
Ultrametric Structure in AutoencoderError SurfacesMarcus Gallagher, Tom Downs and Ian WoodDepartment of Computer Science and Electrical EngineeringUniversity of QueenslandSt Lucia Qld 4072, Australiafmarcusg,td,woodg@csee.uq.edu.auAbstractWe use sampling methods to analyse the \apparent minima" of theerror surfaces of feedforward neural networks learning encoder problems.First and second-order statistics of a sample of these points of attractionare shown to provide qualitative statistical information about the struc-ture of the error surface, allowing a simple description of this structure.Following methods previously used in the analysis of other complex con-�guration spaces (such as spin glass models and several combinatorialoptimization problems), the third-order statistics of the points of attrac-tion are examined and found to be arranged in a highly ultrametric way,using the normal Euclidean distance measure. The implications of thisresult are discussed.1 Introduction1.1 Learning as Error Surface OptimizationThe error surface is essentially a cost function of the type that arises in generalmultivariate optimization problems. Given a vector of weights in a feedfor-ward neural network or Multi-Layer Perceptron (MLP), the task of learning aset of training patterns is to �nd the weight vector w� = (w1 ; : : : ;wn ) whichminimizes some given cost or error function E(w)w� = argminE(w):Finding w� can be viewed as searching an error surface sitting above weightspace for a minimum point, the height of which is determined by E(w). Formu-lating the training problem in this way is quite general: the network is simplytreated as a black box (mapping input vectors to output vectors) with N ad-justable parameters, allowing for arbitrary error surfaces. Normally speci�cchoices are made regarding the cost function, the model (in this case an MLPof �xed topology) and the training set to be used. Such choices limit the kindsof possible error surfaces formed and this is one important reason for exploringerror surface structure.From a more practical viewpoint, any training algorithm which is able toutilize information about the structure of the error surface, either explicitly or1



implicitly (through knowledge or manipulation of the network topology, errorfunction or training set) has the potential to outperform a \blind" algorithm:\any algorithm performs only as well as the knowledge concerning the costfunction put into the cost algorithm" [10] (see [7] for an example).1.2 Exploring the Structure of the Error SurfaceIn general, the very high dimensionality of the error surface makes its investi-gation a di�cult task. For problems involving small networks or small trainingsets (e.g, XOR), the error surface can be studied by visualization methods suchas plotting di�erent two dimensional \slices" of the surface, or analytically [3].These methods become impractical for larger networks/training sets.Despite this, some limited results concerning error surfaces exist. For exam-ple, if the training patterns are linearly separable, then an MLP error surfacehas a unique minimum under some loose assumptions [2]. It is also well knownthat error surfaces contain a large degree of redundancy, due to symmetry [1].Permuting hidden units in the same layer (including all ingoing and outgoingconnected weights), as well as ipping the sign of each weight connected to ahidden unit (for an odd activation function), leaves the input-output functionof the network unchanged, meaning that for every point on the error surfacethere areM !2M equivalent points, whereM is the number of hidden layer units.An interesting feature of the error surface concerns its \local minima". Sinceit is impractical to locate minima precisely on a continuous surface, it is normalpractice to conduct repeated runs of backpropagation with a small learningrate, to obtain points which are \close" to minima after signi�cant numbersof training epochs. Note that it is often suggested that MLP error surfacescontain a number of wide, at areas rather than true critical points of the costfunction - we make no distinctions between them here. To make this clear werefer to points collected at the end of training runs as apparent minima (AM).2 Statistical Properties of Error Surfaces2.1 Encoder NetworksThe (auto)encoder problem is a simple problem which is commonly applied toneural network architectures. For an N -input/output encoder, log2(N) hiddenunits are required to perform a binary encoding. When the hidden units useintermediate activation levels, anN�2�N encoder can be constructed that cansolve the encoder problem for arbitrarily largeN [4], although backpropagationhas great di�culty in �nding such a solution for N > 8 [5]. The encoderproblem is convenient because it can be scaled to any desired size, and thedi�culty of the problem can be somewhat controlled.In this paper we examine the error surfaces of encoder networks for N = 4and N = 8. In each case the number of hidden units is varied between 1 andN . All experiments were conducted using an MLP with a single hidden layer,bias inputs for the hidden and output layers and tanh() activation functions on



