entropy Method

p̂0 = (0.5, . . . , 0.5) and use a constant smoothing parameter of α = 0.5. Fi-
nally, our algorithm is stopped after 103 iterations, or if the vector pt has
degenerated: if every component ptk is within ε = 10−3 of either 0 or 1.

In Figure 9.1, the scores of the best and worst performing elite samples
are plotted for the problem F34-5-23-31. As with the binary coded genetic
algorithm in Example 8.4, the best solutions found only satisfied 359 out of 361
clauses.

0 100 200 300 400 500 600 700 800 900 1000
330

335

340

345

350

355

360

Iteration t

M
in

a
n
d

M
a
x

E
li
te

S
co

re

Figure 9.1: Typical best and worst elite samples using Algorithm 9.2 on the
F34-5- 23-31 problem.

MATLAB code that implements the basic algorithm is given below. It is
assumed there is an efficient function sC.m that accepts N trial vectors and
computes the number of clauses that each satisfies. Our implementation of
sC.m is available on the Handbook website.

%CESAT.m

%Assumes *sparse* A is loaded in the workspace

[m,n]=size(A); % Dimensions of the problem

maxits=10^3; epsilon=1e-3;

N=10^4; rho=0.1; Ne=ceil(rho*N);

alpha=0.7; % Smoothing parameter

p = 0.5*ones(1,n); it=0; best=-inf; xbest=[];

Smaxhist=zeros(1,maxits); % Allocate history memory

Sminhist=zeros(1,maxits);

while (max(min(p,1-p)) > epsilon) && (it < maxits) && (best<m)

it = it + 1;

x = double((rand(N,n) < repmat(p,N,1)));

SX = sC(A,x);

[sortSX,iX] = sortrows([x SX],n+1);

indices=iX(N- Ne + 1:N);

if sortSX(N,n+1)>best

best=sortSX(N,n+1); xbest=sortSX(N,1:n);

end

Copyright c© 2011 D.P. Kroese

9.3 Cross-Entropy Method for Optimization 163

Smaxhist(it)=sortSX(N,n+1);Sminhist(it)=sortSX(N-Ne+1,n+1);

p=alpha.*mean(sortSX(indices,1:n))+(1-alpha).*p;

disp([it,sortSX(N,n+1),sortSX(N-Ne+1,n+1),p])

end

disp([best xbest])

figure,plot((1:1:it),Smaxhist,’r-’,(1:1:it),Sminhist,’k-’)

9.3.2 Continuous Optimization

It is also possible to apply the CE algorithm to continuous optimization prob-
lems; in particular, when X = Rn. The sampling distribution on Rn can be
quite arbitrary and does not need to be related to the function that is being op-
timized. The generation of a random vector X = (X1, . . . , Xn) ∈ Rn is usually
established by drawing the coordinates independently from some two-parameter
distribution. In most applications a normal (Gaussian) distribution is employed
for each component. Thus, the sampling distribution for X is characterized by
a vector µ of means and a vector σ of standard deviations. At each iteration of
the CE algorithm these parameter vectors are updated simply as the vectors of
sample means and sample standard deviations of the elements in the elite set.
During the course of the algorithm, the sequence of mean vectors ideally tends
to the maximizer x∗, while the vector of standard deviations tend to the zero
vector. In short, one should obtain a degenerated probability density with all
mass concentrated in the vicinity of the point x∗. A possible stopping criterion
is to stop when all standard deviations are smaller than some ε. This scheme
is referred to as normal updating.

In what follows, we give examples of CE applied to unconstrained, con-
strained, and noisy continuous optimization problems. In each case, we employ
normal updating.

Example 9.3 (Maximizing the Peaks Function) Suppose we wish to
maximize MATLAB’s peaks function, given by

S(x) = 3 (1 − x1)
2 e−x2

1−(x2+1)2 − 10
(x1

5
− x3

1 − x5
2

)
e−x2

1−x2
2 − 1

3
e−(x1+1)2−x2

2 .

This function has three local maxima and three local minima, with global max-
imum at x∗ ≈ (−0.0093, 1.58) of γ∗ = S(x∗) ≈ 8.1.

