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Two-component Poisson mixture regression modelling of count data with bivariate 

random effects 

 

 

ABSTRACT 

Two-component Poisson mixture regression is typically used to model heterogeneous count 

outcomes that arise from two underlying sub-populations. Furthermore, a random component 

can be incorporated into the linear predictor to account for the clustering data structure. 

However, when including random effects in both components of the mixture model, the two 

random effects are often assumed to be independent for simplicity. A two-component Poisson 

mixture regression model with bivariate random effects is proposed to deal with the correlated 

situation. A restricted maximum quasi-likelihood estimation procedure is provided to obtain 

the parameter estimates of the model. A simulation study shows both fixed effects and 

variance component estimates perform well under different conditions. An application to 

childhood gastroenteritis data demonstrates the usefulness of the proposed methodology, and 

suggests that neglecting the inherent correlation between random effects may lead to incorrect 

inferences concerning the count outcomes. 

 

 

Keywords: Bivariate random effects, Clustered data, Mixture regression model, 

Overdispersion, Variance components  
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1. Introduction 

The analysis of count data that are overdispersed relative to the Poisson distribution (i.e., 

variance > mean) has been paid much attention. It is well known that application of the 

standard Poisson model may result in misleading inferences. Alternative methods of analysis 

have been proposed to deal with the overdispersion problem. Finite mixture models are 

appropriate when the extra variability comes from the unobserved heterogeneity of the 

population, which composes of two or more subgroups mixed in various proportions [1, 2]. In 

particular, Poisson mixture regression can be fitted to such overdispersed count data in the 

presence of covariate information. The methodology of Poisson mixture regression, including 

properties of estimators, adequacy of fit, and model selection procedure, have been 

extensively investigated in the literature [3].  

 

In the manner of generalized linear mixed models (GLMM) [4], when the count outcomes are 

clustered or represent repeated measurements, random effects can be incorporated within the 

regression model to account for the inherent correlation between observations. Typically, 

fixed effect parameters and variance component estimation can be implemented using 

numerical procedures to compute restricted maximum likelihood estimates [5]. Recently, 

Chan et al. [6] proposed a Monte Carlo approximation method to achieve maximum 

likelihood estimation in GLMM. A two-component Poisson mixture regression model was 

developed for analysing maternity length of hospital stay, where random effects were 

included in the linear predictor of both mixture components to accommodate the hierarchical 

nesting of observations [7]. Similarly, a normal mixture regression model with random 

hospital effects was presented by Ng et al. [8] to model the clustered neonatal length of stay. 

Both approaches assume the random effects in different mixture components are independent.  
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In this study, the two-component Poisson mixture regression is extended to the bivariate 

random effects setting for the mixture components. Specifically, the random effect vectors in 

the two components are assumed to be bivariate normally distributed with a correlation 

parameter. Such an extension allows the estimation of the correlation between the two 

components via the random effects, and enables the assessment of the relationship between 

the first and second components. Ignoring the correlation between random effects may result 

in misleading inferences.  

 

In Section 2, a numerical estimation procedure is developed to obtain the fixed effect 

parameter estimates. The estimation equations for random effect parameters are derived in 

Section 3. A simulation study is conducted in Section 4 to assess the performance of the 

estimators, followed by a practical example on childhood gastroenteritis in Section 5 to 

demonstrate the applicability of the method. Discussion on computational issues and further 

extensions are given in Section 6.  

