
Demon Algorithms and their Appliation toOptimization ProblemsIan Wood and Tom DownsAbstrat| We introdue four new general optimizationalgorithms based on the `demon' algorithm from statisti-al physis and the simulated annealing (SA) optimizationmethod. These algorithms redue the omputation timeper trial without signi�ant e�et on the quality of solu-tions found. Any SA annealing shedule or move genera-tion funtion an be used. The algorithms are tested ontraveling salesman problems inluding Grotshel's 442-ityproblem with results omparable to SA. Appliations to theBoltzmann mahine are onsidered.Keywords| Demon algorithm, simulated annealing, opti-mization, traveling salesman problem, Grotshel's 442-ityTSP, Boltzmann mahine.I. IntrodutionWe present here a number of optimization algorithmsbased on the simulated annealing (SA) method. These newmethods aim to speed up SA by reduing omputation timeper trial without sari�ing the quality of solutions. Thehoie of parameters is kept fairly simple, and appliabilityto other variations of SA is maintained.The initial motivation for this study ame from an inter-est in improving the speed of the Boltzmann mahine - areurrent neural net model [1℄ whih requires Gibbs sam-pling of its internal states at a low `temperature' equilib-rium for both its learning and operational phases. Attain-ment of a low-temperature equilibrium has been ahievedin the past via simulated annealing but is slow enough todeter most people from using the model. Sampling at lowtemperatures is desirable sine the state probability densityfuntion is sharpened and learning speed inreases.As a means of improving the speed of the Boltzmannmahine one might onsider speeding up both the approahto equilibrium and the rate at whih sampling an our.The issue of fast Gibbs sampling of equilibria is not onlyimportant for Boltzmann mahines, but also for omputa-tional statistial physis. One approah to fast samplingdue to Creutz [2℄, [3℄ is aimed at the 2-D Ising model ofatomi spins in a ferromagneti lattie. Conventionally,this is simulated using the Metropolis algorithm [4℄, butCreutz found he ould use a omputationally simpler algo-rithm to ahieve similar results in far less time.Creutz's method is known as miroanonial MonteCarlo simulation [2℄ or the `demon' algorithm [5℄. We preferthe latter term. In its original form the demon algorithmdoes not aim to generate low energy states, and hene isnot diretly useful for optimization. Optimization prob-lems an usually be framed in terms of a ost or energyfuntion whih is to be minimized over a spae of possibleIntelligent Mahines Laboratory, Department of Eletrial andComputer Engineering, University of Queensland, Australia. E-mail:wood,td�ele.uq.edu.au .

solutions. Here we propose four algorithms whih vary theoperation of the demon algorithm to enourage it to searhfor optimal or near-optimal solutions. The methods aretested on 200- and 442-ity traveling salesman problemsand results on the latter are ompared with those reportedusing other optimization methods.II. The Metropolis AlgorithmThe Metropolis algorithm was invented to allow om-puter simulation of equilibria in statistial physis. Aninitial state and a temperature are spei�ed, and a Markovhain of system states is generated. One equilibrium isreahed at the required temperature, assoiated quantitiesan be approximated from the hain of states. The algo-rithm an be stated as follows.1. hoose an initial on�guration (state) S2. hoose a temperature T > 03. repeat:(a) hoose a new on�guration S0(b) let �E = E(S0)�E(S), where E(S) is the energy ofon�guration S() if �E < 0 aept new on�guration, ie: S = S0(d) else if rand[0; 1℄ � exp(��E=T ) aept new on�gu-ration, ie: S = S0(e) else rejet new on�guration4. until stop onditionThe simulation would normally only be stopped one theuser has enough samples to alulate equilibrium propertiesto the desired auray.Eah new system state or on�guration should be a