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SUMMARY

The long-term survivor mixture model is commonly applied to analyse survival data when some individuals
may never experience the failure event of interest. A score test is presented to assess whether the
cured proportion is significant to justify the long-term survivor mixture model. Sampling distribution and
power of the test statistic are evaluated by simulation studies. The results confirm that the proposed test
statistic performs well in finite sample situations. The test procedure is illustrated using a breast cancer
survival data set and the clustered multivariate failure times from a multi-centre clinical trial of carcinoma.
Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Long-term survivor or cure models are applicable when a certain fraction of the population never
experiences the failure event of interest. Typically, a proportion of individuals completely recover
after treatment and do not suffer relapse or death from the disease. A popular approach for
analysing such survival data is to formulate the model in terms of a mixture of two-component
distributions; one component for the cured group and another component for members of the
uncured subpopulation. A review of survival analysis with long-term survivors can be found in
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Reference [1]. The cure model has been extended to proportional hazards and semiparametric
settings [2–4]. For correlated outcomes, a long-term survivor mixture model incorporating random
effects was developed to handle multivariate failure times when the survival data are obtained from
a multi-centre clinical trial [5].

In practice, it is important to assess whether the cured proportion is significant to justify the
fitting of the long-term survivor mixture model. In this paper, a score statistic is presented to test
the single-component Weibull survival model against the alternative long-term survivor mixture
model. Both independent and correlated situations are considered, the latter renders the introduction
of random effects in the model to explain the variability shared by members within a subgroup, or
shared by multiple failure observations within an individual. The advantage of the score test statistic
lies in its computational simplicity of fitting just the Weibull model under the null hypothesis. In
the related context of mixture models, score tests for zero-inflation and over-dispersion have been
proposed for correlated count data [6–8].

After briefly reviewing the long-term survivor mixture model with random effects in Section 2,
the hypotheses concerning the cured proportion and corresponding score test are specified in
Section 3. A simulation study is conducted in Section 4 to investigate the sampling distribution of
the score test statistic and its power properties. Two practical examples are then used in Section 5
to illustrate the test procedure in detail. Finally, some remarks regarding applicability of the
methodology are given in Section 6.

2. LONG-TERM SURVIVOR MIXTURE MODEL WITH RANDOM EFFECTS

Suppose the data are

(tij, xij,�ij), j =1, . . . ,ni , i=1, . . . ,M and
M∑
i=1

ni =N

where tij is the j th observed survival time within cluster i , �ij is the censoring indicator for the
failure event and xij is the associated vector of covariates. There are ni observations in each cluster.
Let Yij be an unobserved binary variable with value 1 denoting a failure event (uncured) but 0 if
the individual will never experience the event (cured). The uncured probability p can be specified
by a logistic form:

p(xij)= P(Yij=1|xij)= 1

1+e�ij

where �ij=w′
ijc, wij=(1, x ′

ij)
′ and the parameter vector c represents the effects of covariates on

p. The unconditional survival function can then be expressed as

S(tij; xij)=1− p(xij)+ p(xij)Su(tij; xij)
where Su(tij; xij)= Se

�ij

u0 is the conditional survival function for the uncured group, �ij= x ′
ijb is the

linear predictor and b is a q×1 vector of regression coefficients. The conditional hazard function
for the uncured group may be assumed to follow Cox’s proportional hazards form

hu(tij; xij)=hu0(tij)e
�ij

where hu0(tij) is the baseline hazard function for the uncured group.
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In order to account for the clustering of the multivariate failure times, unobserved random effect
terms are introduced into the long-term survivor mixture model via the cured probability and the
hazard function, viz,

�ij= x ′
ijb+Ui , �ij=w′

ijc+Vi

where the random effects Ui and Vi are assumed to be independent and follow the normal
N(0,�1) and N(0,�2) distribution, respectively. Here, Ui denotes the unobserved random effect
of the i th cluster for uncured individuals, with larger values implying a higher risk and shorter
survival, whereas Vi denotes the unobserved random effect of the i th cluster determining the cured
probability, with larger values implying a higher probability of belonging to the cure group.

