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Modelling the distribution of ischaemic stroke-specific survival
time using an EM-based mixture approach with random
effects adjustment
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SUMMARY

A two-component survival mixture model is proposed to analyse a set of ischaemic stroke-specific
mortality data. The survival experience of stroke patients after index stroke may be described by a
subpopulation of patients in the acute condition and another subpopulation of patients in the chronic
phase. To adjust for the inherent correlation of observations due to random hospital effects, a mixture
model of two survival functions with random effects is formulated. Assuming a Weibull hazard in both
components, an EM algorithm is developed for the estimation of fixed effect parameters and variance
components. A simulation study is conducted to assess the performance of the two-component survival
mixture model estimators. Simulation results confirm the applicability of the proposed model in a small
sample setting. Copyright © 2004 John Wiley & Sons, Ltd.

KEY WORDS: EM algorithm; GLMM; stroke-specific death; survival mixture; Weibull distribution

1. INTRODUCTION

Mixture models have been widely used to model failure-time data in a variety of situations
[1-5]. As a flexible way of modelling data, the mixture approach is directly applicable in
situations where the adoption of a single parametric family for the distribution of failure time
is inadequate. For example, following open-heart surgery for heart valve replacement, the
risk of death can be characterized by three merging phases [6]: an early phase immediately
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following surgery in which the risk of dying is relatively high, a middle phase of constant risk,
and finally a late phase in which the risk of death starts to increase as the patient ages. These
phases overlap each other in time and thus cannot be modelled satisfactorily by attempting to
fit a separate parametric model to each discrete time period; see for example References [4, 7]
who specified mixture models for the survival function with three components corresponding
to the three phases of death.

In this paper, we focus on the modelling of survival experience of ischaemic stroke patients
after index stroke. In Australia, there are about 50 000 stroke and transient ischaemic attacks
every year, with ischaemic stroke accounting for about 60 per cent of all stroke events [8]. Of
all stroke events each year, 70 per cent are first-ever strokes. Ischaemic stroke is diagnosed by
the ICD9-CM [9] and the ICD10 [10] codes and is usually accompanied by acute and chronic
phases [11]. In Western Australia, the annual incidence of stroke was estimated at 178 per
100 000. Approximately, around 70 per cent of acute stroke events result in hospitalization and
15 per cent of hospitalized ischaemic stroke patients die within one month [12]. By adopting
a mixture model with two components corresponding to the acute and chronic phases, the
survival function of time to death 7 is modelled as

S(t;x)=pSit;x) + (1 — p)Sa(t;x) (1)

where p denotes the proportion of patients belonging to the acute phase and S;(#;x) and
S>(¢;x) are the conditional survival functions given that the patient is within the acute and
chronic phases, respectively. Here x is a vector of covariates associated with each patient.
With this concomitant information, effects of demographic characteristics and co-morbidities
on the survival of patients in the acute and chronic phases can then be determined.

One issue concerns the heterogeneity due to random hospital effects arising from the clus-
tering of patients within the same hospital. Although clinical practice should conform to a
designated standard if guidelines on treatment and care have strictly been followed, it is in-
evitable that some inherent differences will still exist among hospitals. Thus, it is expected
that observations from patients admitted to the same hospital at index stroke will be cor-
related. In this paper, we assume that such inherent hospital effects are random and shared
among patients admitted to the same hospital. We extend the survival model (1) to adjust
for random hospital effects based on the generalized linear mixed model (GLMM) method
of McGilchrist [13]. The method commences from the best linear unbiased predictor (BLUP)
and extends to obtain approximate residual maximum likelihood (REML) estimators for the
variance component [14]. In addition, we propose the use of the EM algorithm [15] to obtain
the BLUP estimate. This EM-based mixture approach has a number of desirable properties,
including its simplicity of implementation and reliable global convergence [16, Section 1.7].
Moreover, it does not require the calculation of second derivatives of a conditional likelihood
as required with some Newton—Raphson approaches [17] and it does not require Monte Carlo
approximation as required with some computationally intensive methods [18, 19].

This paper is organized as follows. In Section 2, we describe the ischaemic stroke-specific
mortality data. The two-component survival mixture model with random effects is presented
in Section 3. In Section 4, we describe how the EM algorithm is adopted to obtain the
BLUP estimate. The analysis of the ischaemic stroke data is presented in Section 5, and in
Section 6, we present a simulation study to assess the performance of the proposed EM-based
mixture approach in a small sample setting. Finally, some concluding remarks are provided in
Section 7.