smallstohasti perturbation of the urrent state. The methodof hoosing the next state is alled the generating funtion.For disrete parameters, suh as those present in the Boltz-mann mahine, the generating funtion is usually a uniformrandom distribution over the losest possible states. For aspae of ontinuous parameters, the generating funtion isusually a Gaussian, distributed around the urrent state.New states are aepted aording to an aeptane fun-tion whih depends on the energy of the urrent state andthe proposed state. The Metropolis algorithm aepts anystate transition whih will redue the system energy, andaepts inreases stohastially using the funtion in (3d).III. Creutz's Demon AlgorithmCreutz's original demon algorithm an be stated as:1. hoose an initial on�guration S2. hoose a demon energy D > 03. repeat:



(a) hoose a new on�guration S0(b) let �E = E(S0)�E(S)() if �E � D aept new on�guration and update de-mon, ie: S = S0; D = D ��E(d) else rejet new on�guration4. until stop onditionGeneration of a new on�guration (3a) is the same asin the Metropolis algorithm. Any new on�guration whihwould redue system energy is aepted, as in the Metropo-lis algorithm. However, the energy lost by the system isgiven to an arti�ial variable alled a `demon'. Inreasesin system energy are only allowed if the demon an pro-vide the neessary energy, whih it then loses. As a result,E(S) + D = C, a onstant, for any state in the Markovhain. Temperature is not spei�ed diretly, but an beestimated from the hain of states. Its value is learly gov-erned by the value of C, whih is the energy of the initialstate plus the initial demon energy.The aeptane funtion for Creutz's method is deter-ministi and omputationally simpler than that of theMetropolis algorithm. It replaes an exponentiation andthe generation of a random number with a omparison anda subtration. The sequene of states produed remainsstohasti, but derives its randomness from the generatingfuntion.In [2℄ Creutz examines a fairly well-understood systemfrom whih he an hoose initial states at any desired en-ergy within the range of possible values. He does not ap-pear to make a spei� e�ort to generate results at low tem-peratures. Hene his algorithm as it stands is not diretlyuseful for �nding near-optimal solutions to optimizationproblems or low-energy states of a Boltzmann mahine.IV. Simulated AnnealingKirkpatrik et al [6℄ modi�ed the Metropolis algorithmto spei�ally aim for low energy states, whilst retaining itsability to esape loal minima by oasional aeptanes ofmoves whih inrease the energy.The Metropolis algorithm already uses a temperatureparameter. Kirkpatrik's innovation was to shedule re-dutions of the temperature eah time the system reahedquasi-equilibrium until the �nal temperature was near zero.The system will by then be stuk in a loal minimum ofthe energy funtion. If the temperature was redued slowlyenough, this may be the global minimum for the system.Simulated Annealing1. hoose an initial on�guration S2. hoose an initial temperature T = T0 > 03. repeat:(a) hoose a new on�guration S0(b) let �E = E(S0)�E(S)() if �E � 0 aept new on�guration(d) else if rand[0; 1℄ � exp(��E=T ) aept new on�gu-ration ie: S = S0(e) else rejet new on�guration

(f) if quasi-equilibrium reahed, redue temperature a-ording to shedule, eg: T = � � T4. until stop onditionSimulated annealing is seen to onsist of three proe-dures: a move generating funtion, a move aeptane fun-tion and an annealing shedule. The shedule of tempera-ture redutions is labeled `annealing' by analogy with theslow ooling of liquids to form large, low energy rystalstrutures in solids.Kirkpatrik's original annealing shedule was to setT (n) = � T (n� 1) (1)� 2 (0; 1) where n is the number of times annealing hasbeen applied. This negative exponential (or geometri)shedule is quite ommonly used in appliations and hasprodued good results.Another ommonly used shedule redues the tempera-ture linearly