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SUMMARY

The current course of human development, along with its driving forces such as globalization and urbanization, appears
to be rapid and inevitable. Hence ensuring bio-security against emerging and re-emerging diseases is among the top challenges
in this day and age. The present paper will discuss some of the projects that are being conducted internationally towards realizing
the aim of ensuring bio-security through a variety of research approaches, many of which were developed in the past decade.
In particular, we focus on the research methodology developed by the authors to enable parametric modeling of immunologic
profiles of individual subjects, which can be further extended to large groups and populations.
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1. INTRODUCTION

The year 2014 will be long remembered for its
widespread Ebola virus disease outbreak that took place
across multiple countries in West Africa. It was, in fact,
the deadliest outbreak till date, claiming more than
8,000 lives between December 2013 and January 2015,
the burden of deaths being the highest in Liberia, Sierra
Leone and Guinea. (The corresponding figure exceeded
10,500 deaths by April 2015.) Among the suspects of
origin and transmission of the Ebola virus (formerly
known as Zaire virus) were fruit bat species, which may
have been a natural host serving as the reservoir of the
virus in the wild. While the bat-to-human transmission
could take place along multiple routes, it has,
nonetheless, rightly brought back to focus the critical
issue of growing human activity and deforestation in

previously untouched forests. In other words, the
outbreak points to a much larger and deeper problem
that lies at the crossroads of socio-economics,
environment and human health.

Unfortunately, the global trend in emerging (and
re-emerging) infectious diseases has seen almost
steadily increasing incidence since 1940, even if
controlled for effects of higher reporting. Clearly not
much of this phenomenon is either novel or entirely
unexpected, if viewed in the light of anthropogenic
factors. Not long ago, in 2002, the SARS outbreak in
China was also traced to hunting and trading of bats
that are natural reservoirs of SARS-like coronaviruses.
It has been found that about 60% of known human
infectious diseases, and more than 75% of newly
emerging infections have zoonotic origin, i.e. they
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originate in vertebrate animals before being transmitted
to humans. Almost 80% of the viruses and 50% of the
bacteria that infect humans are of zoonotic origin. In
fact, more than 70% of the known zoonotic pathogens
have originated from wildlife species. A conservative
estimate puts the number of viruses present in
vertebrate species at 1 million, which suggests that
more than 99.9% of the viruses that lie out there are
currently unknown to humans. As the frequency of
emergence of new pathogens continues to rise, so does
the importance of societies’ need to understand and be
prepared to systematically address the challenge of
emerging infectious diseases at different levels.

To address such a complex issue of global
significance, a meeting of experts titled, “Unhealthy
Landscapes: How Land Use Change Affects Health”,
was convened at the 2002 biennial meeting of the
International Society for Ecosystem Health (6-11 June
2002, Washington DC, USA). It was noted that “human-
induced land use changes are the primary drivers of a
range of infectious disease outbreaks and emergence
events and also modifiers of the transmission of
endemic infections” (Patz et al. 2004). Often such land
use changes could be rapid, and may include
deforestation, biodiversity loss, habitat encroachment,
urbanization, and other activities. “These changes,”
noted Patz er al., “in turn cause a cascade of factors
that exacerbate infectious disease emergence, such as
forest fragmentation, pathogen introduction, pollution,
poverty, and human migration. These are important and
complex issues that are understood only for a few
diseases.” The larger overall scenario, needless to say,
is much more challenging and less well understood.

What could be done towards the objective of
ensuring bio-security both at the human-animal-
environment interfaces, and overall, in the course of
rapid and inevitable human development? This is a
“big” question that is currently being asked in many
major forums across the world. Recently, the concept
of “One Health” has received much attention led by the
tripartite initiative of WHO, FAO of the UN, and the
World Organization for Animal Health. Importantly, the
need for a concerted, inter-disciplinary approach has
been felt in public health research, bringing together
teams of epidemiologists, clinicians, veterinarians,
microbiologists, wildlife biologists, ecologists,
statisticians and public health officials. Apparently, a
global strategy seems to be emerging for monitoring

and bio-surveillance, partly driven also by concerns of
bioterrorism. However, the coverage or efficiency of
public health surveillance systems world-wide is still
far from uniform.

