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Abstract

A unified approach of mixed-effects model has been
recently proposed for clustering correlated genes from
different kinds of microarray experiments. With
the so-called EM-based MIXture analysis WIth
Random Effects (EMMIX-WIRE) model, both the
gene-specific and tissue-specific random effects are
taken into account in the (mixture) modelling of mi-
croarray data. In this paper, we focus on the appli-
cations of the EMMIX-WIRE model to the cluster
analysis of microarray data with repeated measure-
ments. In particular, we investigate various forms of
covariance structure commonly applicable for repli-
cated microarray data and compare their impact on
the final clustering results, using a real data set of mi-
croRNA profile and a published yeast galactose data
set with known Gene Ontology (GO) listings.

Keywords: EMMIX-WIRE model, Random effects
models, Covariance structures, Replicated microarray
data.

1 Introduction

The advent of high-throughput technologies has rev-
olutionized molecular biology, and indeed is setting
the stage for the rapid evolution of the way disease
is diagnosed, classified, and treated. The complex-
ity of tumours makes it likely that a diagnostic test
will be based on marker profiles rather than individ-
ual markers. However, the identification of relevant
subsets of the markers has its challenges, because mi-
croarray experiments are now being carried out with
replication for capturing either biological or techni-
cal variability in expression levels to improve the
quality of inferences made from experimental stud-
ies (Lee, Kuo, Whitmore & Sklar 2000, Pavlidis, Li
& Noble 2003). Replicated measurements of gene ex-
pression for a microarray experiment are often corre-
lated and tend to be more alike in characteristics than
measurements for the microarray experiments as a
whole. At the same time, gene expression levels from
the same experiment are correlated (McLachlan, Do
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& Ambroise 2004). It means that clustering methods
which assume independently distributed gene profiles
should produce less reliable results than those that ex-
ploit or allow for correlation between the gene profiles.
Indeed, ignoring the dependence between the gene
profiles and the covariance structure of replicated mi-
croarray data can result in important sources of vari-
ability in the experiments being overlooked in the
analysis, with the consequent possibility of mislead-
ing inferences being made (McLachlan et al. 2004, Ng,
McLachlan, Wang, Ben-Tovim & Ng 2006).

Mixed-effects models have been used in the model-
based cluster analysis of gene expression data from
time-course experiments and experiments with re-
peated measurements (Luan & Li 2003, Celeux, Mar-
tin & Lavergne 2005). However, with these mixed-
effects models, only the correlation between repli-
cated measurements for a gene from each microar-
ray experiment is considered (by modelling via gene-
specific random effects). Thus, these models require
the independence assumption for the genes which,
however, will not hold in practice for all pairs of
genes (McLachlan et al. 2004, Klebanov, Jordan &
Yakovlev 2006) because of the correlation between
gene expression levels from the same microarray ex-
periment (tissue-specific effects). Recently, a unified
approach of mixed-effects model has been proposed
for clustering correlated genes from different kinds of
microarray experiments, where both the gene-specific
and tissue-specific random effects (Ng et al. 2006)
are taken into account in the (mixture) modelling
of microarray data. With this so-called EM-based
MIXture analysis WIth Random Effects (EMMIX-
WIRE) approach, the unknown model parameters
can be obtained by maximum likelihood (ML) via the
Expectation-Maximization (EM) algorithm of Demp-
ster et al. (1977). see also Ng, Krishnan & McLach-
lan (2004).

In this paper, we focus on applications of the
EMMIX-WIRE procedure to the cluster analysis of
microarray data with repeated measurements. In par-
ticular, we investigate various forms of covariance
structure commonly used for replicated microarray
data and compare their impacts on the final cluster-
ing results. The rest of the paper is organized as fol-
lows: Section 2 introduces the EMMIX-WIRE model
for clustering microarray data with repeated measure-
ments and outlines the ML estimation via the EM
algorithm. In Section 3, various forms of covariance
structure for replicated microarray data are consid-
ered and discussed. The impact of various covariance
structures on the cluster analysis is studied in Sec-
tion 4, using a real data set of microRNA profile and
a published yeast galactose data set with known Gene
Ontology (GO) listings (Ashburner et al. 2000). Sec-
tion 5 ends the paper with some discussion.