 

2.  Poisson Mixture Regression Model with Correlated Random Effects 

Let ijY  (i = 1,2,…, m; j = 1,2,…, in ) be the count variable of the thj  observation in the thi  

cluster, where m is the number of clusters and ∑
=

=
m

i
i nn

1
 is the sample size. Suppose ijY  

comes from a mixture of two Poisson populations with mixing probability p, then the 

probability distribution function is 
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where 1λ and 2λ are the means of the two components. In the regression setting, both 

)log( ,1 ijλ  and )log( ,2 ijλ  are assumed to be a linear function of covariates. The covariates 



 5

appearing in these two parts are not necessarily the same. With random effects, the linear 

predictors ij,1η  and ij,2η  are defined as: 

)log( ,1 ijλ = i
T

ijij vx ,11,1,1 += βη , )log( ,2 ijλ = i
T

ijij vx ,22,2,2 += βη , 

where ijx ,1  and ijx ,2  are vectors of covariates with corresponding regression coefficients 1β  

and 2β . Let T
mvvv ),...,( ,11,11 =  and T

mvvv ),...,( ,21,22 = represent random effects for the first 

and second component of a two-component mixture model, respectively. The pair 1v  and 

2v are likely to be correlated if they arise from the same hospital or cluster. Therefore, 

T
ii

T
i vvu ),( 21=  is assumed to be distributed as ),0( iAN , where the matrix 
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When the correlation coefficient ρ  is zero, 1v  and 2v  become independent, so that the model 

degenerates into that of Wang et al. [7]. Following the GLMM formulation [4, 5], the best 

linear unbiased prediction (BLUP) type log-likelihood is given by 21 lll += , where        
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with 1l  being the log-likelihood function when the random effects are conditionally fixed, 

while 2l  can be regarded as the penalty function for the conditional log-likelihood. Estimation 

may be performed iteratively. In the initial step, coefficients in the linear predictors are 

estimated, for fixed variance components, by maximizing the above BLUP log-likelihood. 

Estimation of the variance component parameters is then achieved using restricted maximum 

quasi-likelihood (REMQL) estimating equations; details of which are presented in the next 

section. 
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Details of the derivatives involved are provided in the Appendix. The asymptotic standard 

errors of the parameter estimates are obtained from the approximate variance-covariance 

matrix 1−V . 

 

3. Estimation of Variance Components 

When performing model estimation via the Newton-Raphson procedure in the previous 

section, the parameters of the variance component are assumed to be known. In practice, they 

are updated and estimated in each cycle of the procedure using the approximate REMQL 

estimators of the variance components [7, 8], which are obtained by solving the equations of 

the first-order derivatives of the REMQL log-likelihood with respect to φ = ( 1σ , 2σ , ρ ), viz. 
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 where A = [ mAAA ,...,, 21 ] denotes a diagonal block matrix, and S  is the block matrix portion 

of 1−V corresponding to u . The following simplification is performed to obtain the explicit 

equations for the three parameters. Note that 
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and the parameters 1σ , 2σ , and ρ  satisfy    
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which can be used to replace the first term of the estimation equation (1). Similarly, the 

following relations can be used to replace the second term of equation (1):   
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where ( ))(1 uuSItrL T+= , ( ) 2/)(2 uuSJtrL T+= , )((3 uuSKtrL T+= and I, J, and K are 

2m×2m diagonal block matrices with their component matrices being 
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, respectively. Consequently, three estimation equations are established so that a 

standard numerical algorithm such as the Newton-Raphson method can be used to facilitate 

the estimation of random components. The model estimation procedure was implemented as a 

S-Plus computer program. 

 

4. Simulation Study 

A simulation study is conducted to assess the performance of the proposed method. Data are 

simulated under a two-component Poisson mixture regression model whereby the random 

effects of the two mixture components are correlated. In each simulated data set, m = 20 

clusters and in = 60 observations are fixed within each cluster. This means 20 pairs of random 

effects from a bivariate normal distribution are generated. Each pair of these random effects is 
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used to generate 60 pairs of Poisson data, and the mixed responses are then randomly selected 

from the first component or the second component distribution with mixing probability p. The 

covariate vector ijx  consists of the constant 1 and values randomly generated from the uniform 

(0, 1) distribution, with associated regression coefficients (1, -1) for the first mixture 

component and (2, 0.5) for the second mixture component. The mixing probability p is chosen 

to be 0.2, 0.5, and 0.8. For each p, values -0.8, -0.5, -0.3, 0, 0.3, 0.5, 0.8 are considered for the 

correlation parameter ρ , while moderate variations of 0.4 and 0.7 are assumed respectively 

for 1σ  and 2σ . The simulation study is thus designed to evaluate the performance of the 

estimators with respect to a plausible range of bivariate correlation and mixing probability 

values. The number of replications is 1000 for each setting considered. 