The question is how do we move systematically
towards the aim of ensuring bio-security? Here we will
discuss some projects that are being conducted
internationally by different laboratories and
organizations using a variety of research approaches,
many of which were developed in the past decade. The
aim here is not to provide a comprehensive review of
either the approaches or the projects undertaken, but to
get a general understanding of the flavor of certain
scientific platforms and analytical methods that could
be brought to bear in demonstrating this global effort.
Many public health researchers and policy-experts are
currently involved in designing programs and strategies
to be prepared for emerging (and re-emerging) diseases.
Systematic identification of new hotspots of epidemics,
modeling and mapping of ecological niches,
characterization of human-animal interfaces by
exposure types and frequency, creation of host-pathogen
databases, identification of key taxonomic groups, and
phylodynamic analysis of host, epidemiological and
molecular data — all lead to a pool of valuable
information that could be useful for prediction and
prevention of future zoonotic outbreaks. As an example
of this approach, the PREDICT project of the Emerging
Pandemic Threats program launched by United States
Agency for International Development (USAID) in
2009 aims to facilitate predictive modeling for the
identification of the most likely regions, hosts and
human-animal interfaces for forthcoming emergence of
ZOonoses.

A project such as PREDICT aims to collect timely
and reliable data based on internet surveillance of
reports of unusual health events occurring in countries
with hotspots. Further, it conducts analysis to test if the
pathogen is likely to emerge and spread in the social
systems that exist in those hotspots. PREDICT
combines risk modeling with targeted wildlife field
sampling for selected locations, interfaces and host taxa.
In this effort, it is aided by inter-disciplinary experts,
computerized data collection and analysis, and active
partnership with local and national governments. The
program currently collaborates with 20 African, Asian
and South American countries, and in just a few years,
it has detected hundreds of novel viruses in the
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hundreds of thousands of samples collected from tens
of thousands of animals from these locations (Morse
et al. 2012).

While programs such as PREDICT can
demonstrate the benefits of local capacity-building
efforts as part of international efforts to counter
zoonotic threats, it also underscores the need for
statistical and computational capability to work with
massive datasets of high volume, velocity, variety and
veracity — the so-called BIG DATA characteristics. To
create integrative models for forecasting, the
researchers need to consider multi-sectorial data on a
large number of parameters. These include socio-
economic parameters such as population density,
mixing patterns, migration, trade, agricultural practices,
sanitation, age groups, diet, vaccination history, drug
and antibiotic use, cultural norms, occupational
exposures, nutritional and immunological status, etc.
Additional information about the interface includes
wildlife diversity, human-wildlife contact frequency,
similarity of host species, similarity of microbial species
present in host, ease of evolvability of the pathogens,
host-pathogen co-evolution, and so on. Sophisticated
spatio-temporal models of ecological niches are being
developed in different parts of the world to facilitate
timely and data-driven administrative policy and
decision-making (Eubank et al. 2004).

In addition to yielding practical benefits on the
ground, advanced platforms for novel pathogen
discovery are revolutionizing diverse areas of
biotechnology, medicine and agriculture. The real
game-changer over the past decade has been high-
throughput sequencing (HTS) technologies. These
generate massive datasets not only based on DNA and
RNA sequences of a specific organism, but also of
collective microbial communities that are studied for
metagenomic analysis. As less than 1% of all microbes
could be cultivated inside labs, culture-independent
metagenomics is increasingly the technology of choice
in characterizing new pathogens. Further, the human
microbiome data are revealing new insights on host-
pathogen interactions, as well as effects of diet,
antibiotics and environment. Another emerging field, of
viral metagenomics, is not only becoming popular, it
can now be performed at the astonishing granularity of
single virus level. It is difficult nowadays to imagine a
sophisticated pathogen discovery program without the
support of an efficient and reliable HTS based genomic

and metagenomic pipeline. Not surprisingly, it is not so
much the constraints of data acquisition that are of
concern to HTS labs across the globe today as the
challenge of efficient bioinformatics and biostatistical
data analysis (Firth and Lipkin 2013).

