
STATISTICS IN MEDICINE
Statist. Med. 2006; 25:1660–1671
Published online 5 September 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sim.2308

A score test for zero-in�ation in correlated count data

Liming Xiang1;2, Andy H. Lee1;∗;†, Kelvin K. W. Yau2 and Geo�rey J. McLachlan3

1Department of Epidemiology and Biostatistics; School of Public Health; Curtin University of Technology;
G.P.O. Box U 1987; Perth; WA 6845; Australia

2Department of Management Sciences; City University of Hong Kong; Tat Chee Avenue;
Kowloon Tong; Hong Kong

3Department of Mathematics; University of Queensland; St. Lucia, Brisbane; Queensland; 4072; Australia

SUMMARY

To account for the preponderance of zero counts and simultaneous correlation of observations, a class
of zero-in�ated Poisson mixed regression models is applicable for accommodating the within-cluster
dependence. In this paper, a score test for zero-in�ation is developed for assessing correlated count
data with excess zeros. The sampling distribution and the power of the test statistic are evaluated by
simulation studies. The results show that the test statistic performs satisfactorily under a wide range of
conditions. The test procedure is further illustrated using a data set on recurrent urinary tract infections.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Count data with excess zeros relative to a Poisson distribution are commonly encountered in
many biomedical and public health applications. Failure to account for the extra zeros may
result in biased parameter estimates and misleading inferences [1]. The zero-in�ated Poisson
(ZIP) model, which mixes the Poisson distribution with a degenerate component of point
mass at zero, has become a popular approach to analyse such data. B�ohning [2] reviewed
the related literature and provided a variety of examples from di�erent disciplines. Further
applications of the ZIP regression model can be found in References [3–5].
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Often, due to the hierarchical study design or the data collection procedure (such as longi-
tudinal repeated measures), zero-in�ation and lack of independence may be present simulta-
neously as a consequence of the inherent correlation structure and underlying heterogeneity.
To adjust for the dependency of observations, Yau and Lee [6] introduced extra random com-
ponents to the ZIP regression model. Wang et al. [7] further developed a class of ZIP mixed
models where random e�ects are incorporated within the linear predictors of both the Poisson
part and the zero-mixing probability, using the generalized linear mixed modelling approach
of McGilchrist [8]. Parameter estimation is facilitated via an EM algorithm.
In applications to potentially zero-in�ated count data, it is important to assess whether the

ZIP model assumption is indeed appropriate. A score test for zero-in�ation was �rst proposed
by Van den Broek [9]. Lee et al. [5] compared the score statistic with its likelihood ratio
and Wald counterparts in a simulation study. Recently, these tests have been extended from
the standard Poisson to other settings, including discrete generalized linear models [10] and
zero-in�ated negative binomial (ZINB) [11]. Jansakul and Hinde [12] modi�ed the score test
to the general situation where the zero-mixing probability is allowed to depend on covariates.
The aim of this paper is to develop an appropriate test to assess correlated count data

with an apparently high frequency of zeros. A score test for zero-in�ation is proposed for the
Poisson mixed regression model, in the manner of Van den Broek [9]. After brie�y reviewing
the ZIP mixed model in Section 2, the zero-in�ation hypothesis and corresponding score test
are speci�ed in Section 3. In Section 4, the sampling distribution of the score test statistic
and its power properties are investigated by a simulation study. In the presence of extra
zeros, it is expected that the assessment of zero-in�ation will enable practitioners to draw
valid inferences on count data models. An example arising from the analysis of recurrent
urinary tract infections (UTI) in elderly women, where the correlated data collected from a
retrospective cohort study exhibit a preponderance of zero counts, is used to illustrate the
test procedure. Following the illustrative example in Section 5, some discussions on further
generalizations of the test procedure are given in Section 6.