from a starting value to 0 (or near zero) overthe maximum number of annealing steps.The starting temperature value is usually determined bysteadily inreasing the temperature from an initial guessuntil a value is reahed at whih most transitions are a-epted [7℄.Geman and Geman [8℄ proved that if an inverse logshedule were used, the system would be ertain to eventu-ally onverge to the global minimum. However in pratiethis shedule is far too slow to be useful. For example,a drop in temperature from 10 degrees to 1 degree wouldtake 1010 � 1 annealing steps.Many variations on the original generating funtion andannealing shedule [6℄ have been suggested in the 15 yearssine it was published [7℄. Far less work seems to have goneinto the aeptane funtion, and of the examples of whihI am aware, only one [9℄ attempts to signi�antly reduethe omputational omplexity of the aeptane funtion,as we attempt here.V. Demon Algorithms for OptimizationHere we have altered Creutz's algorithm to guide us froman initial state towards lower energy states as is requiredfor optimization.Eah of our methods revolves around reduing the valueof the demon. We employ two main methods for this:� `annealing' the demon value, muh as Kirkpatrik et al [6℄and others [7℄ have annealed the temperature in simulatedannealing� imposing a fairly low upper bound on the demon, whihtends to trunate its value regularly, indiretly loweringsystem energy.The two above methods an eah be improved by intro-duing a stohasti demon value, whih is normally dis-tributed around a mean. The demon mean then operatesin a similar manner to the demon value in the determinis-ti demon methods. The stohasti demon will oasionallytake on high values allowing the system to esape from loalminima that it might otherwise have been heavily delayed



or trapped by. This, of ourse, inreases the omputationalost of the methods.The algorithms are as follows:Bounded Demon Algorithm1. hoose an initial on�guration S2. hoose an initial demon energy D = D0 > 03. repeat:(a) hoose a new on�guration S0(b) let �E = E(S0)�E(S)() if �E � D aept new on�guration and update de-mon, ie: S = S0; D = D ��E(d) else rejet new on�guration(e) if D > D0; D = D0 - enfore demon upper bound4. until stop onditionRandomized Bounded Demon Algorithm1. hoose an initial on�guration S2. hoose an initial demon mean energy Dm = Dm0 > 03. repeat:(a) hoose a new on�guration S0(b) let �E = E(S0)�E(S)() if �E � 0 aept new on�guration and update de-mon mean, ie: S = S0; Dm = Dm��E(d) elsei. D = Dm + Gaussian noise valueii. if �E � D, aept new on�guration and update de-mon mean, ie: S = S0; Dm = Dm��Eiii. else rejet new on�guration(e) if Dm > Dm0; Dm = Dm0 - enfore demon meanupper bound4. until stop onditionAnnealed Demon Algorithm1. hoose an initial on�guration S2. hoose an initial demon energy D = D0 > 03. repeat:(a) hoose a new on�guration S0(b) let �E = E(S0)�E(S)() if �E < D aept new on�guration and update de-mon, ie: S = S0; D = D ��E(d) else rejet new on�guration(e) if quasi-equilibrium reahed, redue demon aordingto shedule, eg: D = � �D4. until stop onditionRandomized Annealed Demon Algorithm1. hoose an initial on�guration S2. hoose an initial demon mean energy Dm = Dm0 > 03. repeat:(a) hoose a new on�guration S0(b) let �E = E(S0)�E(S)() if �E � 0 aept new on�guration and update de-mon mean, ie: S = S0; Dm = Dm��E(d) elsei. D = Dm + Gaussian noise valueii. if �E � D, aept new on�guration and update de-mon mean, ie: S = S0; Dm = Dm��E