A systematic understanding gained through
sustained and continuous investigation of viral genetic
diversity is likely to become a key aspect of advanced
biosurveillance efforts in global preparedness for
disease outbreaks. In particular, the rapid evolvability
of RNA viruses, given their high mutation rates (and
missing error-correcting mechanisms), allow such
evolution to take place in time scales of human
observation. The field of phylodynamics, therefore,
seeks to combine data from phylogenetics and
epidemiological dynamics. This combined approach can
allow more effective bio-surveillance, and prediction of
the epidemiological impact, of recently emerged or
evolved viruses. Towards this, simultaneous collection
of data of different types, such as (a) spatio-temporal
epidemic dynamics, (b) viral genome sequences, (c)
contact networks of susceptible host individuals, and
(d) the immune history of the individuals in contact
networks, are modeled together “for understanding both
the dynamics of epidemic spread and the evolutionary
pressures that shape virus diversity” (Holmes and
Grenfell, 2009).

In the following sections, we will discuss
statistical and computational methods that were
developed by the authors and collaborators over the past
decade to model and analyze detailed immunologic
profiles of subjects — both in clinical settings or
otherwise. Objective and automated characterization of
population immunophenotypes based on high-
throughput platforms such as clinical flow cytometry
and rigorous data modeling can help in addressing a
variety of issues regarding the computational bio-
security (see Table 1). Systematic immunologic
profiling data generated by planned programs (e.g., The
Human Immunology Project Consortium established in
2010 by NIAID of NIH, USA) can immensely benefit
from our analytical platforms.

Flow cytometry uses a panel of p flurophore-
conjugated antibodies to measure the expression of p
specific markers for each individual cell in a given
sample, such as a subject’s whole blood. Cells (i.e., p-
dimensional points) with similar expressions form
clusters (or “cell populations™), which together define
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Table 1. Issues to be addressed by statistical modeling of
population immuno-phenotypes.

® How to mathematically characterize a “normal”
subject’s immuno-phenotypic profile?

® How to model a diverse range of population
immuno-phenotypes?

@ How to group the population immuno-phenotypes
into meaningful classes?

® How to map the immuno-phenotypic classes over
geographical space and time?

® How to assign correct classification to new or rare
immuno-phenotypes?

® How to rapidly detect any departure or outlier from
a given range of normal profiles?

® How to represent population profiles in databases
to enable mining and fast queries?

® How to find associations between population
genotypes and immuno-phenotypes?

® How to identify a vulnerable or resistant sub-
population based on such associations?

® How to systematically estimate the risks and
parameters of potential outbreaks in a given
population?

the immuno-phenotypic profile of a subject from whom
the sample was obtained. Thus, a mixture of cell
populations can be modeled by a mixture of
p-variate probability distributions. Under different
conditions (such as during an infection), the expressions
of the cell populations may be different, which can then
be detected via the altered values of model parameters.
In particular, by introducing the use of multivariate
skewed and heavy-tailed probability distributions, and
their finite mixture models, to characterize the
multivariate expressions of different cell populations,
the speaker and his coworkers were able to model
immunologic profiles with precision and rigor (Pyne et
al. 2009, Frithwirth-Schnatter and Pyne 2010, Ray and
Pyne 2012, Azad et al. 2012, Rossin et al. 2011, Ho et
al. 2012, Ho et al. 2012).