2. ZIP MIXED MODEL

Suppose a discrete response variable Y follows a ZIP distribution de�ned by

P{Y =0}=�+ (1− �)f(0; �)
P{Y =y}=(1− �)f(y; �); y¿0

(1)

where f(0; �)= exp(− exp(�))
f(y; �)= exp{y�− exp(�)− log(y!)}; y¿0 (2)

and −(f(0; �)=(1−f(0; �))6�¡1 so that the ZIP distribution allows more zeros than those
permitted by the Poisson (�=0), while �¡0 corresponds to the zero-de�ated situation [13].
Denoting �= exp(�), it can be shown that E(Y )= (1−�)�, and var(Y )=E(Y )(1+�−E(Y )).
Consider a two-level hierarchical setting where yij (i=1; : : : ; m, j=1; : : : ; ni) represents the

jth response within the ith cluster and let N =
∑

i ni. It may be assumed that the observations
are independent between clusters but within-cluster correlation is anticipated. The ZIP mixed
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regression model assumes both �ij and �ij to be separate functions of some covariates and
random e�ects to adjust for the clustering [7]. Under this model framework,

g(�ij)=X ′
ij�+ ui

h(�ij)=W ′
ij�+ vi

(3)

where Xij and Wij are vectors of covariates, � and � are the corresponding q × 1 and r × 1
vectors of regression coe�cients. The random components ui and vi are independent and
have N(0; �2u) and N(0; �

2
v) distributions, respectively, while g(·) and h(·) are known as link

functions. For simplicity of presentation but without loss of generality, a log-link is adopted
for the Poisson part and the zero mixing proportion is held �xed, i.e. h(�ij)=�, in subsequent
derivations.
Parameter estimation can be achieved following the restricted maximum likelihood (REML)

approach of McGilchrist [8]. The best linear unbiased prediction-type log-likelihood is given
by l= l1 + l2, where

l1 =
∑
i; j

{I(yij=0) log[�+ (1− �)f(0; �ij)] + I(yij¿0) log[(1− �)f(yij; �ij)]}

with indicator function I(:) taking the value 1 when satisfying the speci�ed condition and 0
otherwise, and l2 = − 1

2 [m log(2��
2
u) + �

−2
u
∑

i u
2
i ], with m denoting the number of clusters.

Here, l can be viewed as a penalized log-likelihood function with l2 being the penalty for the
conditional log-likelihood l1 when the random e�ects are conditionally �xed. With suitable
initial values, the REML estimates �̂ and û (for conditionally �xed u) can be obtained by
maximizing the log-likelihood l via a numerical procedure, such as the extended version of
the EM algorithm for overdispersed count data [14, 15]. The estimate of variance component
�2u is then computed from an estimating equation involving �̂ and û, details of which are
described in Reference [7].

3. THE SCORE TEST FOR ZERO-INFLATION

The score function of the parameters is derived as follows. Let �=�=(1− �), −f(0; �)6
�¡∞ for −(f(0; �)=(1 − f(0; �)))6�¡1. Testing the null hypothesis H0 : �=0 against
H1 : � �=0 is equivalent to testing H ∗

0 : �=0 against H
∗
1 : � �=0. Note that the conditional

log-likelihood l1 can be rewritten as l1(�; �;y)=
∑

i; j l1ij, where

l1ij=− log(1 + �) + I(yij=0) log[�+ exp(− exp(�ij))] + I(yij¿0)[�ijyij − exp(�ij) + log(yij!)]
Let 	=�2u. Taking the �rst and second derivatives of l with respect to �, u, 	 and �, the
score function U (�; u; 	; �) and the Fisher information matrix I(�; u; 	; �) can be obtained.
Speci�cally, the �rst derivatives are given by

@l
@�
=
∑
i; j

@l1ij
@�

;
@l
@u
=
∑
i; j

@l1ij
@u

+
@l2
@u
;

@l
@	
= − m

2	
+

1
2	2

∑
i
u2i

@l
@�
=
∑
i; j

@l1ij
@�

=
∑
i; j

[
− 1
1 + �

+ I(yij=0)
1

�+ f(0; �ij)

]
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Under the null hypothesis H ∗
0 : �=0, the reduced model is the Poisson mixed model by setting

�=0 in l1. Suppose �̃, ũ and 	̃ denote the corresponding REML parameter estimates of the
Poisson mixed regression model. The score function is

U (�̃; ũ; 	̃; 0)=

(
0; : : : ; 0;

∑
i; j

[
I(yij=0)
f(0; �̃ij)

− 1
])′

It can be shown that

@l1ij
@�ij

= I(yij=0)
−f(0; �ij) exp(�ij)
�+ f(0; �ij)

+ I(yij¿0)[yij − exp(�ij)]

@2l1ij
@�2ij

= I(yij=0)