Because Cox’s partial likelihood approach cannot eliminate the baseline hazard function, a
parametric form may be adopted. Suppose the Weibull distribution hu0(t)=��t�−1

ij , �, �>0, is
used as the baseline hazard [5], the log-likelihood function of the survival time becomes:

l1=
M∑
i=1

ni∑
j=1

{(1−�ij) log S(tij; xij)+�ij log f (tij; xij)}=
M∑
i=1

ni∑
j=1

{log S(tij; xij)+�ij logh(tij; xij)}

Let u=(U1, . . . ,UM )′ and v=(V1, . . . ,VM )′. For parameter estimation, a best linear unbiased
predictor (BLUP) type log-likelihood can be constructed as l= l1+l2, with l1 as defined above and

l2=− 1
2 [M log2��1+(1/�1)u′u+M log2��2+(1/�2)v′v]

Here, l may be considered as a penalized log-likelihood with l2 being the penalty function for the
conditional log-likelihood l1 when the random effects are conditionally fixed. Let �=(b,c,u,v) be
the vector of unknown parameters. The estimating procedure starts from a BLUP estimate of � as
the initial step and extends to obtain residual maximum quasi-likelihood (REMQL) estimators of
� along with random component variance estimates for �1 and �2. Details of fitting the long-term
survivor mixture model with random effects and associated numerical algorithms can be found in
Reference [5].

3. SCORE TEST FOR THE CURED PROPORTION

To assess whether the cured proportion is significant to justify the long-term survivor mixture
model, a score test procedure is developed as follows. We are interested in testing the null hypothesis
H0 : p=1 against the alternative hypothesis H1 : p<1, which is equivalent to testing H∗

0 :	=0
versus H∗

1 :	>0, by letting 	=(1− p)/p, and 0�	<∞ for 0�1− p<1.
Under the null hypothesis, the model reduces to the standard Weibull random effects model

with conditional log-likelihood

l1=
M∑
i=1

ni∑
j=1

l1i j =
M∑
i=1

ni∑
j=1

(1−�ij) log[	+Se
�ij

u0 ]+�ij log[hu0e�ij Se
�ij

u0 ]− log[1+	]

and l2=−(1/2)[M log(2��1)+(1/�1)u′u]. Let b̂,û, �̂1 be the corresponding REMQL estimates for
the single-component Weibull model. Given the first derivatives of l with respect to b, u, �1, 	 and
the Fisher information matrix C(b,u,�1,	), the score test statistic for H∗

0 :	=0 is constructed as

S(b̂, û, �̂1,0)=U ′(b̂, û, �̂1,0)Ĉ
−1

U (b̂, û, �̂1,0)
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where the score function

U (b̂, û, �̂1,0)=
⎛
⎝0, . . . ,0,

M∑
i=1

ni∑
j=1

⎡
⎣(1−�ij)

1

Se
�̂ij

u0

−1

⎤
⎦
⎞
⎠

�̂ij is evaluated at (b̂, û, �̂1) and the baseline parameters � and � may be estimated by a profile

likelihood approach through a two-dimensional grid search method [5]. The entries of Ĉ are
obtained from the second derivatives of l evaluated at 	=0 and b̂, û and �̂1; see the Appendix for
details. It should be noted that when the cured proportion is close to 100 per cent, the score test
statistic will increase indefinitely. On the other hand, when the cured proportion is close to 0 per
cent, the score test statistic will approach 0.

Now, denote the inverse of C(b,u,�1,	) by[
H11 H12

H21 H22

]

with the corresponding partition same as C, the score statistic is then expressed as

S=H22

⎛
⎝ M∑

i=1

ni∑
j=1

⎡
⎣(1−�ij)

1

Se
�̂ij

u0

−1

⎤
⎦
⎞
⎠

2

where H22=(Ĉ22−Ĉ21Ĉ−1
11 Ĉ12)

−1 and Ĉ11, Ĉ12, Ĉ22 are defined in the Appendix. For the case
of independent observations, u=0, so that

S(b̂,0)=U ′(b̂,0)Ĉ−1
U (b̂,0)

Further simplifications of the mathematical formulae are possible but details are omitted for brevity.
In view of the one-sided alternative hypothesis H∗

1 :	>0, according to statistical theory on tests
involving the boundary of the parameter space [1, Chapter 7], the reference distribution of the
score test statistic S is asymptotically 0.5(
20+
21) with P-value given by 0.5P{
21>S}, i.e. the
limiting distribution follows a mixture of a degenerate point mass at 0 and a 
21 distribution in
equal mixing proportions.