New algorithms for fitting finite mixture models
of multivariate skew distributions were developed for
parametric modeling of high-dimensional immuno-
phenotypic data obtained from human subjects, as
demonstrated in the next section. The skewness

parameter can capture interesting phenomena that may
occur in the tail populations such as immunologic state
transitions in profiles or altered cell signaling during
an infection. By joint clustering and matching (JCM)
of cell populations with our robust multi-level JCM
models, cell populations (i.e., clusters) were matched
across subjects allowing the models’ parameters to be
compared across different classes, time points, etc.
Further, the JCM model parameters can shed light on
the diversity of immunologic states and profiles, not
only of individual subjects, but also of large and
heterogeneous cohorts, by accounting for the
challenging issue of subject-specific variation (Pyne et
al. 2014). Each JCM modeled sample’s every parameter
— including specific cell population size, shape, location
and variation in marker-space — is output for
downstream analysis. For instance, the same could be
used to classify human sub-populations of interest, such
as those with potential vulnerability or resistance for
specific diseases.

2. METHODS

2.1 The JCM Methodology

The JCM methodology provides a powerful
framework for modeling a cohort of (cytometric)
samples, where the characteristics of the entire cohort
or class of samples can be described by a flexible
parametric template. It also enables simultaneous
clustering and matching of cell populations across
samples, with the ability to accommodate subtle inter-
sample variations. JCM adopts a two-level hierarchical
approach where (at the lower level) each sample is
modeled by a finite mixture model with flexible
component distributions, and (at the higher level) these
components are linked to an overall template through
a random-effects model (REM) that accounts for inter-
sample variation. Under this setting, each sample can
be conceptualized as an instance of the template,
possibly transformed with a flexible amount of
variation. A brief description of the JCM model is given
below.

2.2 Finite Mixture Modeling

At the lower level, JCM adopts a finite mixture
model to characterize a sample. A cell population within
a sample is modeled by a component distribution of the
mixture model. More specifically, let Y be the vector
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containing the measurements of the p markers on the
J" cell of a sample, where j = 1, ..., n. Here n denotes
the total number of cells in the sample under
consideration. Suppose there are g populations in this
sample, then the distribution of ¥, can be modeled by
a g-component mixture model, given by

g

FORY) =X f(y;5 6, (1)
h=1

where the mixing proportions 7, are non-negative and

sum to one. In the above, f{-; 6,) denotes a component

density with parameters specified by 6, (h =1, ..., g),

and ¥ is a vector consisting of all the unknown

parameters of the mixture model.

On specifying a parametric form f(yj; 6,) for each
component density the mixture model (1) can be fitted
by maximum likelihood (ML) via the Expectation
Maximization (EM) algorithm of Dempster et al.
(1977); see also McLachlan and Krishnan (2008).

The model (1) provides a convenient method for
clustering the cells into g clusters. A probabilistic
clustering can be obtained in terms of the fitted
posterior probabilities of component membership. For
outright clustering, the maximum a posteriori (MAP)
rule can be applied, which assigns a cell to the
component with the highest posterior probability.

2.3 Skewed Component Distributions

Observing that the clusters of cells are typically
asymmetrically distributed as well as having heavy
tails, JCM adopts multivariate skew distributions as
component densities. In particular, a skew version of
the ¢-distribution known as the skew #(ST) distribution
is employed, given by

f(yj; 0},) = 2tp(yj; My Eh; Vh)

where

S Ny gy [P
R YRR ewraen

ﬂg=1—5,{2;5,,,

dy(y) =y =) Y, (3= ),

tp(yj, W, Z,, v,) denotes the p-variate r-density with
location vector g, scale matrix X,, and degrees of
freedom v,, and Tp(~) denotes its corresponding
distribution function. With the extra parameter of
skewness &, the ST distribution can flexibly handle
non-symmetric distributional shapes. Parameter
estimation for the mixture model (1) with (2) as
component densities can be carried out using the EM
algorithm as described in Pyne ef al. (2009) and Wang
et al. (2009). Further discussions of skew z-mixture
models and parameter estimation can be found in Lee
and McLachlan (2014) and the references therein.