{
f(0; �ij)[exp(�ij)]2

�+ f(0; �ij)
+

−f2(0; �ij)[exp(�ij)]2
[�+ f(0; �ij)]2

+
−f(0; �ij) exp(�ij)
�+ f(0; �ij)

}

+I(yij¿0)[− exp(�ij)]

and

@2l1ij
@�ij@�

= I(yij=0)
f(0; �ij) exp(�ij)
[�+ f(0; �ij)]2

The expected Fisher information matrix is then

I(�; u; 	; �)=

⎛
⎜⎜⎜⎜⎜⎜⎝

I�� I�u I�	 I��

Iuu Iu	 Iu�

I		 I	�

I��

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

where entries of I(�; u; 	; �) under H ∗
0 are obtained by evaluating the second derivatives of

l at �=0, the formula of which are given in Appendix A. The matrix I(�; u; 	; �) may be
partitioned as follows: (

I11 I12

I′
12 I22

)
(5)

where I22 = I��=
∑

i; j[(1=f(0; �ij))− 1], I′
12 = (1

′
NBT; 1

′
NBP; 0), and

I11 =

⎛
⎜⎜⎝

−T ′BT −T ′BP 0

−P′BT −P′BP − 	−1I −	−2u
0 −	−2u′ −	−2m=2 + 	−3u′u

⎞
⎟⎟⎠

with matrices T , P and B de�ned in Appendix A. Furthermore, let �=
(
�11
�21

�12
�22

)
be the

inverse of I having the same partition as (5). In view of the structure of the score function U ,
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only �22 will appear in the expression of the score test statistic, with �−1
22 = I22 − I′

12I
−1
11 I12.

Consequently, the score statistic for testing H ∗
0 : �=0 is given by

S(�̃; ũ; 	̃; 0) =U ′(�̃; ũ; 	̃; 0)Ĩ
−1
U (�̃; ũ; 	̃; 0)

=

∑
i; j[(I(yij = 0)=f(0; �̃ij))− 1]2∑

i; j[(1=f(0; �̃ij))− 1]− Ĩ
′
12Ĩ

−1
11 Ĩ12

(6)

where �̃ij and Ĩ’s are evaluated at the REML estimates (�̃; ũ; 	̃).
From (6), the score statistic S exhibits a quadratic form so standard statistical theory [16]

implies that S has an asymptotic 
21 distribution under the null hypothesis H
∗
0 . For the simple

case when u=0, S reduces to the ordinary score test statistic of Van den Broek [9]. The
�nite sample properties of the score test statistic will be examined by simulation in the next
section.

4. SAMPLING DISTRIBUTION AND POWER INVESTIGATION

4.1. Sampling distribution

A simulation study is conducted to investigate the distribution of the score statistic under
�nite sample situations. The working model under the null hypothesis is taken to be a Poisson
mixed regression model with linear predictor

log(�ij)= a+ bxij + ui (7)

for i=1; : : : ; m; j=1; : : : ; n. Following the simulation design of Van den Broek [9], we set
a=0:5 and b=1. The single covariate xij is generated from a uniform (0; 1) distribution
whereas the random e�ect ui is assumed to follow a normal distribution with mean zero and
variance 0.25. Therefore, for given xij the approximate 95 per cent con�dence limits for the
mean response of yij are 0.6 and 12. We consider m=5, 10 and 20 clusters with n=10, 20
and 40 observations per cluster.
The empirical ordered S statistics based on 1000 replications from model (7) are �rst com-

pared with the corresponding quantiles of the 
21 distribution. The Q–Q plots, presented in
Figure 1, show that the sampling distribution of S follows closely the asymptotic 
21 distri-
bution for most of the settings chosen. As expected, the approximation improves with more
observations per cluster and a larger number of clusters.
We next assess the e�ect of varying �u on the sampling distribution of S. Again 1000 repli-

cations are generated for �u=0:1, 0.5 and 1 on two sample-size combinations: (m=5; n=10)
and (m=20; n=20). The resulting Q–Q plots, given in Figure 2, con�rm that the asymp-
totic 
21 distribution is reasonable for smaller �u value, i.e. reduced variation in the random
component. The asymptotic null distribution works less well for larger �u because it would
lead to more variations on the parameter estimates and consequently a larger variance for the
score statistic. Moreover, an increase in sample size also leads to a better agreement.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:1660–1671
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Figure 1. Q–Q plots of ordered score statistics against 
21 quantiles based on 1000 replications generated
from the Poisson mixed model (7) under H0 : �=0.
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Figure 2. Q–Q plots of ordered score statistics against 
21 quantiles based on 1000 replica-
tions generated from the Poisson mixed model (7) under H0 : �=0 with �u=0:1 (broken

line), 0.5 (solid line), 1.0 (broken–dotted line).
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Table I. Empirical power of the score statistic S based on 1000 replications generated
from a ZIP mixed model.