2 EMMIX-WIRE model for cluster analysis

The EMMIX-WIRE procedure of Ng et al. (2006)
formulates a  linear  mixed-effects  model
(LMM) (McCulloch & Searle 2001) for the mix-
ture components in which covariate information can
be incorporated into the clustering process. For ¢
biological samples (not all necessarily independent)
with r replicate hybridizations for each, we let
y; = (yl;, ..., yi;)" contain the expression levels

for the jth gene, where
ylj:(yllja-"aylrj)T (l:177t)

contains the r technical replicates for the Ith bio-
logical sample on the jth gene. The superscript T
above denotes vector transpose. It is assumed that
the (logged) expression levels have been preprocessed
with adjustment for array effects. The microarray
data can be therefore represented by an n x m ma-
trix, where m = t x r is the dimension of the gene-
expression profiles. With the EMMIX-WIRE proce-
dure, the observed m-dimensional vectors y;,...,y,
are assumed to have come from a mixture of a finite
number, say g, of components in some unknown pro-
portions my,...,m,, which sum to one. Conditional
on its membership of the ith component of the mix-
ture, the vector y; for the jth gene (j = 1,...,n)

follows the model
y; = XB; + sz'j + Ve, + €ij, (1)

where the elements of 3, (an ¢-dimensional vector)
are fixed effects (unknown constants) modelling the
conditional mean of y; in the ith component (1 =
1,...,9). In (1), b;; (an gs-dimensional vector) and ¢;
(an ¢.-dimensional vector) represent the unobservable
gene- and tissue-specific random effects, respectively.
These random effects represent the variation due to

the heterogeneity of genes and samples (correspond-

ing to b; = (b, ...,b})T and ¢;, respectively). The

random effects b; and c¢;, and the measurement er-
ror vector (€],...,€. )T are assumed to be mutually
independent, where X, U, and V are known design
matrices of the corresponding fixed or random effects,
respectively.

With the LMM, the distributions of b;; and ¢;
are taken, respectively, to be multivariate normal
Ny, (0,0p:1,,) and Ny (0,61, ), where I, and I,
are identity matrices with dimensions being spec-
ified by the subscripts. The measurement error
vector €;; is also taken to be multivariate normal
Np, (0, A;), where A; = diag(W ¢,) is a diagonal ma-
trix constructed from the vector (W¢;) with ¢, =

(0,..., afqe)T and W a known m x ¢, zero-one de-

sign matrix. That is, we allow the ith component-
variance to be different among the m hybridizations.

We let & = (¢ ,...,9),m,...,my_1)7 be the
vector of all the unknown parameters, where v, is
the vector containing the unknown parameters 3;,
Opi, 0.i, and ¢, of the ith component density (i =
1,...,9). The estimation of ¥ can be obtained by
the ML approach via the EM algorithm, proceeding
conditionally on the tissue-specific random effects ¢;
as formulated in Ng et al. (2006). The E- and M-steps
can be implemented in closed form. In particular, an
approximation to the E-step by carrying out time-
consuming Monte Carlo methods is not required. A
probabilistic or an outright clustering of the genes
into g components can be obtained, based on the es-
timated posterior probabilities of component mem-
bership given the profile vectors and the estimated
tissue-specific random effects ¢; for i = 1,...,g; see
Ng et al. (2006).