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2729-2744
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2. ISCHAEMIC STROKE-SPECIFIC MORTALITY DATA

In this study, hospital separation records corresponding to all ischaemic stroke events from
January 1996 to December 1998 were retrieved from the Western Australia Hospital Morbidity
Data System. Only those individuals who had an initial hospitalization for ischaemic stroke
during the first six months of 1996 constituted our study cohort and this initial hospitalization
was defined as the index stroke. Death data were obtained from the Australian Bureau of
Statistics mortality database. Record linkage was used to extract the medical history for each
patient from the diagnostic information recorded on hospital separation summaries. A unique
patient identifier attached by record linkage to all hospital separation records for the same
individual facilitated the retrieval of a patient’s medical history. A data set was then compiled
containing one record for each person in the cohort discharged from hospital after suffering
an index stroke. Each record contained information describing the patient’s demographics at
the time of the index stroke. Demographic information included age at admission (AGE),
gender (SEX), and indigenous status (ABORIGINAL). Clinical information such as a history
of diabetes (DIABETES) and atrial fibrillation (AF) was also included. The data set consists
of 557 patients from 56 hospitals.

When death occurred, the date and cause of death was included on the patient’s record.
Since stroke is generally an old-age disease, death occurrence may be due to stroke or other
causes. In this study, the effect of risk factors on the stroke-specific death hazard is investigated
with death due to other causes treated as censored observations. The proportion of censored
observations is 72.9 per cent.

As described in Section 1, the main aim of the study is to identify and assess risk factors
affecting the survival of ischaemic stroke patients in the acute and chronic phases, respectively,
with an adjustment for random hospital variation. The outcomes of the analysis will thus assist
clinicians to rationalize their medical practice, as well as hospital management in terms of
budgetary allocation and rehabilitation planning. By comparing the significant factors between
the two phases, appropriate strategy and policies can be prescribed to improve the efficiency
of service delivery and manage the cost of acute care. In addition, the analysis provides
information on inter-hospital variation. As a result, the relative efficiency of hospitals may be
evaluated based on the predicted random effects. From another clinical perspective, it may also
be important to assess the effect of risk factors on the proportion of ischaemic stroke patients
in the acute and chronic phases, say, via a logistic function [20] with possibly an adjustment
for random hospital variation. Adjusted odds ratio can then be calculated to estimate the
relative risk of belonging to the acute phase or the chronic phase.

3. TWO-COMPONENT SURVIVAL MIXTURE MODEL WITH RANDOM EFFECTS

Let T;; denote the observable failure/censoring time of the jth individual within the ith hos-
pital; let M denote the number of hospitals and n; the number of observations in the ith
hospital, the total number of observations is therefore N :Zf‘i i Let x;; be a vector of
covariates associated with 7;;. The survival function of 7 is modelled by a two-component
mixture model as

S(tl],x,j): pS1(tU,X,j)+(1 fp)Sz(tU,x,j) (lzl,,M, JZI,,]’ll) (2)

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2729-2744
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where p denotes the proportion of patients belonging to the first component, the subpopulation
of patients in an acute condition, and S,(#;;x;;) is the conditional survival function of the gth
component (g=1,2). Under Cox’s proportional hazards model [21], the conditional hazard
function for the gth component (g=1,2) is given by,

hy(tij; xi7) = hgo(ti) exp(ny(xi))  (g=1,2) (3)

where hy(t;) is the baseline hazard function and #,(x;;) is the linear predictor relating to the
covariate x;;. In this paper, the commonly used Weibull distribution is assumed for /(%)
because it is flexible as either a monotonic increasing, constant, or monotonic decreasing
baseline hazard. That is,

hoo(ti) = Aoty ™ (i=1,...,M, j=1,...,nm;, g=1,2) (4)

where A,,0,>0 are unknown parameters. Alternatively, other general lifetime distributions
may also be specified for hy(#;). For example, Larson and Dinse [22] assumed the baseline
hazard to be piecewise constant, Gordon [23] modelled /,(#;) by the Gompertz distribution,
while Peng et al. [24] considered a continuous baseline hazard in the generalized F' distribution
family.