iii. else rejet new on�guration(e) if quasi-equilibrium reahed, redue demon mean a-ording to shedule, eg: Dm = � �Dm4. until stop onditionIn the randomized algorithms Gaussian noise is added tothe demon mean value. This noise has mean 0 and varianespei�ed by the user as a fration of the Dm0 value. Thisadds a stohasti element to the aeptane alulation andallows rare large inreases in energy, ruled out by the de-terministi algorithms. However this aeptane funtionhas a omputational omplexity equal to that of simulatedannealing.Sine these algorithms all use the same generating fun-tion as simulated annealing and two of the four use anneal-ing, it should be possible to ombine them with any of thealternative generating funtions (eg: FSA [10℄, ASA [11℄)or annealing shedules (eg: polynomial [7℄) that have beenproposed.VI. Traveling Salesman Problem as a benhmarkAs a test of the apabilities of the new algorithm, wehose the TSP. For large numbers of ities, this lass ofproblems is reognized as being diÆult to solve using gen-eral ombinatorial optimization algorithms [12℄. It hasbeen widely studied and published results exist for manyoptimization tehniques. Also, global optima are knownfor some large problem instanes.The algorithms tested inluded the four demon algo-rithms, as well as standard simulated annealing [6℄ and agreedy algorithm whih only aepts improvements in theost funtion. We initially ran omparative tests on ran-domly generated problem instanes of 10, 20, 50, 100 and200 ities. For these problems, only a little e�ort was madeto hoose suitable values for the `user-de�ned' parameters.All algorithms were allowed to run to a maximum of 107trials, and simulations were stopped before that if the num-ber of onseutive rejeted moves exeeded 50,000.As a representative example, we show results on one in-stane of a 200-ity TSP, averaged over 5 runs eah startingfrom a random initial tour. City oordinates were hosenfrom a uniform random distribution over a 10*10 grid.The move generation rule used was uniform 2-opt [13℄.In 2-opt exhange, two ities along the route are hosenand the hange onsidered is that of reversing the routesegment lying between the two ities. In uniform 2-opt, thetwo ities are hosen from a uniform random distributionover all ities. The �rst ity hosen is onsidered to be thestarting point of the tour segment.We then looked for well-known examples of TSPs withpublished results from other researhers using their owngeneral optimization algorithms.In searhing for published results on large TSPs, wefound a paper by Duek and Sheuer [9℄ who use methodssimilar to some of those outlined here to arry out detailedtests on Grotshel's 442-ity problem [14℄ and Padberg &Rinaldi's 532-ity problem [15℄. In 1990, these were two ofthe largest TSPs for whih optimal solutions were known.



Knowledge of the global optimum of the ost funtion al-lows a more absolute evaluation of the performane of thevarious algorithms on these two problems.The data for these two problems and many others isavailable in the TSPLIB arhive at:http://softlib.rie.edu/softlib/tsplib/ .Duek and Sheuer [9℄ also quote results by other au-thors on these problems, namely Rossier et al [16℄ usingexhaustive Lin-2-opt and simulated annealing, and Muh-lenbein et al [17℄ using geneti algorithms. 3-opt exhange[13℄ appears likely to prove a superior heuristi, but we arenot aware of any published results in whih it has beenused for these problems.VII. Duek and Sheuer's workDuek and Sheuer's [9℄ main algorithm is known asThreshold Aepting (TA) and takes the following form:1. hoose an initial on�guration S2. hoose an initial threshold T3. repeat:(a) hoose a new on�guration S0(b) let �E = E(S0)�E(S)() if �E � T aept new on�guration, ie: S = S0(d) else rejet new on�guration(e) if annealing ondition reahed, redue T aording toshedule4. until stop onditionThis algorithm is learly similar to both the annealeddemon algorithm and the bounded demon algorithm. Theprinipal di�erenes are:� the threshold does not absorb and release energy, unlikethe demon.� the only annealing shedules onsidered are linear or aproblem-spei� variation of this.