 

Results of the simulation study are presented in Tables 1, 2 and 3, which report the average 

bias of the parameter estimates and standard error of the estimates over the 1000 replications. 

From the tables, it is evident that the REMQL estimates of the regression coefficients and the 

mixture proportion have negligible biases relative to their corresponding standard errors. For 

variance component parameters, the REMQL estimates of 1σ , 2σ  and ρ  also perform 

reasonably well in each of the settings considered. Simulation results ascertain the 

applicability of the proposed algorithm for parameter estimation in the two-component 

Poisson mixture regression model with correlated random effects. 

  

5. Example 

Gastroenteritis is an infectious disease prevalent among Aboriginal infants and children in 

Australia who live in overcrowded and unhygienic conditions [9]. In this study, the proposed 

two-component Poisson mixture regression model with bivariate random effects is applied to 

investigate whether demographic and clinical factors affect the number of diagnoses at each 
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hospital admission of childhood gastroenteritis. A two-component Poisson mixture model is 

considered appropriate because of heterogeneity in patient outcome, especially for those 

infants who are severely dehydrated and have developed other complications. To achieve our 

study objective, acute hospital discharge data on age (in months), gender, indigenous status 

(Aboriginal, non-Aboriginal), admission status (elective, emergency), place of residence 

(rural, metropolitan) and principal diagnoses were extracted from the Western Australia 

hospital morbidity database for each episode of gastroenteritis between 1995 and 2002. All 

infants born in 1995 in Western Australia who had index gastroenteritis admission during 

their first year of birth were selected [9].  

 

In this study, number of diagnoses at each episode is the outcome variable of interest. As 

evident from its empirical distribution given in Table 4, the count variable is clearly 

overdispersed with mean 1.366 and variance 2.397. Moreover, chi-square goodness-of-fit 

tests (without covariates) for the Poisson (p-value < 0.001), negative binomial (p-value = 

0.034), zero-inflated Poisson (p-value < 0.001), and zero-inflated negative binomial (p-value 

= 0.017) distributions are all significant at the 5% level, whereas the two-component Poisson 

distribution appears to fit the count data reasonably well. The chi-square test statistic for the 

mixture distribution is 3.728 (4 degrees of freedom) with p-value = 0.444. Although the fit of 

other models will improve after incorporating concomitant information, the two-component 

Poisson mixture model is chosen for subsequent analysis. 

 

There are altogether m = 59 hospitals with a total of n = 683 admissions identified during the 

study period. Most of the hospitalisations were due to “unspecified diarrhea” (55.8%), while 

17.7% were attributed to “bacterial or viral diarrhea”. Other types of gastroenteritis, such as 

“Salmonellosis”, “Shigellosis” and “Protozoal intestinal diseases”, made up the minority of 
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hospital admissions. An inspection of the data shows that 91% of the cases were emergency 

admitted. Male infants contributed 56.8% of the admissions, and 41% of them were found to 

be of Aboriginal decent. The mean number of diagnosis of Aboriginals (1.94, SD 1.82) was 

significantly higher than their non-Aboriginal counterparts (0.97, SD 1.17), reflecting the 

severity of the disease and additional comorbidities experienced by this subgroup of patients. 

