
Fast Optimization by Demon AlgorithmsIan Wood and Tom DownsNeural Network Laboratory, Department of Eletrial and Computer EngineeringUniversity of Queensland, St. Luia 4072. Australiafwood, tdg�ele.uq.edu.auABSTRACTWe introdue four new general optimization algorithms based on the `demon' algorithm fromstatistial physis and the simulated annealing (SA) optimization method. These algorithmsuse a omputationally simpler aeptane funtion, but an use any SA annealing shedule ormove generation funtion. Computation per trial is signi�antly redued. The algorithms aretested on traveling salesman problems inluding Grotshel's 442-ity problem and the results areomparable to those produed using SA. Appliations to the Boltzmann mahine are onsidered.1. IntrodutionWe present here a number of optimization al-gorithms based on the simulated annealing (SA)method. These new methods aim to speed up SAby reduing omputation time per trial withoutsari�ing the quality of solutions. The hoie ofparameters is kept fairly simple, and appliabilityto other variations of SA is maintained.The initial motivation for this study ame froman interest in improving the speed of the Boltzmannmahine - a reurrent neural net model [1℄ whihrequires Gibbs sampling of its internal states at alow `temperature' equilibrium for both its learn-ing and operational phases. Attainment of a low-temperature equilibrium has been ahieved in thepast via simulated annealing but is slow enoughto deter most people from using the model. Asa means of improving the speed of the Boltzmannmahine one might onsider speeding up both theapproah to equilibrium and the rate at whih sam-pling an our.Fast Gibbs sampling of equilibria is also im-portant in omputational statistial physis. Oneapproah due to Creutz [2℄ is aimed at the 2-DIsing model of atomi spins in a ferromagneti lat-tie. Conventionally, this is simulated using theMetropolis algorithm [3℄, but Creutz found he oulduse a omputationally simpler 'demon' algorithm toahieve similar results in far less time.In its original form the demon algorithm doesnot aim to generate low energy states, and hene isnot diretly useful for optimization. Optimizationproblems an usually be framed in terms of a ostor energy funtion whih is to be minimized over aspae of possible solutions. Here we propose fouralgorithms whih vary the operation of the demonalgorithm to enourage it to searh for optimal so-

lutions. The methods are tested on 200- and 442-ity traveling salesman problems and results on thelatter are ompared with those reported using othersimilarly general optimization algorithms.2. The Metropolis AlgorithmThe Metropolis algorithm was invented to allowomputer simulation of equilibria in statistialphysis. An initial state and a temperature arespei�ed, and a Markov hain of system states isgenerated. One equilibrium is reahed at the re-quired temperature, assoiated quantities an beapproximated from the hain of states. The algo-rithm an be stated as follows.1. hoose an initial on�guration (state) S2. hoose a temperature T > 03. repeat:(a) hoose a new on�guration S0(b) let �E = E(S0) � E(S), where E(S) isthe energy of on�guration S() if �E < 0 aept new on�guration, ie:S = S0(d) else if rand[0; 1℄ � exp(��E=T ) aeptnew on�guration, ie: S = S0(e) else rejet new on�guration4. until stop onditionThe simulation would normally only be stoppedone the user has enough samples to alulate equi-librium properties to a desired auray.The method of hoosing the next state is alledthe generating funtion. Eah new system state oron�guration should be a small stohasti perturba-tion of the urrent state. For disrete parameters,suh as those present in the Boltzmann mahine,