As pointed out in Section 1, observations collected from the same hospital are often corre-
lated. The dependence of clustered data (patients nested within hospitals) can lead to spurious
associations and misleading inferences. In this paper, the GLMM method [13, 14] is adopted
to adjust for the random hospital effects. An unobserved random term is introduced multi-
plicatively in each conditional hazard function to explain the variability shared by patients
within a hospital. With reference to (3), the random effect Uy of the ith hospital on the gth
component hazard function can be accommodated through the linear predictor, via

ng(xl:/'):x;jﬂg_FUgi (i:1a~--aMa jzla'“ania g:1,2) (5)

where f, is the vector of regression coeflicients and the superscript T denotes vector transpose.
The unobservable random hospital effects Ug, (i=1,...,M) are taken to be i.i.d. N(0,0,). A
positive value of U, indicates that patients in the zth hosp1tal will experience a hlgher risk
of failure if they belong to the gth subpopulation (¢ =1,2). Thus if 0, differs from zero, it
implies a significant difference in the survival for patients of the gth subpopulatlon between
the participating hospitals. Under the formulation based on (3)—(5), the vector of unknown
parameters becomes

W:(P, ”1[, ﬂgau-lr’ ugallajﬂaalaaZ)T

where ul =[Uyy, Uyy,..., U] and ul =[Usy, Un, ..., Usy]. The GLMM method commences
with the BLUP at the 1n1tia1 step and proceeds to obtain approximate REML estimators of the
parameters 0, in the variance component [14,25,26]. For a given initial value of 0, (g =1,2),
the BLUP estimator of y maximizes /=1, + [, where

ll - 2‘1 Z Dlj log f(tl]9xlj)+ (1 _Dlj) lOg S(tlj9xlj)] (6)
i=1j=

Iy = —(1/2)[M log(2m0;) + (1/0) )uju;] + (—1/2)[M log(2n0y) + (1/0)ujus]
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Here D;;=1 and D;; =0 indicate a failure and a censored observation, respectively, and
S ysxip) = pfltyxy) + (1 = p)fa(ty;xi;)

is the probability density function of T based on (2), where f,(#;;x;;) is the conditional
probability density function given that the patient belongs to the gth component (¢ =1,2). In
(6), [ is the log likelihood based on the failure and censored times conditional on u«; and u,,
and /, is the logarithm of the joint probability density function of u; and u,, with u; and u,
taken to be independent. The BLUP estimate of s is obtained as a solution of the equation
0l/0yr =0, which can be solved via the EM algorithm as presented in Section 4 below.

The approximate REML estimates of the variance components 6; and 6, are obtained
by maximizing the restricted log likelihood function, which is the log likelihood obtained
from a specified set of linearly independent error contrasts [27]. The details are provided in
Appendix A.

4. EM ALGORITHM FOR ESTIMATION OF BLUP ESTIMATOR

The EM algorithm is a broadly applicable approach to the iterative computation of maximum
likelihood (ML) estimates, useful in a variety of incomplete-data problems [16,28]. In order
to pose the estimation procedure as an incomplete-data problem, an unobservable random
vector Z is introduced. For each observation f;, there is a corresponding two-dimensional
indicator variable z;;. For example, z;; =(1,0)" indicates that ; belongs to the first component.
The random effects u; and u, are not introduced as incomplete variables in the complete-
data framework, as this can slow down the EM algorithm considerably, especially when
the variance components are relatively small [29]. Furthermore, when treating the random
effects as incomplete variables, an analytical form of the log likelihood expression in the
E-step involves high-dimensional integration, which is difficult to perform. On the (k + 1)th
iteration, the E-step of the EM algorithm involves the calculation of the Q-function, which is
the expectation of the complete-data log-likelihood conditional on the current estimate of the
parameter and the observed data. In particular, the Q-function can be decomposed as

O,y =0 + 05 + 0F

with respect to the parameters p, & = (1, ul,A1,00)", and & =(B1,ul, 2,,05)", respectively.
It implies that the estimates of p, &1, and & can be updated separately in the M-step of the
EM algorithm by maximizing Qg‘), le‘), and Qg), respectively. Hence, the proposed EM-
based mixture approach possesses a number of desirable properties, including its simplicity of
implementation and reliable global convergence. Moreover, it does not require the calculation
of the second derivatives of a conditional likelihood as required with some Newton—Raphson
approaches [17]. The latter methods usually involve also the calculations of inverse of matrices
with large dimensions.

In Appendix B, we provide the detailed descriptions of the E- and M-steps of the EM
algorithm for estimation of the BLUP estimator. We also describe the estimation procedure
with the EM-based mixture approach.

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2729-2744
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Table I. Preliminary analysis.

(a) Results of fitting a single Weibull and a two-component Weibull mixture without the random
hospital effect adjustment

Regression coefficient (S.E.)