4. SAMPLING DISTRIBUTION AND POWER STUDY

4.1. Sampling distribution

A simulation study is conducted to investigate the distribution of the score statistic under finite
sample situations. The simulation design essentially follows that of Yau and Ng [5], except that u
is set to 0 for simplicity. The working model under the null hypothesis H0 : p=1 is taken to be
the standard Weibull model with linear predictor

�i =−0.5xi , i=1,2, . . . ,N

The single covariate xi is generated as a Bernoulli random variable with probability 0.2. Realizations
of the unobservable variable Y are generated in which an individual has a probability of 1− p(xi )
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being cured (Y =0) and a probability of p(xi ) being uncured (Y =1), with p(xi ) given by the
logistic model defined in Section 2 and �0=�1=−0.5. The failure times of the cured individuals
are assigned to be infinite. For each uncured individual, a failure time is generated from the
conditional probability density function

fu(t; xij)=hu0(t)exp �ijSu0(t)
exp�ij

We assume the baseline hazard hu0(tij) for the uncured group to follow a Weibull distribution with
known parameters �=0.005 and �=1. If the generated failure time exceeds a constant censoring
time C , it is taken to be censored at time C . The sampling distribution of S is considered for
C=600, 700 and 800 and sample sizes N =100, 200, 400, 600, 800 and 1000.

The empirical ordered S statistics based on 500 replications are compared with the corresponding
quantiles of a 50:50 mixture of the 
21 distribution and a point mass at 0. The Q–Q plots for
C=800 and various N ’s are presented in Figure 1; results for other constant C values are similar. It
is evident that the sampling distribution of S follows closely the asymptotic reference distribution
even for moderate sample sizes.

4.2. Empirical power

Performance of the score test procedure is next evaluated under the long-term survivor mixture
model. Parameter values are specified as those in Section 4.1, except that �=0.01. For a given
uncured proportion p and significance level a, the empirical power of the score test is calculated
using the estimated upper tail probabilities of S at 
21(1−a) under the alternative hypothesis
H1 : p �=1, i.e.

P{S>
21(1−a)}≈
500∑
k=1

I [Sk>
21(1−a)|H1]/500

where Sk is the observed score statistic at the kth replication trial, k=1, . . . ,500. A range of uncured
proportions (p=0.65,0.75,0.85,0.95) are considered, together with the commonly adopted signif-
icance levels a=0.1, 0.05 and 0.01 and sample sizes N =400, 600, 800 and 1000 are used. The
constant censoring time C is set at 600, 700 and 800, producing moderate censorships of about
20–30 per cent in the generated data sets.

The results in Table I show that the score test is generally powerful in rejecting the null hypothesis
for moderate cured fractions, and remain satisfactory for large p except when N and the preset
censored time C are both small. As expected, a more powerful test can be produced by increasing
the sample size and the prescribed level of significance. The empirical power also improves with
C as the percentage of censoring decreases.

To further investigate the performance of the score test when the cure assumption is invalid,
500 replicated data sets are generated under the null hypothesis p=1. The working model is thus
a Weibull survival model. With C=800 and other parameter values same as those specified in the
empirical power study, the observed score test statistics and corresponding P-values are computed
for the generated data sets. The results show that the proportion of committing the Type I error
is small and decreases with the sample size N . Specifically, the proportions of Type I error are
found to be: 4.2 per cent (N =200), 3.8 per cent (N =400), 3.6 per cent (N =600), 3.6 per cent
(N =800), 2.8 per cent (N =1000). Therefore, the score test also performs satisfactorily when
cure is not a reasonable assumption.
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Figure 1. Q–Q plots of ordered score statistics against the quantiles of a 50:50 mixture of the 
21
distribution and a point mass at 0.
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Table I. Empirical power of the score statistic S based on 500 replications generated from a
long-term survivor mixture model.

p=0.65 p=0.75 p=0.85 p=0.95
a a a a

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

C=600
N
400 0.98 0.85 0.23 0.99 0.96 0.65 0.97 0.91 0.51 0.39 0.21 0.04
600 1.00 0.99 0.66 1.00 1.00 0.92 1.00 1.00 0.92 0.80 0.63 0.25
800 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.99 0.74 0.56 0.19
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.82 0.42

C=700
N
400 1.00 0.99 0.70 1.00 1.00 0.97 1.00 1.00 0.94 0.78 0.57 0.18
600 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.95 0.68
800 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.92 0.68
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94

C=800
N
400 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.89 0.50
600 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97
800 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5. APPLICATIONS

5.1. Breast cancer data

Consider the survival times (in years) of 45 breast cancer patients after mastectomy [1, Chapter 6].
This data subset, with 19 (42.2 per cent) censored observations, came from a clinical study to
assess the long-term prognosis by lectin binding [9]. In the original study, 179 patients were
recruited and the paraffin sections of their primary breast cancers were dewaxed and stained by
a lectin derived from the albumin gland of the Roman snail, Helix pomatia, with a hope that the
metastatic potential of an individual breast cancer might be assessed at the time of operation [9].
A single covariate was available, indicating the status of positive staining or negative staining of
the cancer cells. In this example, the outcome was cause-specific mortality so that deaths due
to other causes were treated as censored observations, whereas for those patients whose cancer
cells being removed/cleared completely after treatment, they would be regarded as ‘cured’. In the
presence of such cured observations, a plateau in the survival curve is expected for sufficiently
long follow-up time.