 

Table 5 compares the results from fitting the two-component mixture regression model to the 

data for (a) ρ  = 0 and (b) ρ  ≠ 0. The fixed effect regression coefficients are generally similar 

in terms of sign and magnitude between the two models. However, the random component 

estimates of model (b) are slightly larger, with the bivariate correlation coefficient estimated 

to be -0.539, indicating the hospital effect on the two mixture components are not 

independent. As expected, Aboriginality is positively associated with the number of diagnoses 

for both mixture components. Aboriginal infants, who often live in overcrowded and 

unhygienic conditions, tend to have additional complications and comorbidities when they are 

admitted for gastroenteritis [9]. The effects of other significant factors, namely principal 

diagnoses (first component) and admission status (second component), are also comparable 

with and without allowing for correlation between the random effects. It should be remarked 

that gender becomes marginally significant under the more flexible bivariate random effects 

model. Although the interpretation of its clinical significance is not clear, especially for 

gastroenteritis episodes exhibiting lesser number of diagnoses, the finding suggests that 

neglecting the correlation between the random effects may lead to incorrect inferences 

concerning the count outcome.   
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6. Discussion 

A two-component Poisson mixture regression model with bivariate random effects is 

proposed to accommodate the inherent correlation between random effects. The simulation 

study confirms that the estimators perform reasonably well with varying correlation and 

different mixing probabilities. The empirical application demonstrates the usefulness of the 

proposed model, and provides further evidence that ignoring the correlation between random 

effects may result in misleading conclusions.  

 

Similar to the Bayesian analysis framework, the posterior probabilities with respect to the 

components of the Poisson mixture model can be obtained. In particular, the posterior 

probability ijp ,1 of the observation ijY  with respect to the first component is given by 
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Such posterior probabilities may assist in the development of patient-specific programs for 

improving future outcomes. 

 

The methodology can be further extended to cope with the general k-component Poisson 

mixture situation. Without loss of generality and adopting the extended set of notations, for a 

three-component Poisson mixture model, the probability distribution function may be 

specified as  
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 and the BLUP type log-likelihood 21 lll +=  can be constructed accordingly. Subsequent 

derivations are rather tedious, nevertheless, the estimation procedure is in principle analogous 

to that of a two-component model. For the determination of the number of mixture 
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components, the Akaike’s Information Criteria (AIC) and Bayesian Information Criteria (BIC) 

can be used in conjunction with the Pearson statistics [7].  

 

In the process of REMQL estimation, good initial values are needed to guarantee 

convergence. Clustering methods such as k-means can be used for separating the response 

counts into k groups. Consequently, the mixing proportions of each group and the standard 

Poisson regression coefficients are computed for each component. Thereafter, these estimates 

serve as initial values for the two-component Poisson mixture regression model with 

independent random effects, following the recommendation of Wang et al. [7]. These initial 

values are the estimates obtained from an EM algorithm, in which convergence is guaranteed. 

Finally, parameter estimates from the reduced mixture model, together with zero as the initial 

value of ρ , provide a basis to start the iterative procedure for full model REMQL estimation. 

Based on our experience, this process of setting initial values works well as the divergence 

rate is less than 1% in the simulation study. The computation time is also acceptable with an 

average of less than 6 seconds for each converging case in the simulation study. 

 

Comparable approaches for estimation in the GLMM exist in the literature, which include the 

Bayesian and Monte Carlo approximation methods. In general, the Bayesian approach using 

the Gibbs sampler is computationally intensive when the full conditional density is not in a 

standard form. The Monte Carlo estimation methods do not always converge to the global 

maximum and often impose difficulties in the estimation when the importance function used 

is far away from the true function. Based on the Gibbs output and adopting a Monte Carlo 

approximation to the relative marginal likelihood function, recent work by Chan et al. [6] 

bridges the two approaches. For the proposed REMQL estimation using the penalized quasi-

likelihood, although it has a potential bias problem in the estimation of variance component 
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parameters, bias-correction procedures are available to improve the asymptotic performance 

of the estimates, and the REMQL estimation procedure is in general computationally efficient.  
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Appendix.  First and Second Derivatives of the BLUP log-likelihood 

From the BLUP log-likelihood 21 lll += , we obtain: 
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Based on the above, second-order derivatives of the log-likelihood are obtained as follows: 
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Therefore, as long as the first- and second-order derivatives of 1l  with respect to ξ , 1η , and 

2η  are obtained, we can derive the estimation equations presented in Section 2.  