With normal updating, the choice of the initial value for µ is not important,
so we choose µ = (−3,−3) arbitrarily. However, the initial standard deviations
should be chosen large enough to ensure an initially “uniform” sampling of
the region of interest, hence σ = (10, 10) is chosen. The CE algorithm is
stopped when all standard deviations of the sampling distribution are less than
some small ε, say ε = 10−5. A typical evolution of the mean of the sampling
distribution is depicted in Figure 9.2.

Copyright c© 2011 D.P. Kroese

164 Cross-Entropy Method

x1

x
2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Figure 9.2: A typical evolution of the mean vector with normal updating for
the peaks function.

A MATLAB implementation of CE Algorithm 9.2 is given below. The peaks
function is stored in a separate file S.m.

%peaks\simplepeaks.m

n = 2; % dimension

mu = [-3,-3]; sigma = 3*ones(1,n); N = 100; eps = 1E-5; rho=0.1;

while max(sigma) > eps

X = randn(N,n)*diag(sigma)+ mu(ones(N,1),:);

SX= S(X); %Compute the performance

sortSX = sortrows([X, SX],n+1);

Elite = sortSX((1-rho)*N:N,1:n); % elite samples

mu = mean(Elite,1); % sample mean row-wise

sigma = std(Elite,1); % sample st.dev. row-wise

[S(mu),mu,max(sigma)] % output the result

end

function out = S(X)

out = 3*(1-X(:,1)).^2.*exp(-X(:,1).^2 - (X(:,2)+1).^2) ...

- 10*(X(:,1)/5 - X(:,1).^3 - X(:,2).^5) ...

.*exp(-X(:,1).^2-X(:,2).^2)-1/3*exp(-(X(:,1)+1).^2-X(:,2).^2);

Copyright c© 2011 D.P. Kroese

9.3 Cross-Entropy Method for Optimization 165

9.3.3 Constrained Optimization

In order to apply the CE method to constrained maximization problems, we
must first put the problem in the framework of (9.9). Let X be a region defined
by some system of inequalities:

Gi(x) 6 0, i = 1, . . . , k . (9.13)

Two approaches can be adopted to solve the program (9.9) with constraints
(9.13). The first approach uses acceptance–rejection: generate a random vector
X from, for example, a multivariate normal distribution with independent com-
ponents, and accept or reject it depending on whether the sample falls in X

or not. Alternatively, one could sample directly from a truncated distribution
(for example, a truncated normal distribution) or combine such a method with
acceptance-rejection. Once a fixed number of such vectors has been accepted,
the parameters of the normal distribution can be updated in exactly the same
way as in the unconstrained case — simply via the sample mean and standard
deviation of the elite samples. A drawback of this method is that a large number
of samples could be rejected before a feasible sample is found.

The second approach is the penalty approach. Here, the objective function
is modified to

S̃(x) = S(x) +
k∑

i=1

Hi max{Gi(x), 0} , (9.14)

where Hi < 0 measures the importance (cost) of the i-th penalty.

Thus, by reducing the constrained problem ((9.9) and (9.13)) to an un-
constrained one ((9.9) with S̃ instead of S), one can again apply Algorithm
9.2.

Example 9.4 (MLE for the Dirichlet Distribution) Suppose that we are
given data x1, . . . ,xn ∼iid Dirichlet(α), where α = (α1, . . . , αK)> is an unknown
parameter vector satisfying αi > 0, i = 1, . . . ,K. The conditions on α provide
natural inequality constraints: Gi(α) ≡ −αi 6 0, i = 1, . . . ,K.

We will use Algorithm 9.2 with normal updating to obtain the MLE by
direct maximization of the log-likelihood for the Dirichlet distribution given
the data. However, due to the constraints for a valid parameter vector α, we
apply a penalty of H1 = · · · = HK = −∞ whenever a constraint is violated.

Figure 9.3 displays the distance between the mean vector of the sampling
distribution and the true MLE calculated via a fixed-point technique for a data
size of n = 100 points from the Dirichlet(1, 2, 3, 4, 5) distribution. The CE
parameters are a sample size of N = 104 and an elite sample size of N e =
103. No smoothing parameter is applied to the mean vector, but a constant
smoothing parameter of 0.5 is applied to each of the standard deviations.