2.4 Multi-Level Modeling

At the upper level, JCM links the individual
mixture models for each sample obtained from the
lower level through a random effects model (REM).
Brifley, the random effects terms in the REM specify
how the sample-specific component densities vary from
an overall representative template of the cohort. More
specifically, the REM in JCM governs the relationship
between the location vector g, of sample k and the
batch location vector g, as specified by an affine
transformation

My = @y 0 py, + by, 3)

where o denotes the Hadamard product, and a,, and b,,
are RE terms for scaling and translation, respectively.
They are distributed as

a, ~ Np(lp,Ah),
bhk - N1(0> Bh)’ 4

respectively. In equation (3), the sample specific
component location parameter g, can be viewed as a
realization of g, that is, g, has a normal distribution
with mean 44, and variance that depends on 4, and B,
The fitting of the JCM model (3) with (4), (2), and (1)
can be implemented using the EM algorithm. Further
details can be found in Pyne ef al. (2014) and Lee et
al. (2014).

On fitting JCM to a batch of samples, we obtain
an individual model for each sample and a template
model summarizing the overall characteristics of the
batch. These fitted models are given in the form of a
skew #-mixture distribution with parameters capturing
useful features such as the location of each cluster, the
proportion of cells in each cluster, the skewness of their
distribution, and the degree of long/heavy-tailedness.
This approach enables direct comparison across
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different batches or classes of samples, and facilitates
objective classification of unlabeled samples. As the
models are defined parametrically, a range of
information-based measures can be applied to quantify
their similarities or differences, for both within-class
and inter-class variations. In the illustration to follow,
we shall demonstrate this with the Kullback-Leibler
(KL) distance (Kullback and Leibler 1951) and
Bhattacharyya distance (Bhattacharyya 1943).

3. RESULTS

3.1 Immune Tolerance Network (ITN) Dataset

A subset of 15 samples from the Immune
Tolerance Network (ITN) dataset was analyzed. These
are based on blood samples acquired from three
different groups of patients, five in each group. Each
sample is analyzed using cytometry to measure the
expression of five markers, namely CD3, CD4, CDS,
CD69, and HLA-DR. The ITN dataset is available
publicly from the BioConductor package flowStats.
Together they can be used to determine the types and
functions of different subpopulations of T cells such as
Natural Killer (NK) cells, T-helper cells, etc. Markers
such as HLADR can inform about T cell activation and
signaling states.

3.2 JCM Template for ITN Classes

A JCM model is fitted to each of the three classes
of samples. Briefly, the fluorescence channels were
transformed before JCM was applied, and the FSC and
SSC channels were not included in the analysis. JCM
identified 5 components (i.e. common cell populations)
in each of these classes. On comparing the templates
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Fig. 1. The ITN dataset (three classes each with five samples)
was analysed with JCM. The parametric class templates from the
3 classes are overlaid and visualized along two dimensions: CD4
and CD8. The variation in the CD4"CD8" subsets among the 3

classes can be observed (in the CD4"CD8" quadrant).

fitted to these classes, a marked difference can be
observed for one of the clusters. In particular, there is
considerable difference in the distribution of the
CD4*CD8" populations (Fig. 1), where all three classes
are clearly different. While the overall variation
between Class 2 and Class 3 is much less profound,
they differ in the CD4-CD8" populations. Notably, there
is no observable differences across the three classes in
terms of the CD4"CD8 and CD4-CD8~ populations.

The within-class variation can be visually
compared with overlay plots produced by JCM (Fig. 2).
As can be observed, the templates are providing a good

Class 2 Class 3
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Fig. 2. The within-class variation and summarization in the ITN dataset may be observed. For each of the 3 classes, the JCM-fit mixture
model of each sample is shown along with the overall class template in bold.