3 Covariance structures for replicated exper-
iments

Let Y* denote a random vector of size n;m consist-
ing of all the observations y; that arise from the ith
component, where n; is the number of genes belong-
ing to the ith component. It is assumed that all y,

in the ¢th component are independent given ¢;. The

conditional distribution of Y | ¢; is then given by
.Nnim(A,ﬂi,Ei), where A; = (1,, ® X). Here, 1,,

is an m,;-dimensional vector of ones, the sign ® is the
Kronecker product of two matrices, and

=1, ® (A + 6, UUT).

Hence, the unconditional distribution of Y is given
by Np,m (AiB;, Xi+Jd p, ®D;), where J,, is an n; xn;
matrix of ones and

D;=6,Vvv7T. (2)

The presence of the term (2) in the covariance ma-

trix of Y* induces the correlation between genes that
belong to the same cluster.

For the specification of gene-specific random ef-
fects b;;, we consider two typical models applicable
for replicated microarray data. The first model takes
U = X and qp = t such that bz'j = (bilj; .. .,bitj)T.
That is, it is assumed that a gene-specific random ef-
fect, by, is shared among the repeated measurements
of expression on the jth gene in the [th biological sam-
ple (I =1,...,t). The replicated measurements are
therefore correlated. The second model simplifies the
first one by taking U = 1,, and g, = 1. That is,
it is assumed that a gene-specific random effect, b;;,
is shared among the measurements on the jth gene
from all the m =t x r hybridizations.

For the specification of tissue-specific random ef-
fects ¢;, we consider three typical models applica-
ble for replicated microarray data. The first model
takes V. = I,, and ¢ = m = t x r such that
C; = (Cz'117 ey Cirly oo 3 Cilty - - -y Cirt)T. That iS, it
is assumed that a tissue-specific random effect, ¢z,
is shared among gene expressions from the kth repli-
cate of the [th biological sample (k = 1,...,r; 1 =
1, ..., t). It means that genes within the same clus-
ter are correlated. In some microarray experiments,
the ¢ biological samples, however, are not all indepen-
dent. For example, they could correspond to samples
from p patients with ¢; +t2+...4+t, = ¢. The value ¢,
corresponds to the number of biological samples from
the sth patient (s = 1, ..., p). For example, the ¢, bi-
ological samples for the sth patient might correspond
to samples taken at ty different time points or in ¢,
different conditions. A second model can be adopted
to incorporate such a data hierarchy by taking

14,) 0 ... 0
0 14 0

Vov= ( - _ )
0 0 0 14,
and ¢. = p. It means that a patient-specific random
effect, ¢;s, is shared among gene expression levels for
the technical and biological replicates for the sth pa-
tient (s = 1, ..., p). It thus induces a correlation
between the expression levels of different genes on
the same patient provided the genes belong to the
same cluster. The third model simplifies the above
two models by taking V' = 0. That is, it is assumed
that there are no tissue-specific random effects and
genes are not correlated (an independence model).



By considering the combinations of the above
random-effects models, we have six forms of covari-
ance structures:

Model 1: TakingU = X, qy =t, V = I, ¢c = m,
W = X, and ¢. = t, the covariance matrix for the
unconditional distribution of Y* is given by

I, ® (diag(X ;) + 00 X X") + T, @ cil I,
where ¢, = (02,...,03)7T.
Model 2: Taking U = X, ¢y =t,V = V", q. =p,

W = X, and ¢, = t, the covariance matrix for Y is
given by

I, ® (diag(X ¢;) + 05 X X") + T, ® 0, V*V*T,
where ¢; = (02,...,0%)T.
Model 3: TakingU = X, ¢y =1¢,V =0, W = X,
and ¢, = t, the covariance matrix for Y* is given by

I, ® (diag(X ;) + 6, X XT),

where ¢; = (02,...,0%)7T.

Model 4: Taking U = 1,, and ¢y =1, V = I,,,
gc =m, W = 1p, and ¢, = 1, the covariance matrix
for Y is given by

I, ® (diag(1moi) + Opilm1h) + T, ® O I IL

where ¢; = o7.