� the upper bound on individual energy inreases is �xed� unlimited hill-limbing is possible, allowing eventual es-ape from any deep loal minima, as well as unonstrainedwandering.Of the demon algorithms, only the two randomized al-gorithms allow the possibility of unlimited hill-limbing.In the bounded demon algorithms, the demon upperbound demon an set higher than TA's threshold valuesan sine the average demon value tends to be muh lowerthan the initial level.The demon value in the the bounded demon algorithmsplays muh the same role as the threshold in TA. Howeverthe average demon value is usually muh lower than thedemon upper bound, so this bound an be set muh higherthan the threshold in TA while maintaining a similar rate ofenergy redution. The demon value's variation allows thealgorithm to oasionally aept state transitions involvingmuh larger inreases in energy than an be allowed underTA.In a later paper Duek [18℄ presents two further algo-rithms labeled \The Great Deluge" and \Reord to ReordTravel". The �rst of these allows transitions in exatly
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Fig. 1. An optimal solution to Grotshel's 442-ity TSPthe same way as the annealed demon algorithm. However,where we anneal the demon value, Duek e�etively an-neals the sum of system energy and demon energy. Theseond method aepts transitions in the same way as thebounded demon algorithm.Duek does not report any results for either of thesetwo algorithms with a stohasti generating funtion. Heuses a deterministi generating funtion, developed speif-ially for the traveling salesman problem, whih greatlyinreases the speed of the algorithm. This method onsid-ers only ities whih are near neighbours for 2-opt updates,a method that will work well in many TSPs.VIII. ResultsAll of the new algorithms require the hoie of an ini-tial demon value. This hoie is quite important for thebounded demon algorithms sine it is also an annealingontrol. Not surprisingly, testing has shown it is muh lessimportant for the annealed demon algorithms, in whihthe hoie of � (see eqn. 1) is more important. We havehowever generally found that all the algorithms were lesssensitive to the hoie of these parameters than simulatedannealing was to the hoie of �. Other parameters, suhas those involved in the determining of quasi-equilibrium,were hosen as advised in [7℄.A. Random satter 200-ity problemTABLE I200-ity TSP resultsAlgorithm Average Best Avg. TrialsSA 106.28 104.10 1.09 MAnnealed Demon 104.71 103.52 4.22 MBounded Demon 106.15 105.02 10 MR Annealed Demon 103.75 102.95 7 MR Bounded Demon 105.66 105.30 10 MGreedy 115.20 112.85 0.15 M



The fat that some of the algorithms terminated wellshort of the maximum number of trials is some ause foronern, sine it is expeted that more trials would leadto better results. The following tests showed that a veryareful hoie of parameters ould result in runs of anydesired length, and orrespondingly better results.B. Grotshel's 442 ity problemFig 1 shows an optimal solution to Grotshel's 442-ityproblem [14℄. The optimal tour has a length of 50:78 units.One an notie from the �gure that the ities in this prob-lem are not distributed in a random sattering. A greatdeal of lustering and lining up of ities is present. How-ever, we are unsure as to whether this makes the problemeasier or harder for optimization algorithms than a randomsatter of 442 ities in the same grid.Results from [16℄ using simulated annealing and from[17℄ using geneti algorithms are summarized in Table II.Both report only their best results.Rossier et al [16℄ introdued a `Distane' heuristi forthe problem, whih requires that the two ities hosen foronsideration of a 2-opt move must lie within a .45 radius ofeah other. This is the maximum distane to a neighbourfor any of the 442 ities in Grotshel's problem. Cities inthis problem have on average around 20 neighbours withinthis radius, and examination of the optimal solution (�g.1) shows that only one distane along the route exeeds.45, indiating the likely usefulness of this problem-spei�heuristi.Duek and Sheuer [9℄, [18℄ use this heuristi extensively,and with good results. We show results for both our ownwork (Tables IV, V, VI, VII