�=0:25 �=0:45

n m �=0:10 �=0:05 �=0:01 �=0:10 �=0:05 �=0:01

10 5 0.411 0.320 0.166 0.653 0.547 0.363
10 0.587 0.492 0.317 0.885 0.830 0.680
20 0.847 0.771 0.597 0.991 0.987 0.956

20 5 0.706 0.626 0.461 0.909 0.875 0.769
10 0.899 0.835 0.704 0.995 0.985 0.965
20 0.989 0.974 0.916 1.000 1.000 0.999

40 5 0.873 0.818 0.675 0.989 0.983 0.963
10 0.991 0.983 0.950 1.000 1.000 0.998
20 1.000 1.000 0.999 1.000 1.000 1.000

4.2. Power

Since zero-de�ation is much less commonly encountered in practice, we investigate the power
of the test for the zero-in�ation situation only. Performance of the test procedure is eval-
uated under the ZIP mixed regression model, with linear predictor of the mean component
having the same speci�cation as (7) and associated parameter values as de�ned in
Section 4.1. The empirical power of the test (for given �) is calculated using the estimated
upper tail probabilities of S at 
21(1− �) under an alternative hypothesis H1 : � �=0, i.e.

P{S¿
21(1− �)} ≈
1000∑
k=1
I [Sk¿
21(1− �)|H1]=1000

where Sk is the observed score statistic at the kth replicated trial, k=1; : : : ; 1000. Both small
(�=0:25) and relatively large (�=0:45) degrees of zero-in�ation are considered, together
with commonly adopted signi�cance levels �=0:10; 0:05; 0:01.
The results in Table I demonstrate that the proposed score test is reasonably powerful in

rejecting the null hypothesis under the alternative H1 : � �=0. As expected, by increasing the
sample size in terms of more clusters or greater number of observations per cluster, a more
powerful test can be produced. The empirical power also improves when the zero-in�ation is
large.

5. RECURRENT UTI

UTI is one of the most common bacterial infections a�ecting women aged 60 years and above
[17]. A retrospective cohort study was conducted in 2003 to determine the risk factors asso-
ciated with recurrent UTI among elderly women in residential aged-care facilities. Eligibility
criteria for the subjects were de�ned to be female residents aged 60 years or above with
an institutionalization period of at least 6 months. A total of N =201 subjects satisfying the
selection criteria were recruited from m=6 randomly selected aged-care institutions located
in the Perth metropolitan area of Western Australia. The outcome variable was the number of

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:1660–1671



A SCORE TEST FOR ZERO-INFLATION 1667

Table II. Frequency distribution of UTI counts of N =201 residents by institution.

UTI count

Institution 0 1 2 3 4 5 6 7 8 9 10 ¿10

1 29 4 2 0 0 1 0 0 0 0 0 0
2 17 8 2 0 0 0 0 1 0 0 0 0
3 22 5 8 5 3 1 2 0 0 0 1 0
4 19 4 3 1 1 2 1 1 0 0 1 1
5 11 5 2 1 1 1 1 1 0 0 0 0
6 10 5 6 3 4 0 1 2 2 0 0 0
Frequency 108 31 23 10 9 5 5 5 2 0 2 1