Saumyadipta Pyne et al. / Journal of the Indian Society of Agricultural Statistics 69(2) 2015 117-125 123

Cla::1___.-"'. _"---__ CIn:.s.?.____.
_—" coes ~ cDB9
of 1
..
|
- A
; ) '
i |
i ' _
| 1
4 | g
| — ;
- Bl R cos o
Class 1 . ' m"“_z
HLA-DR : HLA-DR

cD8e cD4a cog

o Class 3 i T
e —~  CDE® 7
l |
! |
| J |
|
| |
|
] |
; ™ o e
' sT cp4
cD4 >
e cD8 2
Class 3
" HLA-DR!
cD4 cos cD4

Fig. 3. The JCM-fit class templates of the ITN dataset are shown in 3D contours of individual components, each representing a specific
cell population or cluster as defined by expressions of antibody markers in 5-dimensional marker-space.

representation of the batch, summarizing the main
features of the samples in their respective classes.
Again, considerable differences can be observed among
the samples across different classes.

To gain a better appreciation of the differences
among the three classes, Fig. 3 shows the 3D contours
of the individual components of the templates for the
markers CD4, CD8, CD69, and HLA-DR. It can be
observed that most of the components in Class 1 are
distributed differently from Classes 2 and 3. This is also

Table 2. The between-class variation can be observed from
the KL distances (upper right triangle elements) and
Bhattacharyya distances (lower left triangle elements)
between each pair of class templates. Notably, Class 1 is
evidently different from Classes 2 and 3, whereas the latter
two classes were quite similar to each other.

Class 1 Class 2 Class 3
Class 1 - 3.99 3.90
Class 2 0.82 - 0.20
Class 3 0.78 0.04 -

supported by quantitative comparisons of these
templates. The KL and Bhattacharyya distances
between each pair of templates are given in Table 2.
With a KL distance of almost 4 for Class 1 versus Class
2, and for Class 2 versus Class 3, compared to 0.20 for
Class 2 versus Class 3, it indicates that Class 1 is
significantly different to the other two classes. The
Bhattacharyya distances also revealed similar results,
where the differences between Class 1 and Classes 2
and 3 were relatively high compared to that between
Class 2 and Class 3.

4. DISCUSSION

In the above sections, we demonstrated a
methodology for mathematical characterization of a
subject’s individual and a cohort’s overall
immunophenotypic profile. The parametric mixture
modeling makes it particularly effective to both
represent the data about populations in terms of
statistically well-defined parameters as well as to use
the same for identifying outlier profiles. A robust
understanding of population-level diversity in profiles
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Pathogen discovery,
genomics, metagenomics,
phylodynamics, etc.

Population immuno-

phenotyping, genotyping,
serological surveys, etc.

Data integration and
mining, mapping and
clustering, prediction,
Big Data Analytics

Syndromic surveillance,
web mining, social
networks, remote sensing

Fig. 4. An integrative model is useful for computational bio-security.

and the corresponding baselines under so-called normal
conditions holds the key for systematic outbreak
detection.

By mapping the distribution of immunologic states
in a diverse population, whether human or livestock,
over geographic space and time, it might be possible
to identify regions that are vulnerable for future
outbreaks of emerging and re-emerging infectious
diseases. Immunological, serological and virological
surveillance can be applied to monitor hotspots of such
diseases. New technological platforms such as highly
multiparametric cytometry, tetramer assays, HTS, and
many others are currently being used. A planned,
integrative approach to computational bio-security will
need to combine various technological and analytical
expertise (Fig. 4).

Fortunately, the recent Ebola outbreak did not
become a global pandemic, as the cases were mostly
localized within the less urbanized areas in the three
worst affected countries (and thanks to the selfless
efforts of many health workers). However, it served as
a stark reminder of our vulnerability as we live in highly
dynamic societies today — in which many forces are
continuously and interactively at work — globalization,
urbanization, migration, global trade and travel — and
therefore, the importance of prepared-ness to handle any
threat to bio-security cannot be overemphasized.
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