hidden and output units. In the training set, desired output values of [�0:9]were used, to avoid units being forced to saturation. Standard backpropagationwas used with no momentum and learning rate � = 0:1. At the end of eachtraining run (30000 epochs), all weight vectors were transformed to lie withina unique wedge of weight space [1], to remove the permutation and sign-ipsymmetries of the error surface. Data samples consisted of 1000 points.2.2 Error Histograms and Pairwise DistancesGiven a sample of AM and their corresponding error values, the cumulative fre-quency distribution of the di�erent error values in the sample can be examined(results for several encoder networks are shown in Fig. 1). The �rst prominentfeature for many of the networks was the step-like nature of the curves, indicat-ing that a small number of error values often dominate a sample. Secondly, thecurves shift upwards and to the left as the number of hidden units increases,indicating an increasing chance of an AM being an (increasingly) good solution(E � 0). To examine how the AM are distributed on the error surface, we cal-
0 0.5 1 1.5 2 2.5 3 3.5

300

400

500

600

700

800

900

1000

MSE

C
um

ul
at

iv
e 

F
re

qu
en

cy

4−1−4 network
4−2−4 network
4−3−4 network
4−4−4 network

0 0.5 1 1.5 2 2.5
0

100

200

300

400

500

600

700

800

900

1000

MSE

C
um

ul
at

iv
e 

F
re

qu
en

cy

8−1−8 network
8−2−8 network
8−3−8 network
8−8−8 networkFigure 1: Error distributions for AM samples.culate the probability distribution P (q) for the distances between two randomlyselected points, where q = d(wa;wb) is the Euclidean distance between pointswa and wb. Fig. 2 shows typical P (q) histograms for samples of AM. Manyof these distributions were skewed to the left (esp. for the 4-1-4, 8-1-8, 8-2-8and 8-3-8 networks). This suggests that a degree of clustering is present in theAM. Further examination is required to determine the nature of the clustering(e.g, the number of clusters). One way of visualizing the AM is using PrincipalComponent Analysis (see next section).3 UltrametricityIt is known that under certain conditions, the spin glass models of statisticalphysics, combinatorial optimization problems and other systems exhibit the
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Figure 2: Distribution of distances between AM.phenomenon of ultrametricity (see [8] for a review). In general, a distance in ametric space obeys the triangular inequalityd(wa;wc) � d(wa;wb) + d(wb;wc)whereas an ultrametric space is endowed with an (ultrametric) distance measuresatisfying a stronger inequalityd(wa;wc) �Maxfd(wa;wb); d(wb;wc)g:For any three points in such a space, the two of them that are nearer toeach other are equidistant from the third. This means that all triangles in anultrametric space must be either equilateral, or isosceles with a small base (thirdside shorter than the two equal ones). It is known that con�guration spaces withultrametrically distributed minima are quasi-fractal, and empirical evidencesuggests that simulated annealing can work well in such spaces [6],[9]. Otheralgorithms might also be developed to make use of this structural information.Given a sample of points in a con�guration space, the degree of ultrametric-ity can be estimated using a correlation function of distances between samplepoints in the con�guration space [9], which uses the two longest sides of a sampleof triangles randomly generated from the data points. Having no knowledgeof the distribution of the data, we use the distribution-free rank correlationcoe�cient SS = 1� 6Pki=1 d2ik(k2 � 1)where k denotes the number of points in the sample, and di is the di�erencebetween the ranks of the ith pair of longest sides. Fig. 3 shows values of S forseveral of the AM samples as a function of the number of epochs. While therandom starting points return a small value of S, as training progresses thedistribution of the points on the error surface becomes highly ultrametric.To partially visualize this structure present in the AM, we use PrincipalComponent Analysis and plot the AM in the �rst three principal components
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8−8−8 networkFigure 3: Degree of ultrametricity in samples of AM as a function of the number of epochs.of the sampled data. Fig. 4 shows an example of such a plot for a 4-1-4 network,with points collected after 30000 epochs (S = 0:93). In this case 83% of thedistance information on the error surface is captured by the �rst three principalcomponents.
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Figure 4: A visualization of how the AM are organized in weight space, using the �rst threeprincipal components, for the 4-1-4 encoder.4 DiscussionFrom the above, a simple description of the error surfaces of autoencoders ispossible.The fact that AM often corresponded to only a few error values suggeststhat they are either very tightly clustered (into a small number of clusters), orthat these particular values are present in many places about the error surface.When the pairwise distribution is dominated by distances near zero, the formeris true (esp. in the 4-1-4, 8-1-8, and 8-2-8 encoders). However, for many of theother encoders, a wide range of distances between points is shown, meaning AMare scattered over the error surface. A staircase-like error surface is consistentwith these observations.