Covariate

A single Weibull

Two-component Weibull mixture

1st component

2nd component

Constant (log /)

—9.533 (1.03)*

~3.365 (1.22)"

—12.620 (1.44)*

AGE (B1,) 0.082 (0.01)* 0.015 (0.02) 0.109 (0.02)*

SEX (f2) 0.100 (0.20) —0.934 (0.11)* 0.085 (0.29)

ABORIGINAL (f3,) 0.385 (0.72) 0.501 (1.41) 0.358 (0.68)

DIABETES (f4,) 0.179 (0.25) 0.198 (0.88) 0.445 (0.36)

AF (Bsy) —0.223 (0.19) —1.623 (1.12) —0.384 (0.37)

(b) Model selection

Number of Log likelihood AICT BIC? Worth indices

components (g)

1 —1101.87 2217.74 2248.00 —
—1066.69 2163.38 22282217 (0.63, 0.37)7

3 —1057.74 2161.48"1 2260.90 (0.47, 0.44, 0.09)

*Significant at 5 per cent level.
f Akaike’s information criterion.
tBayesian information criterion.

§The number of components is chosen to be minimum value of g for which the sum of their worth indices
exceeds 0.8.
YThe number of components selected by each model selection method.

5. ANALYSIS OF THE ISCHAEMIC STROKE DATA

The ischaemic stroke data described in Section 2 is initially fitted using, respectively, a sin-
gle Weibull regression model and a two-component Weibull mixture regression model. Both
models do not adjust for the random hospital effects. The results of this preliminary analysis
are presented in Table I. It can be seen that, with a single Weibull regression model, the
patient’s age at index stroke is the only significant risk factor. By using a two-component
Weibull mixture, it is found that the patient’s age only has significant effect on patients’
survival in the chronic phase. In addition, the gender of patient has a significant effect on
the survival of patients in the acute phase. This risk factor has not been identified using a
single Weibull model. With a single Weibull model, a decreasing hazard (¢« =0.311) is deter-
mined. In contrast, with a two-component Weibull mixture, an increasing hazard (o; =1.584)
and a decreasing hazard (o; =0.395) are determined for the acute and chronic phases, re-
spectively. The number of components may be chosen based on some information criteria in
model selection [28, Chapter 6], [30] or the technique described in Reference [31], where

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2729-2744
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Table II. Results of fitting a two-component survival mixture model with random hospital effects to the
ischaemic stroke mortality data.

Ist component 2nd component
Py 0.100 0.900
Og 1.707 0.419
04 0.238 (0.30) 0.947 (0.44)*
Covariate Coefficient (S.E.)
Constant (log Zg) —3.803 (1.51)* —13.079 (1.47)*
AGE (Biy) 0.020 (0.02) 0.114 (0.02)*
SEX (f2g) —1.478 (0.40)* 0.060 (0.29)
ABORIGINAL (f34) 0.084 (1.76) 1.012 (0.82)
DIABETES (fag) 0.543 (0.72) 0.512 (0.36)
AF (fsq) —1.857 (0.99) —0.268 (0.32)

*Significant at 5 per cent level.

the ‘worth index’ of each component was calculated to select the number of experts in the
mixture of proportional hazards model. Result of applying these model selection methods is
included in Table I. Based on this result, we choose a two-component mixture of survival
model.

We then apply the EM-based two-component Weibull mixture approach with random hos-
pital effects adjustment. The results are given in Table II. It can be seen that about 10 per
cent of patients are identified as being in the acute phase. An increasing hazard (a; =1.707)
is determined. The remaining 90 per cent of patients appear to be in the chronic phase and a
decreasing hazard (o, =0.419) is observed for this second component. The gender of patient
has a significant impact on the hazard of the first component, suggesting that male stroke pa-
tients have a lower risk of stroke-specific death during the acute phase. For the chronic phase,
age is found to be the only significant risk factor implying that older-age patients experience
a higher risk of ischaemic stroke-specific mortality.

The survival function of the first component is plotted against time by gender in Figure 1,
while other covariates are set at their median values. In Figure 2, the estimate of the survival
function of the second component is plotted against time for various levels of the admission
age. It can be seen that increased age of patient is related to higher death rate in the chronic
phase.

By allowing for random hospital effects in model (2), significant hospital variation is de-
tected in the second component (Table II). It implies that heterogeneity in survival during
the chronic phase is partially due to the differences among hospitals. The identification of
risk factors, after accounting for the random hospital variation, provides useful information
on how a patient’s survival in the chronic phase is affected. In addition, the quantification
of inter-hospital variation as measured by the predicted random effects provides additional
insights to assess the variation among hospitals on stroke specific deaths. Predicted random
hospital effects for the first component (acute phase) and the second component (chronic
phase) are displayed in Figure 3. An inspection of hospital identity reveals no notable differ-
ence between the three tertiary hospitals and other hospitals in terms of the predicted hospital
effects.