UTI episodes during the 2 years follow-up period. Available covariates are binary variables
indicating the presence (=1) or absence (=0) of x1 = history of prior UTI, x2 = urinary
incontinence, x3 = anatomical abnormalities, and x4 = immuno-compromised. These variables
were chosen because they are either established or postulated risk factors for UTI. Both his-
tories of prior UTI and urinary incontinence were identi�ed by reviewing the residents’ past
medical history. Subjects with anatomical abnormalities of the urinary tract included the pres-
ence of renal stones, strictures, cysts and obstruction. Information on these was documented
from their doctor’s referral letters. Women who were immuno-compromised received oral
corticosteroids or chemotherapeutic agents and these were documented in their medication
charts. Age and other co-morbidities such as diabetes mellitus, hysterectomy and prior stroke
history were recorded, but these variables were excluded in subsequent analysis due to the
high proportion of missing entries.
Table II gives the empirical frequency distribution of the UTI counts by institution, which

ranged from zero to 17 episodes. For this cohort of 201 elderly women, 53.7 per cent expe-
rienced no episode of UTI, 24 per cent had a history of prior UTI, 39 per cent su�ered from
urinary incontinence, 8 per cent had anatomical abnormalities of the urinary tract, but only 3
per cent were immuno-compromised. Moreover, it is anticipated that women residing in the
same institution were correlated in terms of contracting UTI because of their exposure to the
same environment.
Parameter estimates from �tting the Poisson mixed model and the ZIP mixed model to the

clustered data are presented in Table III(a) and (b). In addition to the four covariates, the
duration of follow-up was included as an o�set term in both models to adjust for the individual
exposure. The results suggest that a history of UTI, presence of urinary incontinence and
anatomical abnormalities, are all positively associated with the incidence of recurrent UTI,
whereas the e�ect of being immuno-compromised is not signi�cant. Based on the ZIP mixed
model with constant zero-in�ation parameter, the proportion of extra zeros is estimated to be
48 per cent. Meanwhile, the variation due to random cluster e�ects has reduced substantially
after adjusting for the excess zeros in the ZIP mixed model. The score test statistic S=6:484
is clearly signi�cant (p-value=0:01) with respect to the asymptotic 
21 distribution, providing
strong evidence of zero-in�ation in this set of correlated count data. Furthermore, a likelihood
ratio test of the Poisson mixed model against the alternative ZIP mixed model produces an
approximate test statistic of 50.4 (p-value¡0:001) and agrees with the score test. Nevertheless,
the score test is more appealing as it does not require a �t of the alternative ZIP mixed model.
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Table III. Results from �tting Poisson mixed regression and ZIP mixed regression models
to the recurrent UTI data.

(c) Full ZIP mixed

(a) Poisson mixed, (b) ZIP mixed with Poisson part, Logistic part,
Parameter estimate (SE) constant �, estimate (SE) estimate (SE) estimate (SE)

�0 −6.810∗ (0.248) −5.839∗ (0.140) −5.781∗ (0.134) 0.411 (0.351)
�1 1.127∗ (0.125) 0.778∗ (0.134) 0.734∗ (0.132) −0.947∗ (0.409)
�2 0.322∗ (0.121) 0.247∗ (0.127) 0.216∗ (0.128) −0.290 (0.359)
�3 0.771∗ (0.163) 0.402∗ (0.166) 0.376∗ (0.169) −1.163 (0.721)
�4 0.470 (0.246) 0.179 (0.251) 0.166 (0.259) −0.467 (1.040)
� 0.479 (0.087)
�u 0.538 (0.212) 0.095 (0.057) 0.091 (0.056)
�v 0.587 (0.339)

∗p-value ¡0:05.

We next assess the homogeneity assumption concerning the zero-in�ation parameter by
allowing h(�ij) in (3) as a logistic function of the covariates and random e�ects. Results of
�tting the full ZIP mixed regression model, given in Table III(c), are similar to those of the
restricted ZIP mixed model, with the exception of an additional signi�cant factor identi�ed
from the logistic part. Speci�cally, patients with a history of prior UTI are 2.58 times more
at risk of a recurrent UTI according to the full ZIP mixed model.