The high degree of ultrametric structure detected in AM is quite unex-pected. Previously [8],[9], the con�guration spaces which have displayed thisstructure were de�ned on discrete spaces (together with an appropriate distancemeasure), and are thus quite di�erent to our Euclidean setting. Fig. 3 showsthat the degree of ultrametricity increases rapidly from the start of training runswith the number of epochs. This indicates that the paths followed by smoothgradient descent are ultrametrically distributed, not just the AM obtained aftera large number of epochs.5 SummaryThis paper shows how the structure of the error surface can be explored andits statistical properties measured. The results show that ultrametricity is em-bedded in the error surface of encoder networks. Examining the e�ectivenessof simulated annealing for searching such a surface [6], and designing an algo-rithm which can utilize other available information about the error surface (e.g,gradient, higher-order statistical information) are interesting areas for futurework.References[1] A. M. Chen, H. Lu, and R. Hecht-Nielsen. On the geometry of feedforward neuralnetwork error surfaces. Neural Computation, 5(6):910{927, 1993.[2] P. Frasconi, M. Gori, and A. Tesi. Successes and failures of backpropagation: a the-oretical investigation. In O. Omidvar and C. L. Wilson, editors, Progress in NeuralNetworks. Ablex Publishing, 1993.[3] Leonard G. C. Hamey. The structure of neural network error surfaces. In Proc. SixthAustralian Conference on Neural Networks, pages 197{200, Sydney, 1995.[4] L. Kruglyak. How to solve the N bit encoder problem with just two hidden units. NeuralComputation, 2(4):399{401, 1990.[5] Raymond Lister. Visualizing weight dynamics in the N-2N encoder. In IEEE Interna-tional Conference on Neural Networks, volume 2, pages 684{689, 1993.[6] Raymond Lister. Fractal strategies for neural network scaling. In Michael A. Arbib,editor, The Handbook of Brain Theory and Neural Networks, pages 403{405. MIT Press,1995.[7] R. Parisi, E. Di Claudio, and G. Orlandi. A generalized learning paradigm exploitingthe structure of feedforward neural networks. IEEE Transactions on Neural Networks,7(6):1450{1459, 1996.[8] R. Rammal, G. Toulouse, and M. A. Virasoro. Ultrametricity for physicists. Reviews ofModern Physics, 58(3):765{788, 1986.[9] Sara A. Solla, Gregory B. Sorkin, and Steve R. White. Con�guration space analysisfor optimization problems. In E. Bienenstock et. al., editor, Disordered Systems andBiological Organization, NATO ASI Series, volume F20, pages 283{293, 1986.[10] David H. Wolpert and William G. Macready. No free lunch theorems for search. Tech-nical Report SFI-TR-95-02-010, Santa Fe Institute, February 1995.