Copyright c© 2011 D.P. Kroese

166 Cross-Entropy Method

0 5 10 15 20 25 30 35 40 45
10

−6

10
−4

10
−2

10
0

10
2

Iteration t

‖µ
t
−

α
∗
‖

Figure 9.3: Typical evolution of the Euclidean distance between the mean vector
and the MLE α∗.

%MLE\ce_dirichlet_mle_fp.m

clear all;

a=(1:1:5); n=100;

K=length(a); %K dim vector

data=dirichletrnd(a,n,K); % Generate data

epsilon=10^(-4); % For

N=10^4; rho=0.1; alphamu=1; alphasig=0.5; Ne=ceil(N.*rho);

mu=zeros(1,K); sig=ones(1,K).*10; % Initial parameters

muhist=mu;sighist=sig; % History

while max(sig)>epsilon

x=repmat(mu,N,1)+repmat(sig,N,1).*randn(N,K); % Sample

S=dirichlet_log_like(data,x,n,K); [S,I]=sort(S); %Score&Sort

mu=alphamu.*mean(x(I(N-Ne+1:N),:))+(1-alphamu).*mu;

sig=alphasig.*std(x(I(N-Ne+1:N),:),1,1)+(1-alphasig).*sig;

muhist=[muhist;mu];sighist=[sighist;sig]; % Update History

[mu, sig, S(end),S(N-Ne+1)]

end

% For comparison, compute the MLE using a fixed-point method

afp=dirichlet_MLE_FP(data,K);

disp([afp,dirichlet_log_like(data,afp,n,K)])

The function dirichlet log like.m calculates the log-likelihood of the set
of trial parameters for the given data set.

function out=dirichlet_log_like(data,x,n,K)

out=zeros(size(x,1),1);

I=any(x<=0,2);nI=~I;

out(I)=-inf;

out(nI)=n.*(log(gamma(sum(x(nI,:),2)))-sum(log(gamma(x(nI,:))),2));

Copyright c© 2011 D.P. Kroese

9.3 Cross-Entropy Method for Optimization 167

for k=1:n

out(nI)=out(nI)+sum((x(nI,1:(K-1))-1).*...

repmat(log(data(k,1:(K-1))),sum(nI),1),2)+(x(nI,K)-1).*...

repmat(log(1-sum(data(k,1:(K-1)),2)),sum(nI),1);

end

The function dirichletrnd.m generates Dirichlet distributed realizations
as in Algorithm 3.15. ☞ 55

function out=dirichletrnd(a,n,K)

out=zeros(n,K);

for k=1:n

temp=zeros(1,K);

for i=1:(K)

temp(i)=gamrnd(a(i),1);

end

out(k,:)=temp./sum(temp);

end

The function dirichlet MLE FP.m computes the MLE using a fixed-point
technique.

function afp=dirichlet_MLE_FP(data,K)

%Compute Dirichlet MLE via a fixed-point technique

logpdata=mean(log(data),1);

afp=ones(1,K); afpold=-inf.*afp;

while sqrt(sum((afp-afpold).^2))>10^(-12)

afpold=afp; s=sum(afpold);

for k=1:K

y=(psi(s)+logpdata(k));

if y>=-2.22

ak=exp(y)+0.5;

else

ak=-1/(y-psi(1));

end

akold=-inf;

while abs(ak-akold)>10^(-12)

akold=ak; ak=akold - ((psi(akold)-y)/psi(1,akold));

end

afp(k)=ak;