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2729-2744
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Figure 1. Survival function plot of the first component for time to stroke-specific death by gender.

6. SIMULATION STUDY

A simulation study is conducted based on a multi-centre clinical trial data structure. It is
assumed that there are 20 hospitals, and within each hospital there are 25 patients. A con-
tinuous covariate variable x; (i=1,...,20, j=1,...,25) is generated independently from
N(0,1). Realizations of Z are simulated in which an individual has a probability of p to
be from the first component, z; =(1,0)", and has a probability of (1 — p) to be from
the second component, z; =(0,1)". Suppose an individual belongs to the first component,
a sample failure time is then generated from the conditional probability density function
S1(t;x:) = hio(2) exp(171(x;;))S10(2)P MCi) | with Uy, generated from N(0,0,). Similarly, for
an individual belonging to the second component, a sample failure time is generated from the
conditional probability density function f5(#;x;;)= hao(t) exp(n2(x;;))S20(t)P my) | with U,
generated from N(0,0,). If the generated failure time is greater than a constant censoring
time, C, it is taken as censored at time C. In the simulation study, we assume the baseline
hazards for both components to follow a Weibull distribution (3), with different known param-
eters 4, and o, (9=1,2). We fix 4, =0.05, o; =1.5, fi =0.5, 1,=0.01, 2, =0.5, = —0.5,
and C=1000 in all the settings, and consider three different sets of parameter value of
p (0.1, 0.3, and 0.5). There are 500 replications in each setting considered.

The performances of the estimators are assessed in terms of their biases and standard er-
rors. The simulation results are given in Table III, where SE; and SE, denote the average

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2729-2744
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Figure 2. Survival function plot of the second component for time to stroke-specific death by three
levels of age at index stroke admission.

of the standard error of the estimates and of the sample standard error of the estimates, re-
spectively, over the 500 replications. From Table III, no appreciable bias is observed in all
simulation settings, confirming the applicability of the proposed model in small sample situ-
ations. As anticipated, the estimate of p is slightly biased when its true parameter value is
close to the boundary (p=0.1) of the parameter space. A comparison of SE;, and SE, pro-
vides information on whether the estimated standard error of the procedure is overestimated
or underestimated. In general, good agreement between SE; and SE, for all the parameters
is observed. When p=0.1, the estimated standard errors of regression coefficients and vari-
ance component estimates appear to be slightly underestimated for the first component. Thus,
caution should be exercised in interpreting the significance levels attached to these estimates
when the estimated value of p is small.

7. DISCUSSION

We have proposed an EM-based survival mixture approach for modelling the distribution of
survival time with random effects adjustment. The study demonstrates how random effects

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2729-2744
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Table III. Estimated biases and standard errors of REML estimators for two-component survival
mixture model.

Parameter True value Average bias SE, SE,
p=0.1

0,=0.5, 0,=0.5

P 0.1 0.022 0.023 0.020
b 0.5 —0.035 0.194 0319
B2 —0.5 —0.031 0.112 0.104
0, 0.5 0.091 0.366 0.393
0, 0.5 0.048 0.252 0.228
0=1, =1

P 0.1 0.021 0.023 0.020
B 0.5 —0.043 0.201 0.333
i3 —0.5 —0.035 0.111 0.097
0 1.0 0.074 0.573 0.739
0, 1.0 0.062 0.425 0.418
p=03

0,=0.5, 6,b=05

P 0.3 0.016 0.023 0.025
B 0.5 0.003 0.103 0.134
i3 —0.5 —0.025 0.129 0.122
0 0.5 0.062 0.243 0.271
0, 0.5 0.051 0.275 0.239
0i=1, =1

)4 0.3 0.015 0.022 0.026
b 0.5 0.001 0.105 0.140
B2 —0.5 —0.025 0.129 0.117
0, 1.0 0.045 0.400 0.456
0, 1.0 0.035 0.440 0.431
p=0.5

0, =05, 6,=05

)4 0.5 0.009 0.021 0.024
i 0.5 0.014 0.075 0.096
Ji7) —0.5 —0.023 0.155 0.148
0, 0.5 0.065 0.216 0.222
0, 0.5 0.066 0.320 0.283
0i=1, 6,=1

p 0.5 0.011 0.022 0.026
b 0.5 0.018 0.076 0.097
i3 —0.5 —0.029 0.155 0.143
0, 1.0 0.093 0.394 0.405
0> 1.0 0.057 0.488 0.476

SE;: average of standard error of estimates.
SE,: sample standard error of estimates over 500 replications.