Results from fitting the Weibull and the long-term survivor mixture models suggest that patients
with positive staining are associated with a reduced survival; with �̂=0.865 (SE 0.107) and 1.308
(SE 0.136) being significant under both the single-component model and two-component mixture
model, respectively. For the latter, the estimated c regression coefficients in the logistic part are
−0.357 (SE 1.947) and −0.241 (SE 1.033). Based on the long-term survivor model, the cured
proportion estimate for the positive staining group (0.355) is less than that for the negative staining
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Figure 2. Kaplan–Meier curves and estimated survival functions from fitting the Weibull and long-term
survivor mixture models for the breast cancer data.

group (0.412). The overlaid Kaplan–Meier curves and the estimated survival functions from fitting
the Weibull and the long-term survivor models are plotted in Figure 2. The three estimation
approaches are generally consistent and the negative staining group exhibited a longer survival
time than the positive staining group. The appropriateness of the long-term survivor model is
further justified by the observed score test statistic S of 14.298 (P-value <0.001) with respect to
its asymptotic reference distribution.

5.2. Multi-centre carcinoma data

The score test is next illustrated using clustered multivariate failure times data [5] obtained from
a multi-centre clinical trial [10]. The data set contains information on 66 patients with squamous
carcinoma of the pharyngeal tongue. The six participating centres are regarded as a random sample
from all institutions. Death from causes unrelated to the carcinoma is treated as censored, whereas
patients responded favourably to radiation therapy and subsequently free of disease symptoms may
be considered cured. The study objective was to determine the effect of tumour stage classification
on both the survival and the cured proportion, with x=1 indicating a massive tumour with extension
to adjoining tissue and x=0 refers to a small primary tumour. A total of 47 deaths and 19 (29 per
cent) censored observations were recorded.

According to the log-rank test, patients with a small primary tumour survived significantly longer
than those with a massive tumour, the Kaplan–Meier estimates being 798.56 (SE 89.16) days and
391.12 (SE 94.29) days, respectively, with P-value =0.009. Fitting a single-component Weibull
model leads to �̂=0.656 (SE 0.305) and random component variance estimate �̂=0.065 (SE
0.123). On the other hand, REMQL estimates for (�0,�1,�,�1,�2) are −0.945 (SE 0.406), −0.79
(SE 0.868), 0.618 (SE 0.294), 0.20 (SE 0.549), 0.011 (SE 0.105), respectively, based on the long-
term survivor mixture model with random effects. The latter results suggest that the presence of
a massive tumour will significantly reduce the patient’s survival, with estimated hazard ratio 1.86,
but have little impact on the cured proportion. Under the assumption of long-term survivors, the
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Figure 3. Kaplan–Meier curves and estimated survival functions from fitting the Weibull and long-term
survivor mixture models for the multi-centre carcinoma data.

cured probability of patients with a small primary tumour and a massive tumour are estimated
to be 0.28 and 0.15, respectively. The Kaplan–Meier curves and the estimated survival functions
from fitting the Weibull and the long-term survivor models are plotted together in Figure 3, all
of which indicate that patients with a small primary tumour experienced better survival than their
counterparts with a massive tumour. The score test statistic S is 16.286 with P-value <0.001,
confirming the existence of long-term survivors among these carcinoma patients.

6. DISCUSSION

A score test is proposed for assessing the proportion of long-term survivors. Unlike the likelihood
ratio test, the advantage of the score statistic lies in its computational convenience. The score
test does not require, under the null hypothesis, the long-term survivor mixture model to be
fitted. The test procedure has been implemented as an Splus computer program available from the
corresponding author. Although asymptotic inferences for survival mixture models are generally
lacking, our simulation results show that the score test has high power and the test statistic follows
a 50:50 mixture distribution of 
21 and a point mass at 0 for the settings considered. From a practical
viewpoint, the nominal significance level obtained enables the assessment of cured proportion for
the subpopulation of long-term survivors.

The Weibull distribution is widely adopted as the parametric baseline in survival analysis. For
the simulation study, alternative parametric baseline distributions are likely to give different results.
However, we anticipate the difference will not be large as long as the corresponding survival
patterns are similar.