the generating funtion is usually a uniform randomdistribution over the neighbouring states.New states are aepted aording to an aep-tane funtion whih depends on the di�erene inenergy between the urrent state and the proposedstate. The Metropolis algorithm aepts any statetransition whih will redue the system energy, andaepts inreases stohastially using the funtionin 3(d).3. Creutz's Demon AlgorithmCreutz's original demon algorithm an be stated as:1. hoose an initial on�guration S2. hoose a demon energy D > 03. repeat:(a) hoose a new on�guration S0(b) let �E = E(S0)�E(S)() if �E � D aept new on�guration andupdate demon, ie: S = S0; D = D ��E(d) else rejet new on�guration4. until stop onditionIn this algorithm, the energy lost by the systemis given to an arti�ial variable alled a `demon'.Inreases in system energy are only allowed if thedemon an provide the neessary energy, whih itthen loses. As a result, total system energy is a on-stant : E(S) +D = C, for any state in the Markovhain. Temperature is not spei�ed diretly, butan be estimated from the hain of states. Its valueis learly governed by the total energy C, whih isset at the energy of the initial state plus the initialdemon energy.The aeptane funtion for Creutz's methodis deterministi and omputationally simpler thanthat of the Metropolis algorithm. It replaes an ex-ponentiation and the generation of a random num-ber with a omparison and a subtration. The se-quene of states produed remains stohasti, butderives this from the generating funtion.4. Simulated AnnealingKirkpatrik et al [4℄ altered the Metropolis algo-rithm for optimization by making it spei�allyaim for low energy states, whilst retaining its abil-ity to esape loal minima by the oasional a-eptane of moves whih inrease system energy.The only di�erene between simulated annealingand the Metropolis algorithm is the addition of asheduling step:3(f) if quasi-equilibrium reahed, redue temper-ature aording to shedule.Kirkpatrik's original annealing shedule was toset T (n) = � T (n� 1) (1)

� 2 (0; 1) where n is the number of times annealinghas been applied. This negative exponential (orgeometri) shedule is quite ommonly used in ap-pliations and has produed good results ([4℄, [5℄).Simulated annealing is seen to onsist of threeproedures: a move generating funtion, a moveaeptane funtion and an annealing shedule.Many variations on the original generating fun-tion (eg:[6℄) and annealing shedule (eg:[5℄) havebeen suggested. Far less e�ort seems to have goneinto the aeptane funtion. Other papers thatattempt a similar simpli�ation of the aeptanefuntion inlude [7℄, [8℄, [9℄.5. Demon Algorithms for Optimiza-tionHere we have altered Creutz's algorithm to guideus from an initial state towards lower energy states.This is done by gradually removing energy from thedemon in the following ways:� `annealing' the demon value, muh as Kirk-patrik et al [4℄ and others have annealed thetemperature in simulated annealing.� imposing a fairly low upper bound on the de-mon, to trunate its value regularly.The two above methods an eah be improved byintroduing a stohasti demon value, whih is nor-mally distributed around a mean. The demon meanthen operates in a similar manner to the demonvalue in the deterministi demon methods. Thestohasti demon will oasionally take on high val-ues allowing the system to esape from loal minimathat it might otherwise have been heavily delayedor trapped by. However, the additional randomnessinreases the omputational ost of the methods.The proedure for the bounded demon algorithmis shown below:Bounded Demon Algorithm1. hoose an initial on�guration S2. hoose an initial demon energy D = D0 > 03. repeat:(a) hoose a new on�guration S0(b) let �E = E(S0)�E(S)() if �E � D aept new on�guration andupdate demon, ie: S = S0; D = D ��E(d) else rejet new on�guration(e) if D > D0; D = D0 - enfore demonupper bound4. until stop onditionThe annealed demon algorithm replaes step 3(e)with an annealing step:3(e) if quasi-equilibrium reahed, redue demonaording to shedule, eg: D = � �D