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2729-2744
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can be adjusted within a mixture-modelling framework in survival analysis. The estimation
procedure is based on the GLMM approach [13,32, 33]. Alternatively, exact ML approaches
can be applied by integrating out the random effects in the joint likelihood. However, due
to the intractability of the (marginal) likelihood function, computationally intensive numerical
approximations are usually required to maximize the marginal likelihood [18, 34]. Comparative
advantages of the different GLMM formulations have been discussed elsewhere [35].

In this paper, the component-hazard functions are assumed to be the Weibull distribution.
The methodology described in Sections 3 and 4 can be readily modified to accommodate
other lifetime distributions for both components. The model can also be extended to analyse
survival data arising from other hierarchical settings than hospital clustering. For example,
patients may be nested under different health regions or local districts within the state. As
described in Section 2, the mixing proportion p may be specified as a function of covariates
x;;. The layout of the methodology should be sufficiently clear for the development of a
survival model with random effect adjustment via the linear predictor in the functional form
of p(x;;). However, if the mixing proportion and the conditional survival functions are both
expressed in terms of the same set of covariates x;;, identifiability problems may occur when
there is a large proportion of censoring observations [36].

The proposed model can be generalized to analyse cure rate problems and competing-
risks data with nested random effects. With cure rate problems, a proportion of individuals
are not susceptible to the failure risk [37—39]. These cured patients are referred to as long-
term survivors with respect to the failure under study [17,40]. Unlike the analysis of the
present stroke-specific mortality data, where the aim is to identify and assess risk factors
affecting patients’ survival in different phases, studies on cure rate data focus mainly on the
estimation of the cure proportion. With competing-risk data, each individual will die from
one of multiple causes of failure [22,36]. Survival model (2) may be adapted so that the
components correspond to the different causes of failure. Under this setting, p denotes the
proportion of patients who died from the first cause and D;; defines failure types or a censored
observation.

Analysis of the ischaemic stroke-specific mortality data has identified different risk factors
affecting the survival of patients in the acute and chronic phases. The results provide useful
information to establish hospital care strategy and policy for better utilization of resources
according to these two phases. As described in Section 6, the estimated standard errors of the
estimates given in Table II have been interpreted with caution since the estimated proportion
of patients in the acute phase is small (p=0.1). In the analysis, significant hospital variation
is detected in a patient’s survival during the chronic phase. The predicted random hospital
effects facilitate the comparison of hospital performances in ischaemic stroke treatment and
rehabilitation at the chronic phase, after adjustment for patient characteristics and clinical risk
factors.

APPENDIX A: ESTIMATION OF VARIANCE COMPONENTS AND
ASYMPTOTIC VARIANCES

The approximate REML estimates of the variance components 6,, 6, and the asymptotic
variances of p, f,, f, are obtained based on Reference [14]. With reference to (6), denote
2 the negative second derivative of / =1/, + [, with respect to p|fi|f2|u |uy in the BLUP
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procedure. Let Q' =(4;), (i=1,...,5, j=1,...,5), and the matrix is partitioned conformally
to p|pBi| B2 ui|us, we have

0y =M~ V(tr Aas + 4T401) (Al)
0 = M~"(tr Ass + i31i,) (A2)
p A A A
var | B, | = |41 A4 Ao (A3)
B, Az Axn As
0, lHIZ(M — 207 tr Agg) + 074 tr(4%y) 07205 tr(AssAsq) -
var =
0, 0720, tr(A4sAss) 05 (M — 205" trdss) + 05 tr(435)
(A4)

APPENDIX B: IMPLEMENTATION OF THE EM-BASED MIXTURE APPROACH

From (6), the E-step involves the calculation of Q(/, )= Q% Q(k) Qg), where
0 =323 |4 tog (L) +tog1 - p)|

(k) ZZ 11111+121 i)

i=1j=

o = ZZU—mMm+bﬂ

i=1j=

and where
L9,y = Dijlog fy(tiz3 xij) + (1 — Di) log Sy(tyj3xy) - (9=1,2)
1 gty
byij=—7 | Mlog(2nby) + —— | (9=1,2)
2 0,
and

k k —D;;
PO S

Tij W)( u| z/,xu) p(k)(f](k))Du(Sgk))(l—D,./) +(1— p(k))(fz(k))DU(Sék))(l—D,-/)