Model 5: Taking U = 1,, and gy = 1, V = V*,
g = p, W = 1, and ¢, = 1, the covariance matrix
for Y* is given by

I"i ® (diag(1m¢i) + gbilmlfn) + Jn,- ® eciV*V*T,

where ¢; = o7.

Model 6: TakingU =1,,,¢, =1,V =0, W =1,
and g = 1, the covariance matrix for Y* is given by

I, ® (diag(1mi) + Opilmlr,),

where ¢; = o?.

To examine the (biological) meaning of Equation (1)
for the various models above, we consider Model 1.
Under this model, it is assumed that the expression
level of the jth gene, conditional of its membership
of the ith component of the mixture (ith cluster), is
given for the kth replicate in the [th experiment by

Ykt = B + by + it + €ijm

¢ =1,....,9;5 = 1, ...,mk = 1,....r;1 =
1, ..., t). That is, the expression level y;z; is equal
to the mean expression level at the [th experiment
for the ith component (8;) plus a gene-specific
random effect by;, a tissue-specific random effect
ik, and an experimental random error €;jz;. The
vector of dimension g, = t, (bitj,---,biu;)T, rep-
resents the variation between the gene expression
profiles and their component-means for the ¢ mi-
croarray experiments. The vector of dimension

qc = m, (Cilla---acz’rla---acilt;---acirt)Ta represents
the variation between expression signature and the
component-mean signature for the m = ¢t x r hy-
bridizations. )
It can be seen from the covariance matrix for Y*
that Models 3 and 6 are independence models, where
there are no tissue-specific random effects being as-
sumed (V = 0). It means that expression levels for
the same microarray experiment are independent.

4 Comparative studies

The impact of various covariance structures on the
cluster analysis is compared using a real data set
of microRNA profile and a published yeast galactose
data set with known GO listings.

MicroRNAs are a family of small (~22 nucleotides)
noncoding RNA molecules that are evolutionary con-
served and are expressed in a tissue-specific and devel-
opmental stage-specific manner (Bartel 2004). They
are important regulators of various aspects of devel-
opmental control in both plants and animals through
sequence-specific interactions with target mRNAs.
Recent studies have shown that microRNA expression
profiles are more accurate than global mRNA profiles
in classifying the histologic origins and differentiation
of human tumours (Lu et al. 2005) and highlighted
the potential of microRNA profiling in cancer diag-
nosis and classification (He et al. 2005). The data
set consists of three (r = 3) replicate hybridizations
for each microRNA microarray experiment of t = 12
samples. However, there is a large amount of missing
data. We therefore work with a subset of n = 160
microRNAs that have about 13% of the data miss-
ing. All the missing expressions were imputed us-
ing the support vector regression (SVR) imputation
and orthogonal coding scheme (Wang, Li, Jiang &
Feng 2006). We are interested primarily in which
microRNAs are put together in the same cluster for
plausible choices of the number of components g in
the mixture model. A guide to plausible values of g
can be obtained using the Bayesian information cri-
terion (BIC) of Schwarz (1978). This criterion, which
is based on a penalized form of the log likelihood,
has growing support in the literature for selecting the
value of g in the context of mixture model-based clus-
tering of microarray data (Luan & Li 2003, Yeung,
Fraley, Murua, Raftery & Ruzzo 2001); see also the
discussion in Ng et al. (2006).

The covariance structures in Models 1, 3, 4, and 6
presented in Section 3 are considered now. Models 2
and 5 were not considered as there was no informa-
tion available on the experiments to suggest that they
would be applicable. As an illustration for Model 1,
wetakem =txr=36and X =13® I15 (a 36 x 12
matrix). The design matrices U, V', and W are taken
to be equal to X, I3, and X, respectively. We fit
this model for various values of the number of compo-
nents g. Model selection via BIC indicated that there
are five clusters.