A randomized version of eah of the bounded andannealed demon algorithms an be obtained by re-plaing D, the demon energy, with Dm in steps 2& 3(e) and adding a step before 3() to generatea demon value from a distribution entered aroundthis mean:3(b)(ii) D = Dm + noise value.3() is also hanged slightly, so that although thedemon value is heked for aeptane, its mean isupdated:3() if �E � D aept new on�guration andupdate demon mean, ie: S = S0; Dm = Dm ��E.The additive noise has mean 0 and variane spe-i�ed by the user as a fration of the Dm0 value.This adds a stohasti element to the aeptanealulation and allows rare large inreases in energy,ruled out by the deterministi algorithms.It should be possible to ombine these algorithmswith any of the alternative generating funtions (eg:FSA [6℄) or annealing shedules (eg: polynomial [5℄)that have been proposed.6. Computational ComplexityTable: 1: Algorithm Complexity - Aeptane FuntionAlgorithm Operations TimeMetropolis Alg m,e,r 24Creutz' Demon a, 2SA m,e,r 24Bounded Demon a, 2R Bounded Demon a,,3m,e,r 32Annealed Demon a, 2R Annealed Demon a,,3m,e,r 32Greedy  1TA  1Table 1 ompare the omputational omplexityof the algorithms in the worst ase - the aeptaneof a new on�guration whih inreases the systemenergy. Operations are lassed as a (addition andsubtration),  (ompare), m (multipliation anddivision), e (exponentiation) and r (random num-ber generation). Relative omputation time forthese alulations is approximately: a, - 1; m -3; r - 5; e - 16. The generating funtion is ommonto all these algorithms and uses 2� r + 3� a for atime of 13 units.The annealing operation is only performed on av-erage every N trials, where N is likely to be over100.It requires a multipliation in negative exponen-tial shedules and an addition in linear shedules.The generating funtion requires two random num-bers to be generated in all ases.

7. Traveling Salesman ProblemsAs a test of the apabilities of the new algorithm,we hose the Traveling Salesman Problem (TSP).For large numbers of ities, this lass of problems isreognized as being diÆult to solve using generalombinatorial optimization algorithms [10℄. It hasbeen widely studied and published results exist formany optimization tehniques on a range of TSPinstanes. Also, global optima are known for somelarge problem instanes whih allows a more abso-lute evaluation of the performane of the variousalgorithms.The algorithms tested inluded the four demonalgorithms, as well as standard simulated anneal-ing [4℄ and a greedy algorithm whih only aeptsimprovements in the ost funtion.All algorithms were allowed to run to a maximumof 107 trials, and simulations were stopped beforethat if the number of onseutive rejeted movesexeeded 50,000. Only a little e�ort was made tohoose suitable values for the `user-de�ned' param-eters.As a representative example, we show results onone instane of a 200-ity TSP, averaged over 5 runseah starting from a random initial tour. The ityoordinates were hosen from a uniform randomdistribution over a 10 � 10 grid. The move gener-ation rule used was uniform 2-opt [11℄, or segmentreversal.A paper by Duek and Sheuer [7℄ using analgorithm resembling the annealed demon algo-rithm ontained the results of detailed testing onGrotshel's 442-ity problem [12℄. This paper alsoquotes results on these two TSPs by Rossier et al[13℄ using exhaustive Lin-2-opt and simulated an-nealing, and Muhlenbein et al [14℄ using genetialgorithms.The data for this problem and many others isavailable in the TSPLIB arhive at [15℄.8. Duek and Sheuer's workDuek and Sheuer's [7℄ main algorithm is knownas Threshold Aepting (TA). It uses a thresholdterm that operates somewhat like the demon pa-rameter in the demon algorithms. Choosing aninitial value for the threshold is somewhat di�er-ent beause the threshold does not dynamiallyredue. The threshold is redued over time via alinear or hand-optimized annealing shedule andquasi-equilibrium is not onsidered. Given thesedi�erenes, the algorithm pseudo-ode is identialto that of the annealed demon algorithm, exeptthat in 3(), the threshold or demon value is notaltered:3() if �E � D aept new on�guration, ie:S = S0.