 17

Table 1. Bias and standard error of REMQL estimators based on 1000 replications of the two-

component Poisson mixture regression model with m = 20, in = 60, mixing proportion p = 0.2 

and varying bivariate correlations. 

   

Parameter 10β  11β  20β  21β  p 1σ  2σ  ρ  

True value 1 -1 2 0.5 0.2 0.4 0.7  

Simulation 1        -0.8 

Bias  -0.003 -0.013 0.013 -0.003 -0.003 -0.010 -0.011 0.073 

Standard Error 0.176 0.251 0.162 0.035 0.052 0.103 0.111 0.212 

Simulation 2        -0.5 

Bias 0.003 -0.010 0.000 -0.002 0.002 -0.024 -0.018 -0.066

Standard Error 0.175 0.252 0.160 0.036 0.054 0.109 0.112 0.291 

Simulation 3        -0.3 

Bias 0.014 -0.007 0.013 -0.002 0.002 -0.020 -0.017 0.039 

Standard Error 0.171 0.251 0.161 0.033 0.053 0.106 0.112 0.294 

Simulation 4        0 

Bias 0.012 -0.011 0.009 -0.002 0.002 -0.023 -0.008 0.034 

Standard Error 0.174 0.248 0.166 0.034 0.049 0.106 0.116 0.332 

Simulation 5        0.3 

Bias 0.028 -0.031 0.005 0.000 -0.002 -0.020 -0.005 0.000 

Standard Error 0.172 0.254 0.154 0.034 0.052 0.106 0.115 0.316 

Simulation 6        0.5 

Bias 0.024 -0.011 0.004 -0.001 0.001 -0.020 -0.011 -0.018

Standard Error 0.175 0.229 0.151 0.035 0.052 0.106 0.114 0.289 

Simulation 7        0.8 

Bias  0.021 -0.021 0.004 -0.001 0.001 -0.013 -0.010 0.000 

Standard Error 0.166 0.232 0.157 0.035 0.053 0.103 0.109 0.160 
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Table 2. Bias and standard error of REMQL estimators based on 1000 replications of the two-

component Poisson mixture regression model with m = 20, in = 60, mixing proportion p = 0.5 

and varying bivariate correlations. 

 

Parameter 10β  11β  20β  21β  p 1σ  2σ  ρ  

True value 1 -1 2 0.5 0.5 0.4 0.7  

Simulation 1        -0.8 

Bias  -0.008 0.005 0.019 -0.007 0.002 -0.016 -0.023 0.029 

Standard Error 0.119 0.137 0.161 0.049 0.065 0.080 0.113 0.128 

Simulation 2        -0.5 

Bias 0.005 -0.006 0.006 -0.004 0.000 -0.016 -0.024 0.039 

Standard Error 0.117 0.138 0.161 0.049 0.065 0.079 0.113 0.224 

Simulation 3        -0.3 

Bias 0.060 0.001 0.018 -0.004 -0.001 -0.011 -0.022 0.037 

Standard Error 0.115 0.134 0.161 0.045 0.066 0.075 0.113 0.239 

Simulation 4        0 

Bias 0.010 -0.012 0.013 -0.003 0.001 -0.013 -0.013 0.017 

Standard Error 0.115 0.130 0.166 0.046 0.064 0.076 0.117 0.258 

Simulation 5        0.3 

Bias 0.008 -0.003 0.009 -0.001 0.001 -0.013 -0.008 -0.006 

Standard Error 0.115 0.129 0.154 0.046 0.064 0.079 0.117 0.247 

Simulation 6        0.5 

Bias 0.011 -0.001 0.006 0.000 0.000 -0.014 -0.013 -0.017 

Standard Error 0.116 0.125 0.153 0.045 0.065 0.080 0.116 0.217 

Simulation 7        0.8 

Bias  0.013 -0.006 0.007 -0.002 0.002 -0.013 -0.012 0.001 

Standard Error 0.117 0.129 0.160 0.046 0.062 0.077 0.111 0.112 
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Table 3. Bias and standard error of REMQL estimators based on 1000 replications of the two-

component Poisson mixture regression model with m = 20, in = 60, mixing proportion p = 0.8 

and varying bivariate correlations. 