Based on the setting of ¢ = 5, we then fit the
mixed-effects models with various covariance struc-
tures. The clusters so formed are then compared to
that obtained from Model 1 above. The adjusted
Rand index (Hubert & Arabie 1985) is adopted to as-
sess the degree of agreement between two clustering
partitions. A larger adjusted Rand index indicates a
higher level of agreement. Identical clustering parti-
tions will have the adjusted Rand index of one. In
Table 1, the adjusted Rand indices for various covari-
ance structures considered are presented. It can be
seen that various covariance structures did result in
different clustering of microRNAs.

To illustrate further the relative impact of the



Table 1: Adjusted Rand indices with reference to the
clustering obtained from Model 1 (MicroRNA data)

Covariance structure Adjusted Rand index

Model 1 1.0

Model 3 0.723
Model 4 0.298
Model 6 0.298

adopted covariance structure on the cluster analysis,
we work on a published yeast data set with known
GO listings (Ideker et al. 2001, Yeung, Medvedovic
& Bumgarner 2003). With this yeast galactose data,
there are four (r = 4) replicate hybridizations for each
cDNA array experiment. There are n = 205 genes
and ¢t = 20 microarray experiments. The expression
patterns of these 205 genes reflect four functional cat-
egories in the GO listings (Yeung et al. 2003). We
first applied Model 1 given in Section 3 to cluster the
genes into g = 4 groups. The clusters so formed are
then compared to the four categories in the GO list-
ings. The adjusted Rand index was found to be 0.978,
which is the best match (the largest index) compared
with several model-based and hierarchical clustering
algorithms considered in Yeung et al. (2003). The
adjusted Rand indices for mixed-effects models with
various covariance structures are given in Table 2.
Again, it can be seen that different clustering results
are obtained from the various covariance structures
considered.

5 Discussion

We have investigated various covariance structures in
EMMIX-WIRE model applicable for clustering repli-
cated microarray data. The specification of covari-
ance structures needs careful consideration. The
choice should be justified by the data hierarchy so
formed due to the design of microarray experiments.
With repeated measures data, replicated measure-
ments of size r from ¢ microarray experiments on
each gene are obtained. It is therefore anticipated
that random effects are shared among expression lev-
els to represent the variation due to the heterogene-
ity of genes and samples (corresponding to b; and ¢;,
respectively), as discussed in Section 3. It is inter-
esting to note that combinations of random effects
may be considered in mixed-effects modelling. For
example, an alternative model for the specification
of gene-specific random effects b;; may be adopted
by combining the two models U = X and U = 1,,
together (that is, a random effect accounting for cor-
relation among replicated measurements plus another
accounting for correlation among all hybridizations).
However, it was demonstrated in Celeux et al. (2005)
that this model provided quite similar results to that
of the first model with U = X. This result indicates
that combinations of random effects are usually not
required.

The impact of various covariance structures on
the clustering results are compared in Section 4. It
can be seen that Model 1 outperforms others for the
cluster analysis of the yeast galactose data. With
Model 1, it is assumed that a gene-specific random
effect, by, is shared among the repeated measure-
ments on the jth gene from the Ith microarray ex-
periment (I = 1,...,¢). A tissue-specific random ef-
fect, cii, 18 also assumed to be shared among gene
expressions from the kth replicate for the /th experi-

Table 2: Adjusted rand indices with reference to the
known GO listings (Yeast galactose data)

Covariance structure Adjusted rand index

Model 1 0.978
Model 3 0.811
Model 4 0.906
Model 6 0.910

ment (k=1,...,r;1 =1,...,t). It means that repli-
cated measurements are correlated and genes within
the same cluster are also correlated. This correlation
structure is justified by the data hierarchy so formed
in typical replicated microarray experiments. On the
other hand, the simplified model for the specification
of b;; with U = 1, can be regarded as unrealistic
in many situations of replicated microarray experi-
ments (Celeux et al. 2005), as indicated in Table 1
for the microRNA data.
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