end

end

Copyright c© 2011 D.P. Kroese

168 Cross-Entropy Method

9.3.4 Noisy Optimization

Noisy (or stochastic) optimization problems — in which the objective function
is corrupted with noise — arise in many contexts, for example, in stochastic
scheduling and stochastic shortest/longest path problems, and simulation-based
optimization. The CE method can be easily modified to deal with noisy opti-
mization problems. Consider the maximization problem (9.9) and assume that
the performance function is noisy. In particular, suppose that S(x) = EŜ(x)
is not available, but that a sample value Ŝ(x) (unbiased estimate of EŜ(x)) is
available, for example via simulation. The principal modification of the Algo-
rithm 9.2 is to replace S(x) by Ŝ(x). In addition, one may need to increase the
sample size in order to reduce the effect of the noise. Although various appli-
cations indicate the usefulness of the CE approach for noisy optimization, little
is known regarding theoretical convergence results in the noisy case. A possible
stopping criterion is to stop when the sampling distribution has degenerated
enough. Another possibility is to stop the stochastic process when the sequence
of levels {γ̂t} has reached stationarity.

Example 9.5 (Noisy Peaks Function) This example is a noisy version of
Example 9.3, for which the performance function S has been corrupted by
standard normal noise: Ŝ(x) = S(x) + ε, ε ∼ N(0, 1). The following MATLAB

code provides a simple implementation of the CE algorithm to maximize the
peaks function when the sample performance values are corrupted by noise
in this way. The CE parameters and the function S.m are the same as in
Example 9.3. Typical evolution of the mean of the sampling distribution is
depicted in the Figure 9.4.

x1

x
2

−6 −4 −2 0 2 4
−6

−5

−4

−3

−2

−1

0

1

2

3

4

Figure 9.4: Typical evolution of the mean vector with normal updating for the
noisy peaks function.

Copyright c© 2011 D.P. Kroese

9.4 Exercises 169

%peaks\simplepeaks_noisy.m

n = 2; % dimension

mu = [-3,-3]; sigma = 3*ones(1,n); N = 100; eps = 1E-5; rho=0.1;

while max(sigma) > eps

X = randn(N,n)*diag(sigma)+ mu(ones(N,1),:);

SX= S(X); %Compute the performance

SX= SX+randn(N,1); %Corrupt with noise

sortSX = sortrows([X, SX],n+1);

Elite = sortSX((1-rho)*N:N,1:n); % elite samples

mu = mean(Elite,1); % sample mean row-wise

sigma = std(Elite,1); % sample st.dev. row-wise

[S(mu)+randn,mu,max(sigma)] % output the result

end

9.4 Exercises

1. Implement a cross-entropy program to maximize the same function as in
Question 1 in Section 8.5. Compare the results with those obtained via simu-
lated annealing.

2. The CE tutorial paper, which can be found on the CE webpage www.

cemethod.org starts with two toy examples — one for rare-event estimation
and one for combinatorial optimization. Implement the corresponding CE al-
gorithms in MATLAB and verify the results.

3. Implement a CE algorithm for the maxcut problem, as in Example 3.2 of
the CE tutorial.

4. Consider the binary knapsack problem:

max
x∈{0,1}n

p>x ,

subject to the constraint
w>x 6 c ,

where both p and w are vectors of non-negative numbers. The interpretation
is that pi represents the value and wi the volume of the i-th item that you want
to pack in your knapsack. The total volume of the knapsack is c <

∑
wi, so

you cannot pack every item.
Write a CE program to solve a non-trivial knapsack problem of size n =

20 and n = 40. For the smaller problem check that your program finds the
maximum by enumerating all possibilities.

5. Implement a CE algorithm for the noisy optimization problem in Example
8.1, and compare it with the stochastic approximation method in that example.