 

Parameter 10β  11β  20β  21β  p 1σ  2σ  ρ  

True value 1 -1 2 0.5 0.2 0.4 0.7  

Simulation 1        -0.8 

Bias  -0.002 0.004 0.029 -0.005 0.005 -0.008 -0.028 0.014 

Standard Error 0.105 0.095 0.169 0.080 0.052 0.073 0.124 0.114 

Simulation 2        -0.5 

Bias 0.000 -0.002 0.029 0.000 0.004 -0.014 -0.036 0.035 

Standard Error 0.104 0.097 0.168 0.078 0.053 0.071 0.123 0.206 

Simulation 3        -0.3 

Bias 0.005 -0.002 0.031 -0.005 0.001 -0.008 -0.034 0.033 

Standard Error 0.102 0.096 0.167 0.080 0.052 0.069 0.120 0.229 

Simulation 4        0 

Bias 0.003 -0.003 0.028 -0.005 0.001 -0.007 -0.027 0.021 

Standard Error 0.102 0.096 0.171 0.080 0.050 0.072 0.121 0.250 

Simulation 5        0.3 

Bias 0.003 0.000 0.019 0.002 0.005 -0.008 -0.017 0.000 

Standard Error 0.102 0.094 0.156 0.080 0.052 0.073 0.118 0.232 

Simulation 6        0.5 

Bias 0.002 0.004 0.012 -0.001 0.001 -0.011 -0.024 0.003 

Standard Error 0.103 0.093 0.164 0.083 0.052 0.073 0.119 0.187 

Simulation 7        0.8 

Bias  0.009 0.000 0.010 0.005 0.001 -0.009 -0.017 -0.002 

Standard Error 0.102 0.096 0.164 0.082 0.053 0.069 0.115 0.101 
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Table 4. Frequency distribution of number of diagnoses of gastroenteritis admissions for 

infants in Western Australia. 

 

Number of diagnoses Observed frequency 

0 234 

1 221 

2 104 

3 58 

4 27 

5 23 

6 11 

7 2 

8 2 

9 0 

10 0 

11 1 
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Table 5. Parameter estimates (standard error) from fitting the two-component Poisson mixture 

regression model to the childhood gastroenteritis data. 

  

(a) ρ  = 0 (b) ρ  ≠ 0  

 First component Second component First component Second component

p 0.598 (0.086)  0.559 (0.081)  

Intercept 

Male gender 

Age 

Aboriginal 

Elective admission  

Rural residence 

Unspecified diarrhea 

Bacterial or viral 

diarrhea 

0.264 (0.293) 

0.339 (0.177) 

-0.009 (0.008) 

0.668 (0.199)* 

-0.407 (0.259) 

-0.184 (0.267) 

-0.521 (0.186)* 

-1.051 (0.278)* 

-0.685 (0.370) 

-0.254 (0.172) 

-0.002 (0.010) 

1.004 (0.209)* 

0.571 (0.266)* 

0.122 (0.214) 

0.232 (0.195) 

0.205 (0.288) 

0.386 (0.286) 

0.365 (0.171)* 

-0.006 (0.008) 

0.642 (0.196)* 

-0.447 (0.270) 

-0.275 (0.254) 

-0.529 (0.171)* 

-1.038 (0.306)* 

-0.678 (0.329) 

-0.236 (0.148) 

-0.006 (0.009) 

0.983 (0.179)* 

0.577 (0.253)* 

0.119 (0.202) 

0.187 (0.165) 

0.145 (0.261) 

 

 

 

1σ  = 0.382 

2σ  = 0.622 

 

1σ   = 0.402 

2σ  = 0.669 

ρ   = -0.539 

 
*p-value < 0.05 
 