The prinipal di�erenes between this algorithmand the annealed demon algorithm are:� the threshold does not absorb and release en-ergy, unlike the demon.� the only annealing shedules onsidered are lin-ear or a problem-spei� variation of this.� the upper bound on individual energy inreasesis �xed� unlimited hill-limbing is possible, allowingeventual esape from any deep loal minima,as well as unonstrained wandering.Of the demon algorithms, only the two random-ized algorithms allow the possibility of unlimitedhill-limbing.The demon value in the the bounded demon al-gorithms plays muh the same role as the thresholdin TA. However the average demon value is usuallymuh lower than the demon upper bound, so thisbound an be set muh higher than the thresholdin TA while maintaining a similar rate of energyredution. The demon value's variation allows thealgorithm to oasionally aept state transitionsinvolving muh larger inreases in energy than anbe allowed under TA.
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Fig. 1: An optimal solution to Grotshel's 442-ity TSP9. ResultsAll of the new algorithms require the hoie of aninitial demon value. This hoie is quite importantfor the bounded demon algorithms sine it is alsoan annealing ontrol. It is muh less important forthe annealed demon algorithm, whih has separateparameters (suh as � in eqn. 1) for annealing.However, we have generally found that all thealgorithms were less sensitive to the hoie of theseparameters than simulated annealing was to thehoie of �. Other parameters, suh as thoseinvolved in the determining of quasi-equilibrium,were hosen as advised in [5℄.

9.1. Random satter 200-ity problemTable: 2: 200-ity TSP resultsAlgorithm Average Best TrialsSA 106.28 104.10 1.09 MAnnealed Demon 104.71 103.52 4.22 MBounded Demon 106.15 105.02 10 MR Annealed Demon 103.75 102.95 7 MR Bounded Demon 105.66 105.30 10 MGreedy 115.20 112.85 0.15 MThe fat that some of the algorithms terminatedwell short of the maximum number of trials is someause for onern, sine it is expeted that moretrials would lead to better results. The followingtests showed that a more areful hoie of parame-ters ould result in runs of any desired length, andorrespondingly better results.9.2. Grotshel's 442 ity problemFig 1 shows an optimal solution to Grotshel's 442-ity problem [12℄. The optimal tour has a lengthof 50:78 units. Results on this problem from [13℄using simulated annealing and from [14℄ using ge-neti algorithms are summarized in Table 3. Bothreport only their best results. Note that the Lin-2-opt proedure was allowed to run until no furtherimprovement was possible.Rossier et al [13℄ introdued a `Distane' heuristifor the problem, whih requires that the two itieshosen for onsideration of a 2-opt move must liewithin a .45 radius of eah other. This is the max-imum distane to a neighbour for any of the 442ities in Grotshel's problem. Cities in this prob-lem have on average around 20 neighbours withinthis radius, and examination of the optimal solution(�g. 1) shows that only one distane along the routeexeeds .45, indiating the likely usefulness of thisproblem-spei� heuristi.Duek and Sheuer [7℄ use this heuristi exten-sively, and with good results. We show resultsfrom our own simulations of the demon algorithmsand simulated annealing along with those from [7℄(threshold aepting) with the `Distane' heuristiand without on the 442-ity problem. Eah lineontains the average and best results over 25 ran-dom starting tours.The SA and demon algorithm simulations weredone with fairly areful seletion of the user pa-rameters. For instane, the negative exponentialshedule (eqn. 1) is governed by the parameter �.Although many texts, eg: [5℄, suggest hoosing � inthe range .85 .. .99., we found that values around



Table: 3: Simulated Annealing and Geneti AlgorithmsAlgorithm Best result TrialsLin-2-opt 57.30 unknownSA Standard 53.30 2 MSA Distane 51.765 2 MGeneti Algorithm 51.21 unknownTable: 4: Algorithms using 2-opt - 2 M trialsAlgorithm Average BestSimulated Annealing 54.35 53.34Bounded Demon 53.69 52.28R Bounded Demon 53.97 53.48Annealed Demon 54.73 53.62R Annealed Demon 54.44 53.16Greedy 0.8 M 57.20 55.74Threshold Aepting 52.96 51.94Table: 5: Algorithms using 2-opt and Distane - 2 M trialsAlgorithm Average BestSimulated Annealing 51.72 51.23Bounded Demon 52.24 51.60R Bounded Demon 52.36 51.77Annealed Demon 51.74 51.19R Annealed Demon 51.75 51.26Threshold Aepting 51.51 50.97.9996 were muh more suessful for SA at 2 Mtrials. These redued the system temperature froman initial value, ommonly 20, to a �nal value of.01. This was low enough to ensure the rejetion ofmost energy inreasing moves, meaning the systemwas unlikely to evolve further.10. DisussionDuek and Sheuer [7℄ admit that their `annealing'shedule was optimized for Grotshel's TSP. Thevalues hosen are not far removed from a linearannealing shedule, whih would require only oneparameter - the initial value. However, they hoose30 values for the threshold, eah apparently heldfor 1/30 th of the total number of trials. Thisan be onsidered as the hoosing of 30 parameters.They report obtaining similar results using a linearshedule, but no details are given.Our exponential annealing shedule requires twoparameters - the initial demon value and � (eqn.1). A linear shedule is also possible, but has notyet been tried. We believe that an annealing shed-