and VIII) and that of [9℄ (TableIII) with the heuristi (Distane) and without (Standard)on the 442-ity problem. Eah line ontains the averageand best results over 25 random starting tours.TABLE IISimulated Annealing and Geneti AlgorithmsAlgorithm Best result TrialsLin-2-opt 55.48 unlimitedSA Standard 53.30 2 MSA Distane 51.765 2 MGeneti Algorithm 51.21 unknownTABLE IIIThreshold Aepting - DuekAlgorithm Average Best TrialsTA Standard 52.96 51.94 2 MTA Distane 51.53 51.07 1.5 MTA Distane 51.51 50.97 2 MTA Distane 51.36 50.95 4 MThe SA and demon algorithm simulations were done withfairly areful seletion of the user parameters. For instane,

TABLE IVStandard Demon algorithms - 2 M trialsAlgorithm Average BestSimulated Annealing 54.35 53.34Bounded Demon 53.69 52.28R Bounded Demon 53.97 53.48Annealed Demon 54.73 53.62R Annealed Demon 54.44 53.16Greedy 0.8 M 57.20 55.74TABLE VDistane Demon algorithms - 1.5 M trialsAlgorithm Average BestSimulated Annealing 51.73 51.23Bounded Demon 52.31 51.60R Bounded Demon 52.47 51.86Annealed Demon 51.89 51.32R Annealed Demon 51.81 51.27Greedy 0.1 M 58.06 56.83TABLE VIDistane Demon algorithms - 2 M trialsAlgorithm Average BestSimulated Annealing 51.72 51.23Bounded Demon 52.24 51.60R Bounded Demon 52.36 51.77Annealed Demon 51.74 51.19R Annealed Demon 51.75 51.26TABLE VIIDistane Demon algorithms - 4 M trialsAlgorithm Average BestSimulated Annealing 51.54 51.14Bounded Demon 52.08 51.27R Bounded Demon 52.18 51.55Annealed Demon 51.74 51.19R Annealed Demon 51.62 50.95TABLE VIIIDistane Demon algorithms - 10 M trialsAlgorithm Average BestSimulated Annealing 51.32 50.85Bounded Demon 51.91 51.23R Bounded Demon 51.96 51.40Annealed Demon 51.41 51.09R Annealed Demon 51.39 50.93the negative exponential shedule (eqn. 1) is governed bythe parameter �. Although many texts, eg: [7℄, suggest



hoosing � in the range .85 .. .99., we found that valuesaround .99994 were the most suessful for SA in the 10 Mtrial simulations. These redued the system temperaturefrom an initial value, ommonly 20, to a �nal value of .01.This was low enough to ensure the rejetion of most en-ergy inreasing moves, meaning the system was unlikely toevolve further. IX. ComparisonTABLE IXAlgorithm Complexity - Aeptane FuntionAlgorithm �E > 0 rejet �E > 0 aeptMetropolis Alg m,e,r m,e,rCreutz' Demon  a,SA m,e,r m,e,rBounded Demon  a,R Bounded Demon ,3m,e,r a,,3m,e,rAnnealed Demon  a,R Annealed Demon ,3m,e,r a,,3m,e,rGreedy - -TA  When �E � 0 all the algorithms will aept the movewith very little omputation - at most an addition and aomparison. If �E > 0 the steps an be a little more de-manding. Table IX ompare the omputational omplexityof the algorithms. Operations are lassed as a (additionand subtration),  (ompare), m (multipliation and di-vision), e (exponentiation) and r (random number genera-tion).The annealing operation is only performed on averageeveryN trials, whereN is likely to be over 100, and requiresjust a multipliation or an addition for negative exponentialshedules or linear shedules respetively. The generatingfuntion requires one random number to be generated inall ases. X. DisussionDuek and Sheuer [9℄ admit that their `annealing' shed-ule was optimized for this partiular problem. The valueshosen are not far removed from a linear annealing shed-ule, whih would require only one parameter - the initialvalue. However, they hoose 30 values for the threshold,eah apparently held for 1/30 th of the total number oftrials. This an be onsidered as the hoosing of 30 param-eters. Similar results are reportedly obtained [9℄ using alinear shedule, but no details are given.Our exponential annealing shedule requires two param-eters - the initial demon value and � (eqn. 1). A linearshedule is also possible, but has not yet been tried. Webelieve that an annealing shedule requiring any more pa-rameter hoies plaes an unneessary burden on the user.
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