Copyright c© 2011 D.P. Kroese

Index

absolutely continuous distribution,
49, 55

acceptance probability, 88

acceptance–rejection method, 38–
165

efficiency, 38, 41

affine

combination, 57

transformation, 28, 29, 56–58

alias method, 35–38

annealing schedule, 145, 147

antithetic

estimator, 105

normal — random variables,
107

pair, 105

random variable, 105, 126

asymptotic optimality, 120

balance equations

detailed, 88, 93, 97

global, 93

Bayes’ rule, 94

Bayesian statistics, 33, 89, 100

Bernoulli

distribution, 45, 46, 161

process, 45, 46

trial, 45

beta distribution, 33, 34, 49–50, 55,
118

beta function, 49

binary crossover, 151

binary rank test, 18, 23

binomial distribution, 46

birthday spacings test, 23

Black–Scholes model, 80

Boltzmann distribution, 145

box constraints, 139

Box–Muller method, 34, 53

bridge network, 103, 106, 107, 109,
111, 113, 116, 118, 127, 128,
131, 133

Brownian bridge, 78

Brownian motion, 73, 74

standard, 74

Cauchy distribution, 27, 50, 143

central difference estimator, 125–
127, 129, 140

central limit theorem, 53

χ2 distribution, 19, 51, 58

χ2 test, 18–24

Cholesky factorization, 61, 62

collision test, 23

combinatorial optimization, 161

combined generator, 16, 17

combined multiple-recursive genera-
tor, 12, 16, 17

common random variables, 126,
129, 140

composition method, 32, 33

conditional

distribution, 30, 32, 40, 57

expectation, 111

Monte Carlo, 110, 111

estimator, 111

pdf, 38, 40, 92

confidence interval, 113

constrained optimization, 165

continuous optimization, 163

control variable, 108, 108, 109, 110

estimator, 108

multiple, 110

convex

hull, 69

Copyright c© 2011 D.P. Kroese

INDEX 171

cooling factor in simulated anneal-
ing, 146

correlation coefficient
multiple, 110

coupon collector’s test, 22
covariance

function, 61
matrix, 28, 56, 57, 110

credible interval, 94
cross-entropy

distance, 117, 155
method, 117–119, 143, 155
program, 117, 143

crossover factor in differential evo-
lution, 151

crude Monte Carlo, 104, 128
cumulative distribution function

(cdf), 26, 27, 32
empirical, 20

derivatives
estimation of, 123–134, 137

differential evolution algorithm, 150
diffusion

coefficient of Brownian motion,
74

matrix, 76
process, 75–78

Dirichlet distribution, 55, 165
discrete

distribution, 27, 35, 45
uniform distribution, 48

distribution
arcsine, see beta distribution
Bernoulli, 45, 46
beta, 33, 34, 49–50, 55, 118
binomial, 46
Boltzmann, 145
Cauchy, 27, 50, 143
χ2, 51, 58
Dirichlet, 55, 165
discrete, 27, 35, 45

uniform, 48
empirical, 20, 35
exponential, 27, 51
exponential family, 157
extreme value, 59

gamma, 49, 51–53, 55, 58
Gaussian, see normal distribu-

tion
geometric, 46–47
inverse —, 30

gamma, 30
Lorentz, see Cauchy distribu-

tion
mixture, 32
multinormal, see multivariate

normal distribution
multivariate Gaussian, see mul-

tivariate normal distribu-
tion

multivariate normal, 56–58,
58, 61

multivariate Student’s t, 58
negative exponential, see expo-

nential distribution
normal, 29, 39, 53–54, 56–58
Poisson, 47–48
positive normal, 39, 54
reciprocal, 30
standard normal, 53–54
Student’s t, 58, 90
truncated —, 30