ule requiring any more parameter hoies plaes anunneessary burden on the user.11. ConlusionWe have presented here four new optimization al-gorithms whih di�er from simulated annealing intheir aeptane funtion. The bounded and an-nealed demon algorithms use a deterministi a-eptane rule, whih varies dynamially, and isomputationally simpler than simulated annealing.Results on Grotshel's 442-ity TSP are ompara-ble with SA and related algorithms over the samenumber of trials. We now intend to apply one ofthe optimizing demon algorithms to the Boltzmannmahine in plae of simulated annealing to speed upits equilibration.Referenes[1℄ D. H. Akley, G. E. Hinton, and T. J. Sejnowski, \Alearning algorithm for Boltzmann mahines," Cogni-tive Siene, vol. 9, pp. 147{169, 1985. [Reprinted inAnderson.Rosenfeld.88℄.[2℄ M. Creutz, \Miroanonial Monte Carlo simulation,"Physial Review Letters, vol. 50, no. 19, pp. 1411{1414, 1983.[3℄ N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,A. H. Teller, and E. Teller, \Equation of state alula-tions by fast omputing mahines," Journal of Chem-ial Physis, vol. 21, pp. 1087{1092, 1953.[4℄ S. Kirkpatrik, C. Gelatt, and M. Vehi, \Optimi-sation by simulated annealing," Siene, vol. 220,pp. 671{680, 1983.[5℄ E. Aarts and J. Korst, Simulated Annealing and Boltz-mann Mahines. Chihester: Wiley, 1989.[6℄ H. Szu and R. Hartley, \Fast simulated annealing,"Physis Letters A, vol. 122, pp. 157{162, 1987.[7℄ G. Duek and T. Sheuer, \Threshold aepting: Ageneral purpose optimization algorithm appearing su-perior to simulated annealing," Journal of Computa-tional Physis, vol. 90, pp. 161{175, 1990.[8℄ P. Mosato and J. Fontanari, \Stohasti versus de-terministi update in simulated annealing," PhysisLetters A, vol. 146, no. 4, pp. 204{208, 1990.[9℄ H. Guo, M. Zukermann, R. Harris, and M. Grant,\A fast algorithm for simulated annealing," PhysiaSripta, vol. T38, pp. 40{44, 1991.[10℄ G. Reinelt, The Traveling Salesman - ComputationalSolutions for TSP Appliations. Berlin: Springer-Verlag, 1995.[11℄ S. Lin, \Computer solutions of the traveling salesmanproblem," The Bell System Tehnial Journal, vol. 44,pp. 2245{2269, 1965.[12℄ M. Gr�otshel, Preprint no. 38, Polyhedrishe Kombina-torik and Shnittebenverfahren, Universitat Augsburg,Germany, 1984.[13℄ Y. Rossier, R. Troyon, and T. Liebling, \Probabilistiexhange algorithms and eulidean traveling salesmanproblems," OR Spektrum, vol. 8, pp. 151{164, 1986.[14℄ H. Muhlenbein, M. Gorges-Shleuter, and O. Kramer,\Evolution algorithms in ombinatorial optimization,"Parallel Computing, vol. 7, pp. 65{85, 1988.[15℄ G. Reinelt, \TSPLIB.", http://softlib.rie.edu/softlib/tsplib/, June 1995.