6. DISCUSSION

This paper proposes a score statistic for testing zero-in�ation in correlated count data. The
diagnostic procedure is useful for testing whether the observed high frequency of zeros renders
unnecessary the �t of a more complex ZIP mixed regression model, and may be regarded as
a generalization of the score test for zero-in�ation in the standard Poisson situation [9]. The
advantage of the score statistic lies in its computational convenience [12]; only a �t of the null
Poisson mixed model is required and inference can be based on its asymptotic 
2 distribution
under the null hypothesis. The simulation results show that the test statistic performs well
under a wide range of conditions. The example on recurrent UTI further demonstrates the
practical applicability of the test procedure.
It should be remarked that the one-sided version of the test might be desirable for testing

zero-in�ation alone. If the alternative � �=0 is replaced by �¿0, according to Reference [18],
the score test statistic should be modi�ed as

S∗=U ′Ĩ
−1
U − inf{(U − b)′Ĩ−1

(U − b); b=(0; : : : ; 0; b0); b0¿0}

where U =U (�̃; ũ; 	̃; 0) is given in Section 3. Speci�cally, the reference distribution of the
score test statistic S∗ is then asymptotically 0:5(
20+


2
1) with p-value given by 0:5p{
21¿S∗},

i.e. the limiting distribution follows a mixture of a degenerate point mass at zero and a 
21
distribution in equal mixing proportions.
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The score test statistic is derived with respect to the underlying Poisson assumption. De-
pending on the nature of the response, alternative discrete probability distributions such as
binomial may be adopted in (2) for the assessment of zero-in�ation in other settings. In the
presence of simultaneous zero-in�ation and overdispersion, Ridout et al. [11] have developed
a score test for testing ZIP against ZINB alternatives. It is worthwhile to extend their score
test to the random e�ects setting for assessing over-dispersed correlated count data with extra
zeros [19], �ndings of which will be reported elsewhere. Finally, multilevel ZIP [20] or mul-
tilevel ZINB regression models can be developed to analyse count data exhibiting a complex
correlation structure due to multilevel clustering, once zero-in�ation is con�rmed by such
score tests.

APPENDIX A

From the second derivatives of l evaluated at �=0, entries of the expected Fisher information
matrix I(�; u; 	; �) under the null hypothesis H ∗

0 are obtained as follows:

I�� = E
[
− @2l
@�@�′

]
=
∑
i; j

@�ij
@�′ E

[
−@

2l1ij
@�2ij

]
@�ij
@�′ =

∑
i; j
exp(�ij)

@�ij
@�′

@�ij
@�

=−T ′BT

Iuu = E
[
− @2l
@u@u′

]
=
∑
i; j

@�ij
@u′ E

[
−@

2l1ij
@�2ij

]
@�ij
@u

+ 	Ip=−P′BP + 	Ip

I�u = E
[
− @2l
@u@�′

]
=
∑
i; j

@�ij
@�′ E

[
−@

2l1ij
@�2ij

]
@�ij
@u

=−T ′BP

I		 = E
[
− @2l
@(	)2

]
=−m

2
	−2 + 	−3

∑
i
u2i

I	� = E
[
− @2l
@�@	

]
=0

I�	 = E
[
− @2l
@�@	

]
=0

Iu	 = E
[
− @2l
@u@	

]
=−	−2u

I�� = E
[
−@

2l
@�2

]
=
∑
i; j

[
−1 + E(I(yij = 0))

f2(0; �ij)

]
=
∑
i; j

[
1

f(0; �ij)
− 1
]
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I�� = E
[
− @2l
@�′@�

]
=
∑
i; j

@�ij
@�′ E

[
−I(yij=0)

f(0; �ij)(− exp(�ij))
[�+ f(0; �ij)]2

]

=
∑
i; j

@�ij
@�′

− exp(�ij)
f(0; �ij)

E(I(yij=0))

=−∑
i; j
exp(�ij)

@�ij
@�′ =−T ′B1N

Iu� = E
[
@
@u

(
−@l
@�

)]
=E

[
@
@u
∑
i; j

{
1

1 + �
− I(yij=0)

1
�+ f(0; �ij)

}]

= E

[∑
i; j
I(yij=0)

−f(0; �ij) exp(�ij)
(�+ f(0; �ij))2

@�ij
@u

]
=−∑

i; j
exp(�ij)

@�ij
@u

=−P′B1N

with N × q matrix

T =
(
@�11
@�

; : : : ;
@�1n1
@�

; : : : ;
@�m1
@�

; : : : ;
@�mnm
@�

)′

N ×m matrix

P=
(
@�11
@u
; : : : ;

@�1n1
@u

; : : : ;
@�m1
@u

; : : : ;
@�mnm
@u

)′

and N × N matrices B=diag{− exp(�ij)}. Here 1N denotes an N × 1 vector of ones.
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