exponential, 31
multivariate normal, 98
normal, 31

uniform, 27, 54
distributional parameter, 123, 125,

129
dominated convergence theorem,

124
dominating density, 113, 116, 143
drawing, see resampling
drift

of a Brownian motion, 74

efficiency
of acceptance–rejection

method, 38, 41
elite sample set in cross-entropy,

157
empirical

cdf, 20
distribution, 20, 35

Copyright c© 2011 D.P. Kroese

172 INDEX

equidistribution test, 20

estimator

antithetic, 105

central difference, 125–127,
129

conditional Monte Carlo, 111

control variable, 108

forward difference, 125

importance sampling, 113, 156

maximum likelihood, 157, 165

score function, 130, 132

Euler’s method, 76, 100

multidimensional, 77

evolutionary algorithm, 148

expectation

function, 61

exponential distribution, 27, 51

exponential family, 157

extreme value distribution, 59

finite difference method, 125–127,
137, 139

finite-dimensional distributions, 61

forward difference estimator, 125

frequency test, 20

gamma distribution, 49, 51–53, 55,
58

gap test, 21

Gaussian distribution, see normal
distribution

Gaussian process, 61, 78

Markovian, 62

zero mean, 61

generalized feedback shift register
generator, 15

genetic algorithm, 149

geometric Brownian motion, 80–81

geometric cooling in simulated an-
nealing, 146

geometric distribution, 46–47

Gibbs sampler, 91

grouped, 95

random sweep, 93

reversible, 93

systematic, 93

gradient

estimation, 123

grouped Gibbs sampler, 95

Hammersley–Clifford theorem, 92

hierarchical model, 93

hit-and-run sampler, 95

holding rate, 67

hyperball, 40

hypersphere, 41

iid

sequence, 9

importance sampling, 113–155

density, 113

optimal, 114, 115, 156

estimator, 113, 156

increment

—s independent, 73

of an LCG, 12

independence sampler, 88–89

independent increments, 73

indicator, 157

infinitesimal perturbation analysis,
128, 137

information matrix, 90

instrumental density, see proposal
density

intensity function, 69

inverse — distribution, 30

gamma, 30

inverse-transform method, 26–28,
39, 107

for gradient estimation, 125

irreducible Markov chain, 93

Itô diffusion, see diffusion process

Itô integral, 76

iterative averaging, 139

joint distribution, 40

Kiefer–Wolfowitz algorithm, 139,
140

KISS99 generator, 17

Kolmogorov–Smirnov test, 19, 20

Kullback–Leibler distance, 117, 155

Langevin

Copyright c© 2011 D.P. Kroese

INDEX 173

Metropolis–Hastings sampler,
100

SDE, 83

likelihood

optimization, 157

ratio, 113, 132, 160

method, see score function
method

limiting distribution, 87

line sampler, 95

linear congruential generator, 12–13

linear feedback shift register, 15

linear transformation, 28

location family, 29

location–scale family, 29–30

logarithmic efficiency, 120

logit model, 89

Lorentz distribution, see Cauchy
distribution

Markov chain, 87, 92

generation, 63–66

Markov chain Monte Carlo, 87–145

Markov jump process, 71

generation, 66–68

Markov process, 62

Markov property, 63, 66, 73

MATLAB, 9

matrix congruential generator, 13

maximum likelihood estimator, 157,
165

maximum-of-d test, 22

mean measure, 69

Mersenne twister, 12, 15

Metropolis–Hastings algorithm,
87–91, 93

mixture distribution, 32

of normals, 33

modulo 2 linear generator, 14–15

modulus

of a matrix congruential gener-
ator, 13

of an LCG, 12

of an MRG, 13

Monte Carlo

crude, 104, 128

MRG32k3a random number genera-
tor, 11, 16, 17

MT19937 Mersenne twister, 12, 15

multinormal distribution, see multi-
variate normal distribution

multiple control variable, 110

multiple-recursive generator, 13

combined, 12, 16, 17

multiplicative congruential genera-
tor, 12, 16

matrix, 13

minimal standard, 12

multiplier

of an LCG, 12

of an MRG, 13

multivariate Gaussian distribution,
see multivariate normal
distribution

multivariate normal distribution,
56–58, 58, 61

multivariate Student’s t distribu-
tion, 58

negative exponential distribution,
see exponential distribu-
tion

Newton’s method, 90

noisy optimization, 137, 168–169

nominal distribution, 113

nominal parameter, 115

normal antithetic random variables,
107

normal distribution, 29, 39, 53–54,
56–58

mixture, 33

positive, 39, 54

normal updating

in cross-entropy, 163

objective function, 137

optimal importance sampling den-
sity, 114

optimization

combinatorial, 161

constrained, 165

continuous, 163

noisy, 137, 168–169

Copyright c© 2011 D.P. Kroese

174 INDEX

randomized, 137–159
order of an MRG, 13
Ornstein–Uhlenbeck process, 82–

83

p-value, 24
partition test, 21
penalty function, 165
performance

measure, 123
period

length, of a random number
generator, 10

permutation test, 22
Poisson

zero inflated — model, 93
Poisson distribution, 47–48
Poisson process, 47, 69

non-homogeneous, 71
Poisson random measure, 69
poker test, 21
polar method, 34, 53
Polyak