Applications to the breast cancer data and the multi-centre clinical trial of carcinoma demonstrate
the usefulness of the test procedure in both independence and clustered multivariate failure time
situations. In the presence of a significant cured proportion in the sample, fitting of the alternative
long-term survivor mixture model [5] is recommended, and comparisons should be made with its
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corresponding single-component Weibull model. On the other hand, if the score test suggests little
departure from the Weibull model, the resulting inferences can be made with increased confidence.
In practice, sufficiently long follow-up time is needed in order to observe the cured proportion,
which is revealed as a plateau in the survival curve. To determine whether the follow-up time is
‘sufficient’, knowledge about the disease is required.

In this paper, the random effects Ui and Vi in the long-term survivor model are assumed to
be independent. With correlated random effects Ui and Vi , analogous score test statistics can
be developed along similar lines but with corresponding adjustments in the formulation of the
BLUP type log-likelihood and the derivative expressions. Moreover, the proposed methodology
can be extended for testing the single-component model against an alternative two-component
survival mixture model [11] in addition to model selection methods such as Akaike’s information
criterion and Bayesian information criterion. Generalizations to time-dependent covariates and
nonparametric mixture model settings are also feasible and will be pursued in the future research.

APPENDIX

The derivation of the Fisher information matrix in Section 3 is presented here.

�l1i j
��ij

= (1−�ij)
Se

�ij

u0 e�ij ln Su0

	+Se
�ij

u0

+�ij(1+e�ij ln Su0)

�l1i j
�	

= (1−�ij)
1

	+Se
�ij

u0

− 1

1+	

�2l1i j
��2ij

= (1−�ij)S
e�ij

u0 e�ij ln Su0
(1+e�ij ln Su0)	+Se

�ij

u0

(	+Se
�ij

u0 )2
+�ije

�ij ln Su0

�2l1i j
��ij �	

= (1−�ij)
−Se

�ij

u0 e�ij ln Su0

(	+Se
�ij

u0 )2

When 	=0,

E

(
− �2l1i j

��ij�	

)
=E

[
(1−�ij)

e�ij ln Su0

Se
�ij

u0

]
, E

(
−�2l1i j

��2ij

)
=E[−e�ij ln Su0]

Let S = Se
�

u0 = exp(−�t�ij e
�ij), S1 = − log S = −�2l1i j/��2ij, S2=(1−�ij)−S1/Se

�

u0=−�2l1i j/
��ij�	,

D′ =
(

��11
�b

, . . . ,
��1n1
�b

, . . . ,
��M1

�b
, . . . ,

��MnM

�b

)
q×N

C′ =
(

��11
�u

, . . . ,
��1n1
�u

, . . . ,
��M1

�u
, . . . ,

��MnM

�u

)
M×N

and I′N =(1,1, . . . ,1)1×N
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The first-order derivatives of l with respect to b, u, �1, 	 are

�l
�b

=
M∑
i=1

ni∑
j=1

�l1i j
�b

=
M∑
i=1

ni∑
j=1

(1−�ij)
Se

�ij

u0 e�ij x ′
ij ln Su0

	+Se
�ij

u0

+�ijx
′
ij(1+e�ij ln Su0)

�l
�u

=
M∑
i=1

ni∑
j=1

�l1i j
�u

+ �l2
�u

=
M∑
i=1

ni∑
j=1

(1−�ij)
Se

�ij

u0 e�ij ln Su0

	+Se
�ij

u0

+�ij(1+e�ij ln Su0)− u
�1

�l
�	

=
M∑
i=1

ni∑
j=1

�l1i j
�	

=
M∑
i=1

ni∑
j=1

(1−�ij)
1

	+Se
�ij

u0

− 1

1+	

�l
��1

= �l2
��1

=−1

2

[
M

�1
− u′u

�21

]

Entries of the Fisher information matrix Ĉ can be computed from the second-order derivatives of
l evaluated at 	=0, as follows:

Ĉbb = E

[
− �2l

�b�b′

]
=

M∑
i=1

ni∑
j=1

−E

⎡
⎣�l1i j

��ij

�2�ij
�b�b′

+ �2l1i j
��2ij

(
��ij
�b

)2
⎤
⎦

=
M∑
i=1

ni∑
j=1

��ij
�b′

E

[
−�2l1i j

��2ij

]
��ij
�b

=D′S1D

Ĉbu = E

[
− �2l

�u�b′

]
=

M∑
i=1

ni∑
j=1

−E

[
�l1i j
��ij

�2�ij
�b�u

+ �2l1i j
��2ij

��ij
�u

��ij
�b

]

=
M∑
i=1

ni∑
j=1

��ij
�b′

E

[
−�2l1i j

��2ij

]
��ij
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The matrix C(b,u,
,	) can be partitioned as
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C11
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C12
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, where
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��1�1
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]
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′
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