(BI)
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is the current estimated posterior probability that #; belongs to the first component, where Eyu)
denotes the expectation based on the current fit Y®), f; ) = fo(tijs xij, é(k)) and S(k) Sy(tijs xijs
k
&) (g=1.2).
The M-step provides the updated estimate /**1) that maximizes O(y,*)) with respect to
Y and thus involves solving the non-linear equations

ﬁwmﬁﬁ:ZDWWWI$W“%+MMMWMﬂ
i=1 j—

n; _ _ u
for u,(g=1,2): zl[(rg.")@ (1 — )97 D(Dy; + log S, (t7:x7))] — Ofg:o
j= g

for 4,(g=1,2): Zl Z [(r“‘))<2 (1 — (j’F))(H*U {? - exp(;qy(xlj))t“"] =0 Y
i=1j= Ly
for a,(g=1,2): Z E (T(k))(z (1 — (_j/_c))(g_l) |:Dij + (Dyjory — hoi](tij;xij)tjj)log t,j] _o
i=1 j= 9
and the following closed-form equation for p:
(k+1) _ Z Z T(k) (B3)

i=1j=

The MINPACK routine HYBRDI1 [41] is adopted to find a solution to (B2). The estimation
procedure of the EM-based approach is summarized as follows:

Set initial values 0", 0, p©®, &% and &9

Calculate 7;; using (B1), update {,(g=1,2) by (B2), and update p by (B3).
Repeat Step 2 until convergence.

Update 0; and 0, using (Al) and (A2), respectively.

Repeat Steps 2—4 until convergence.
Calculate the standard errors of p, ﬁ

A i e

,» and O,(g=1,2) by (A3) and (A4).

In our analysis, we set initial values 0(0) 0(0) =1 and obtain p®, 5(0), and 5(0) based on
the preliminary result of the two-component Welbull mixture regression model without the
random hospital effect adjustment (Section 5).

ACKNOWLEDGEMENTS

The authors wish to thank the Editor and the referees for helpful comments on the paper. The authors
are grateful to the Health Information Centre, Health Department of Western Australia, for providing
the ischaemic stroke mortality data. This work was supported in part by Grants from the Australian
Research Council, the Research Grants Council of Hong Kong, and the National Health and Medical
Research Council of Australia.

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2729-2744



\O oo

11.
12.

13.
. McGilchrist CA. Estimation in generalised mixed models. Journal of the Royal Statistical Society Series B

15.

16.
17.

19.
20.
21.
22.
23.
24.
25.

26.
. Patterson HD, Thompson R. Recovery of inter-block information when block sizes are unequal. Biometrika

28.
29.

30.
31

MODELLING THE DISTRIBUTION OF STROKE-SPECIFIC SURVIVAL TIME 2743

REFERENCES

. De Angelis R, Capocaccia R, Hakulinen T, Soderman B, Verdecchia A. Mixture models for cancer survival

analysis: application to population-based data with covariates. Statistics in Medicine 1999; 18:441-454.

. Farewell VT, Coates RA, Fanning MM et al. The probability of progression to AIDS in a cohort of male sexual

contacts of men with HIV disease. International Journal of Epidemiology 1992; 21:131-135.

. Kuk AYC, Chen CH. A mixture model combining logistic-regression with proportional hazards regression.

Biometrika 1992; 79:531-541.

. McLachlan GJ, McGiffin DC. On the role of finite mixture models in survival analysis. Statistical Methods in

Medical Research 1994; 3:211-226.

. Phillips N, Coldman A, McBride ML. Estimating cancer prevalence using mixture models for cancer survival.

Statistics in Medicine 2002; 21:1257-1270.

. Blackstone EH, Naftel DC, Turner ME. The decomposition of time-varying hazard into phases, each

incorporating a separate stream of concomitant information. Journal of the American Statistical Association
1986; 81:615-624.

. McGiffin DC, Galbraith AJ, McLachlan GJ et al. Aortic valve infection—risk factors for death and recurrent

endocarditis following aortic valve replacement. Journal of Thoracic and Cardiovascular Surgery 1992,
104:511-520.

. Hankey GJ. Transient ischaemic attacks and stroke. Medical Journal of Australia 2000; 172:394-400.
. Goldstein LB. Accuracy of ICD-9-CM coding for the identification of patients with acute ischaemic stroke.

Stroke 1998; 29:1602-1604.

. National Centre for Classification in Health. Australian Coding Standards. The International Statistical

Classification of Diseases and Related Health Problems, 10th Revision, Australian Modification. National
Centre for Classification in Health: Sydney, 1998.