averaging, 139
positive definite matrix, 56
positive normal distribution, 39, 54
positive semidefinite matrix, 56
positivity condition, 92
prior pdf

improper, 100
process

Gaussian, 61, 78
Markovian, 62
zero mean, 61

Markov, 62
Markov chain, 87, 92

generation, 63–66
Markov jump, 71

generation, 66–68
Ornstein–Uhlenbeck, 82–83
Poisson, 47, 69
Wiener, 73–75

multidimensional, 74
projected subgradient method, 138
proposal density, 38, 87, 147
pseudorandom number, see random

number

push-out method, 125

Q-matrix, 66

random
counting measure, 69
directions algorithm, 139
number, 10

generation, 9
tests for —s, 17–24

permutation, 41
process

generation, 61
sweep Gibbs sampler, 93
vector

generation, 39
walk, 65, 73

on an n-cube, 65
sampler, 89–91, 146

randomized optimization, 137–159
Rao–Blackwellization, 111
rare-event

probability, 118
simulation

via cross-entropy, 157
rate function, 69
reciprocal distribution, 30
reference parameter, 115, 117, 156,

157
reliability, 67–68
repairman problem, 67–68
resampling, 35

without replacement, 42
response surface estimation, 133–

135
reversible

Gibbs sampler, 93
Markov chain, 93

Robbins–Monro algorithm, 139, 140
root finding, 123
Rosenbrock function, 151
run test, 22
runs above/below the mean, 21

sample
average approximation, see

stochastic counterpart
method

Copyright c© 2011 D.P. Kroese

INDEX 175

performance function, 156
sampling, see resampling
satisfiability problem (SAT), 150,

161–163
scale family, 29–52
scaling factor in differential evolu-

tion, 151
score function, 130

estimator, 130, 132
method, 129–135, 137
r-th order, 131

seed of a random number generator,
9

sensitivity analysis, 123–129
serial test, 21
simulated annealing, 87, 145–148

temperature, 145
smoothing parameter, 161
sparse matrix, 13
standard Brownian motion, 74
standard normal distribution, 53–

54
statistic, 18
statistical test

for random number generators,
17–24

Stirling number of the second kind,
21

stochastic approximation, 137–142
stochastic counterpart method, 115,

118, 142–145, 156
stochastic differential equation, 75–

78
for geometric Brownian motion,

80
for Ornstein–Uhlenbeck pro-

cess, 82
generation via Euler, 76
multidimensional, 76

stochastic exponential, 80
stochastic optimization, see noisy

optimization
stochastic process

generation, 61
stochastic shortest path, 104, 106,

109, 113, 118, 127
structural parameter, 123, 125, 128

Student’s t distribution, 58, 90

subgradient method, 138

systematic Gibbs sampler, 93

table lookup method, 34–35, 48

Tausworthe generator, 15

temperature in simulated annealing,
145

test

binary rank, 18

birthday spacings, 23

χ2, 20

collision, 23

coupon collector’s, 22

equidistribution, 20

frequency, 20

gap, 21

Kolmogorov–Smirnov, 20

maximum-of-d, 22

partition, 21

permutation, 22

poker, 21

rank, binary, 23

run, 22

serial, 21

TestU01, 20

theorem

Hammersley–Clifford, 92

tilting vector, 115

transformation

methods for generation, 28

transition

matrix, 63, 67

rate, 66

trigonometric function, 146

truncated

distribution, 30

exponential distribution, 31

multivariate normal distribu-
tion, 98

normal distribution, 31

uniform distribution, 27, 54

discrete, 48

for permutations, 41

in a hypersphere, 40

uniform random number

Copyright c© 2011 D.P. Kroese

176 INDEX

generation, 9

variance
reduction, 103

variance minimization method,
115–117

weak derivative, 137
white noise

Gaussian, 80
whitening, 57
Wichman–Hill generator, 16
Wiener process, 73–75

multidimensional, 74

XOR, 14

zero inflated Poisson model, 93
zero-variance importance sampling

distribution, 118

Copyright c© 2011 D.P. Kroese