Lee AH, Wang K, Yau KKW, Somerford PJ. Truncated negative binomial mixed regression modelling of
ischaemic stroke hospitalizations. Statistics in Medicine 2003; 22:1129-1139.

Anderson CS, Jamrozik ZK, Broadhurst RJ, Stewart-Wynne EG. Predicting surviving among different subtypes
of stroke: experience from the Perth Community Stroke Study, 1989-1990. Stroke 1994; 25:1935-1944.
McGilchrist CA. REML estimation for survival models with frailty. Biometrics 1993; 49:221-225.

1994; 56:61-69.

Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm (with
discussion). Journal of the Royal Statistical Society Series B 1977; 39:1-38.

McLachlan GJ, Krishnan T. The EM Algorithm and Extensions. Wiley: New York, 1997.

Yau KKW, Ng ASK. Long-term survivor mixture model with random effects: application to a multicentre clinical
trial of carcinoma. Statistics in Medicine 2001; 20:1591-1607.

. Booth JG, Hobert JP. Maximum generalized linear mixed model likelihoods with an automated Monte Carlo

EM algorithm. Journal of the Royal Statistical Society Series B 1999; 61:265-285.

Wei GCG, Tanner MA. A Monte Carlo implementation of the EM algorithm and the Poor Man’s data
augmentation algorithm. Journal of the American Statistical Association 1990; 85:699—704.

Quantin C, Sauleau E, Bolard P et al. Modeling of high-cost patient distribution within renal failure diagnosis
related group. Journal of Clinical Epidemiology 1999; 52:251-258.

Cox DR. Regression models and life tables (with discussion). Journal of the Royal Statistical Society Series
B 1972; 34:187-220.

Larson MG, Dinse GE. A mixture model for the regression analysis of competing risks data. Applied Statistics
1985; 34:201-211.

Gordon NH. Application of the theory of finite mixtures for the estimation of ‘cure’ rates of treated cancer
patients. Statistics in Medicine 1990; 9:397-407.

Peng YW, Dear KBG, Denham JW. A generalized F mixture model for cure rate estimation. Statistics in
Medicine 1998; 17:813-830.

Breslow NE, Clayton DG. Approximate inference in generalised linear mixed models. Journal of the American
Statistical Association 1993; 88:9-25.

Schall R. Estimation in generalized linear mixed models with random effects. Biometrika 1991; 78:719-727.

1971; 58:545-554.

McLachlan GJ, Peel D. Finite Mixture Models. Wiley: New York, 2000.

Meng XL, van Dyk DA. Fast EM-type implementations for mixed effects models. Journal of the Royal
Statistical Society Series B 1998; 60:559-578.

Gelfand AE, Ghosh SK, Christiansen C et al. Proportional hazards models: a latent competing risk approach.
Applied Statistics 2000; 49:385-397.

Rosen O, Tanner M. Mixtures of proportional hazards regression models. Statistics in Medicine 1999; 18:
1119-1131.

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2729-2744



2744 S. K. NG ET AL.

32.

33.
34.

35.
36.
37.
38.
39.
40.

41.

Yau KKW, McGilchrist CA. ML and REML estimation in survival analysis with time dependent correlated
frailty. Statistics in Medicine 1998; 17:1201-1213.

Yau KKW. Multi-level models for survival analysis with random effects. Biometrics 2001; 57:96-102.
McCulloch CE. Maximum likelihood algorithms for generalised linear mixed models. Journal of the American
Statistical Association 1997; 92:162—170.

Yau KKW, Kuk AYC. Robust estimation in generalised linear mixed models. Journal of the Royal Statistical
Society Series B 2002; 64:101-117.

Ng SK, McLachlan GJ. An EM-based semiparametric mixture model approach to the regression analysis of
competing-risks data. Statistics in Medicine 2003; 22:1097-1111.

Maller RA, Zhou S. Testing for the presence of immune or cured individuals in censored survival data.
Biometrics 1995; 51:1197-1205.

Peng YW, Dear KBG. A nonparametric mixture model for cure rate estimation. Biometrics 2000; 56:237-243.
Sy JP, Taylor JMG. Estimation in a Cox proportional hazards cure model. Biometrics 2000; 56:227-236.
Tsodikov A. Semi-parametric models of long- and short-term survival: an application to the analysis of breast
cancer survival in Utah by age and stage. Statistics in Medicine 2002; 21:895-920.

Moré JJ, Garbow BS, Hillstrom KE. User Guide for MINPACK-1, ANL-80-74. Argonne National Laboratory:
Chicago, 1980.

Copyright © 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2729-2744



